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Making online polls more
accurate: statistical methods
explained

Alberto Arletti*, Maria Letizia Tanturri and Omar Paccagnella

Department of Statistical Sciences, University of Padova, Padova, Italy

Online data has the potential to transform how researchers and companies

produce election forecasts. Social media surveys, online panels, and even

comments scraped from the internet can o�er valuable insights into political

preferences. However, such data is often a�ected by significant selection bias,

as online respondents may not be representative of the overall population. At

the same time, traditional data collection methods are becoming increasingly

cost-prohibitive. In this scenario, scientists need instruments to be able to

draw the most accurate estimate possible from samples drawn online. This

paper provides an introduction to key statistical methods for mitigating bias and

improving inference in such cases, with a focus on electoral polling. Specifically,

it presents the main statistical techniques, categorized into weighting, modeling,

and other approaches. It also o�ers practical recommendations for drawing

estimates with measures of uncertainty. Designed for both researchers and

industry practitioners, this introduction takes a hands-on approach, with code

available for implementing the main methods.
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1 Introduction

Random sampling, one of the most powerful tools in scientific research, was first

introduced in 1934. The idea is simple. Given a small portion of individuals in a group, it is

possible to obtain a reliable estimate for the parameter of interest for the whole population,

such as the population mean. A random sample, or probability sample—adjectives which

will be used interchangeably in the text—possesses therefore the seemingly magical power

of achieving an estimate even with few values of n, the sample size, compared to N, the

population size (Smith, 1976). The key to such a feat of random sampling lies in managing

to obtain a sample which is entirely random with respect to all aspects that might influence

the parameter of interest. To do so, researchers often need to know the probability of each

individual in the population to join the survey, a value called inclusion probability. If such

value is known and is not zero, the sample can be considered a representative probability

sample.

Although straightforward, respecting such a requirement in practice can be a major

issue. This is especially true when drawing measurements of complex human phenomena,

such as voting behavior. As stated by Kruskal and Mosteller (1979) “the idea will rarely

work in a complicated social problem because we always have additional variables that

may have important consequences for the outcome” (p. 249).
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The delicate complexity of social problems requires random

sampling to follow extra steps in order to obtain effective

randomness in the sample, and therefore maintain its status

as the “dominating” sampling mechanism. For example, when

contacting citizens in order to measure their voting intentions for

an upcoming election, randomness could be achieved by calling

phone numbers at random, given a list of all phone addresses in

a given area (method referred to as Random Digit Dialling, or

RDD). But what about people who can’t answer the phone, for

a variety of reasons that could be connected with their choice of

vote, and therefore generate bias in the final outcome? In other

words, “polling of humans is far from the simple random sampling

described in many statistics textbooks” (Gelman, 2021, p. 69).

The issue of achieving randomization when human factors are

at play is further hampered by another important aspect: declining

response rates. The decrease has been abundantly reported (Brick,

2011), with a recent example being the decline from 60% in

2004 to 40% in 2024 in the European Social Survey (European

Social Survey, 2024). This decline applies to electoral polls as well

(Gelman, 2021). As people are seemingly uninterested in answering

field researchers, two consequences appear: Firstly, a non-response

bias is introduced in electoral polls (Shirani-Mehr et al., 2018),

which is to say that the individuals who do not respond could

be systematically different from those who do respond. Secondly,

conducting research becomes more expensive, as more and more

people need to be contacted to obtain a representative sample

(Baker et al., 2013b). Representative surveys can also be more

expensive, even without considering response rates. For example,

Unangst et al. (2020) reports the cost for a single interview to

be 10$ when conveniently obtained from the internet, with little

guarantees of randomness, while the cost climbs to 192$ for

the more selection-safe face-to-face approach. In addition to the

prohibitive costs, given the complexity of social sciences and the

increasing rates of non-response, one might legitimately question

whether a truly random sample is still achievable at all. These

two considerations led some researchers to state that there is no

such thing as a “random sample” anymore (Bailey, 2023; Beaumont

and Haziza, 2022) or, humorously, that “non-random samples are

almost everywhere” (Meng, 2018, p. 718). These two consequences

have led researchers and polling companies to increasingly turn to

alternative methods of sampling. In the following, we introduce

non-probability sampling as a pragmatic response to the challenges

and limitations of probability-based approaches.

1.1 Non-probability samples

Given the aforementioned problems, researchers might need

alternative methods for data collection. To the rescue come non-

probability samples, or non-random samples. Non-probability

samples are all samples that come from a vast number of techniques

used to obtain data, from snowball sampling (Dusek et al., 2015)

to asking people’s opinion on social media (Alexander et al.,

2020) to scraping web pages (Schirripa Spagnolo et al., 2025), to

many others. Such samples are cheaper and more convenient to

obtain, and therefore a very popular choice for researchers and

practitioners.

In the social sciences, non-probability samples can be

advantageous due to their versatility, low cost, and possibility of

being employed where other methods often cannot. In particular,

speed can be a remarkable quality. For example, the influx of

online non-probability data can allow feats such as using Facebook

Advertising Platform to nowcast the distribution of migrant groups

in the United States, as in Alexander et al. (2020) and Zagheni

et al. (2017). In another example, the stream of non-representative

Twitter data has been used to provide fast-updated estimates of

pre-electoral polls for the US elections (Beauchamp, 2017). Non-

probability samples can also be used to make updated forecasts

when more recent census data is unavailable, such as in using

Google searches to forecast birth rates (Billari et al., 2016).

Continuing, non-random sampling can often be the only viable

strategy to examine hard-to-reach populations, as for example

using mobile and landline in De Vries et al. (2021), using LinkedIn

as in Dusek et al. (2015), or using the social media platforms

Vkontakte e Odnoklassniki (Rocheva et al., 2022). Migrants are an

especially salient case of such populations, which might not fit in

the traditional administrative or random sampling schemes. For

example, Zagheni et al. (2014) used localized tweets to draw a non-

random sample used to infer migration patterns, while Jacobsen

and Kühne (2021) used a tracking app for the same aim. Finally, it

is clear that using social media, a case of non-probability sampling,

offers the advantage of smaller prices and a relatively large pool of

individuals to draw from. While most samples obtained online can

often be considered non-probabilistic in nature, it is worth noting

that some online probability samples exist, as Blom et al. (2016).

1.1.1 Pollings and the shortcoming of
non-probability samples

Even though it is clear that non-probability samples such as

opt-in online panels or social media data can be a game changer

in many scenarios, the significant drawbacks of selection bias,

which might result in less accurate results, must be accounted for

Callegaro et al. (2014b). Selection bias can be defined as systematic

differences between the sampled and target populations, due to the

fact that the survey was accessible to a section of the population

only, for example, internet users only or Facebook users only. Non-

probability samples are non-representative as they carry selection

bias, which leads to a violation of the canon of randomness in some

measure.

Because non-probability samples contain this selection, drawn

estimates, such as the predicted share of votes for a said party, are

not reliable, as in they do not represent the target population of

interest, but rather the selected subgroup from data was extracted

(e.g., Facebook users who happened to be online at the time of the

survey). Therefore, while selection is used in a random sample to

select a sample which is random in all its characteristics with respect

to the interest statistics, non-random samples are vulnerable to

the adverse effect of selection (Kruskal and Mosteller, 1979, p.

246). Some examples of such violations of the pure assumptions

of probability sampling are nonresponse, incomplete coverage of

the population, and measurement errors (Brick, 2011). The effect

is that the “magical” quality of random samples is not applicable

anymore, and suddenly the small size n of the sample is unable
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to measure correctly the large N of the interest population (Meng,

2022). Therefore, this has led the American Association for Public

Opinion Research (AAPOR) in 2010 (Baker et al., 2010) and again

in 2013 (Baker et al., 2013a, p. 12) to state that “researchers

should avoid non-probability opt-in-panels when a key research

objective is to accurately estimate population values... claims of

representativeness should be avoided when using these sample

sources.”

Another issue is that respondents in non-probability surveys,

such as those collected via social media or online panels, tend

to provide less informative responses compared to more involved

methods like face-to-face interviews. For instance, Fricker et al.

(2005) and Heen et al. (2014) document “depressed responses” in

such settings, evidenced by answer clustering around the middle of

the scale, reduced differentiation, and fewer extreme opinions.

Arguably, the field where non-probability samples’ shortfalls

have generated the strongest shockwave is electoral polling (Evans

and Mathur, 2018; Zagheni and Weber, 2015; Shirani-Mehr et al.,

2018). As put eloquently in a 2018 review: “Polls have had a

number of high-profile misses in recent elections. Political polls

have staggered from embarrassment to embarrassment in recent

years” (Prosser and Mellon, 2018, p. 757). Famous examples are

the 2016 presidential race (Kennedy et al., 2018) [which has been

named “a black eye” for polling (Gelman, 2021, p. 67)], the 2016

Brexit referendum (Financial Times, 2016), and the 2023 Turkish

general elections (Selcuki, 2023). Generally, the failure of those

polls is mainly attributed to the use of non-probability samples

(Gelman, 2021), as such samples have been reported as less accurate

compared to probability sources (Sohlberg et al., 2017; Sturgis

et al., 2018). Nonetheless, the trend does not seem to be stopping

for the rise of non-probability samples in electoral polling as

well (Callegaro et al., 2014a). A failure in an electoral prediction

bears a higher cost for the public image of the discipline. After

all, “election polling is arguably the most visible manifestation

of statistics in everyday life” (Shirani-Mehr et al., 2018, p. 608).

Election polling is almost the most salient because poll-based

forecasts are compared to actual election outcomes (Gelman,

2021).

Researchers might end up stuck between a rock and a hard

place. Random samples can hardly be completely trustworthy

and require heavy costs compared to the cheaper non-probability
alternatives (Tam and Clarke, 2015). On the other hand, non-

probability samples carry important challenges for inference. Given

these premises, what should researchers do with the abundant

quantities of non-random samples available, such as Twitter
posts, Google searches, online, and opt-in panels, etc.? It is

clear that the need for reliable approaches to draw valuable

inferences from non-probability samples is pressing and might
bring great benefits to the academic community. After all, “Great

advances of the most successful sciences—astronomy, physics,

chemistry were and are achieved without probability sampling.”

(Kish, 1965, pp. 28–29).

From this scenario, the need for statistical methods used

to draw valid inferences from non-probability social science

data emerges as paramount for the whole scientific community.

Statistical methods could aim at reducing or acting as a

counterweight to the distortion or bias present in such non-

probability samples. In other words, the estimated value would be

closer to the true population value after applying the estimation

method, in the form of calibration or correction.

Given the potential of non-probability data sources, such as

social media online surveys, for the social sciences and opinion

research, such as electoral polling, it is crucial to explore statistical

methods that reduce bias and improve accuracy in such datasets.

This work aims to assist researchers and practitioners by outlining

key statistical techniques for correcting non-probability data,

focusing on reducing distortion or bias. It provides an accessible

overview of these methods, their assumptions, and practical

implementation, serving as a reliable guide for selecting and

applying the appropriate approach in their analyses.

2 Data availability scenarios in
non-probability sampling

Addressing selection bias in non-probability samples requires

appropriate statistical methods, but their applicability depends

on the available population information. Researchers may find

themselves in different data availability scenarios when working

with non-probability samples, which are briefly illustrated here.

In the simplest case, only sample data is available, with no

population reference (e.g., hard-to-reach groups like migrants,

where census data is lacking). More commonly, researchers also

have population totals, as in electoral data, which may be available

in marginal (e.g., total voters by sex or region) or cross-tabulated

form (e.g., female voters by region). Lastly, some non-probability

samples can be paired with a (often smaller-sized) probability

sample (Tutz, 2023; Rafei et al., 2022). The present contribution

focuses on the second case, where marginal or cross-tabulated

totals are available. The first case allows little room for correction,

while the third involves distinct challenges and is less common in

electoral poll practice.

In the second setting, population information is available as

either marginal totals or cross-tabulated census data. This can be

represented as a dataset with a target variableY , a set of covariatesX

with p parameters, and a p-sized vector T(X) containing population

totals for each variable in X. When complete cross-tabulated census

data is available, the researcher has two datasets: (1) A non-

representative sample containing Y and predictors (also named

covariates in the text) X (n rows). (2) A representative dataset of the

full population (N rows) with covariates X, but without Y . These

datasets can be concatenated with an indicator variable S, where

S = 1 for sampled units and S = 0 otherwise (see Figure 1).

An additional important concept is population cells. Any

population, such as voters in a country, can be divided into non-

overlapping cells. Each cell represents a unique category in the

population, defined by a specific combination of categorical X

variables. For example, a cell might be male, 30–45 years old, voter.

The total number of cells is given by the product of the levels of

available categorical variables. For instance, if gender (2 levels) and

employment status (3 levels) are available, the population is divided

into 2× 3 = 6 cells. The X covariates can also be political affiliation

variables in the case of electoral polling, such as party affiliation or

the party voted in the previous elections.

Finally, hands-on practice enhances the learning of new

methods. To complement the theoretical discussion, this
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FIGURE 1

Schematic representation of the variables in the considered dataset.

introduction is accompanied by a sample dataset and code

implementations for most methods presented. This allows

readers to grasp both the technical details and practical

application. The code and data are available on GitHub:

nonign_sel_companion.

3 Weighting

Weighting, or calibration weighting, first introduced by Deville

and Särndal (1992), is considered one of the most important

methods for correcting a non-representative sample (Valliant,

2020). In weighting, the individual observations are up or down

weighted so their distribution is adapted to be more similar to the

distribution of a representative sample or of the census. In their

most basic idea, if the sample has way more males than females

compared to the known national totals, then male observations can

be down-weighted. This class of methods can also be referred to

as “pseudo-weighting” or “quasi-randomization” (Valliant, 2020).

This is due to the fact that in random sampling, observations in the

sample are weighted by the inverse of their inclusion probability,

which is known (see Horvitz and Thompson, 1952). In the case of

non-random sampling, the inclusion probabilities are not known

and are to be estimated. Therefore, weighting is used in trying to

approximate sampling weights in a manner that resembles what

is done in probability sampling. In the case of unknown inclusion

probabilities, or non-random samples, weighting can be obtained

with one, or a combination of raking, propensity scoring, and

matching.

3.1 Raking (iterative proportional fitting)

Iterative Proportional Fitting, or Raking, Deming and Stephan

(1940) is a weighting method which is used to weight a dataframe

so that the X variables’ marginals match the corresponding

population marginals. This is done in the case of multiple marginal

distributions, for example, gender and region. The term iterative

is used to refer to the process that is used to obtain the weighting,

which can be described in simple words as adjusting the weights

iteratively, making them more similar to the marginals at each

iteration until convergence (Stephan, 1942).

The goal of raking is to assign weights w1 . . .wj . . .wn to

each row in the sample so that the weighted sums match known

population totals from the census. For the covariate p, this can be

expressed as:

n∑

j=1

wjxj,p = T(Xp). (1)

Here, T(Xp) is the population total for the p-th covariate, and xj,p
represents the value of the p-th covariate for row j. The estimated

population mean (µ̂(Y)) is then obtained as:

µ̂(Y) =
1

n

n∑

j=1

yjwj. (2)

This formula allows the estimation of the population total

for the target variable, such as the share of votes. If one would

like to obtain measures of uncertainty around such an estimate,

a common practice is to use a bootstrap or similar resampling

approaches (Kolenikov, 2010). Alternatively, a direct expression to

obtain raking variance is provided in Deville and Särndal (1992).

Raking is a very simple weighting method that only requires

the marginal distributions to be employed, and is especially useful

in the case where only marginal totals are available (see Section

2), or in cases where the number of observations in each cell is

small. Nonetheless, it can suffer from a series of limitations. To

begin with, the raking to the marginals does not take into account

possible higher-level interactions between the raking variables. This

can be an issue, making the weighing less accurate compared to the

real population distribution. A proposed solution to this problem

is multilevel calibration weighting, an approach by Ben-Michael

et al. (2021).While rakingmatches themarginal distributions of the

raked variables only, it might not be able to balance higher-order

interactions. Multilevel calibration weighting aims at solving that,

behaving similarly to raking but adding some approximate balance

for interaction, prioritizing lower-order interactions. In addition,

if the raking variables do not fully account for the inclusion

probability, the method becomes inconsistent. Finally, it should

be noted that the weights produced by raking can have very high

(or very low) values, making the practice unreliable. One possible

solution is “trimming” the weights, or constraining the weights to

be in a certain range of values. Such a solution is also implemented

directly in the R command for raking anesrake (Pasek, 2018).

3.2 Propensity score adjustment

Propensity Score Adjustment is a class of adjustment methods

that relies on the estimation of the probability of inclusion in the

non-probability sample. The main method, discussed here, is often
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referred as Propensity Score-based Inverse Probability Weighting

(PS-IPW) (Zou et al., 2016).

PS-IPW works through the use of a second representative

sample, with common covariates to the non-probability sample,

where the target Y variable is missing (Schonlau and Couper, 2017;

McPhee et al., 2022). Such a sample can be generated knowing

the census cross-tabulated totals, if those are available. To do so,

it would be sufficient to generate a dataframe where each column

corresponds to a census cross-tabulated variable, and the number

of rows that belong in each cell corresponds to, or is proportional

to, the known population total. The two datasets are temporarily

binned into a single frame, as described in Section 2 and Figure 1.

Then, the method builds a weighted logistic regression model

to estimate the probability of an observation being in a non-

probability sample. Here, the regression weights correspond to the

known inclusion probabilities in the reference sample, while non-

sampled observations receive a weight of 1. Inclusion probabilities

in the reference sample correspond to the known probability of

individual j of being included in the sample, which generally

accompany a representative sample. If the reference sample has

been generated from the cross-tabulated census values, then the

inclusion probability of a row j belonging to cell c is just the inverse

of the numerosity of that cell. The regression can be described as:

logit(P(S = 1|X)) = β0 + βTX. (3)

The predicted values of the weighted regression, which can be set

as π̂j = logit(P(Sj = 1|xj)), are then inverted and used to estimate

the population mean.

µ̂PS-IPW(Y) =
1

n

n∑

j=1

1

π̂j
yj. (4)

This last formula is the same as the famous Horvitz-Thompson

estimator (Horvitz and Thompson, 1952), with the difference

that the weights are not known from the sample design, but are

estimated from the data. It is also similar to Equation 2, with the

difference that the 1
π̂j

values are estimated differently from wj. Such

a probability estimated from the data is called the propensity score.

What this achieves is an estimation of the inclusion probabilities,

which are unknown, from the observed data. The propensity score

represents the conditional probability of being included in the

survey given an individual’s covariate profile.

For ameasure of uncertainty of this estimate, variance estimates

can be obtained through a Taylor linearization approximation

(Valliant et al., 2013, p. 426) or through a Jackknife approximation

(Valliant, 2020, p. 8).

One topic of discussion regards which model to choose in

order to obtain propensity scores. While logistic regression is a

very popular method, some authors argue that it is insufficient

in cases such as where the propensity score shows a non-linear

function. In this regard, Lee et al. (2010) compares the performance

of different methods to obtain propensity scores. They compare

both logistic regression with Classification and Regression Trees

(CART) models, and find that logistic regression’s performance

can deteriorate in case of non-additivity and non-linearity.

Therefore, choosing a flexible or non-parametric approach to

model propensity scores can be advantageous. For example, Rafei

et al. (2020) uses Bayesian Additive Regression Trees (BART)

to model inclusion probabilities (see also Elliott et al., 2010 for

Bayesian modeling of this kind). Furthermore, attention should be

dedicated to choosing the appropriate variables to correctly model

inclusion probabilities. To this task, variable selection methods

such as in Ferri-García and Rueda (2022) can be employed.

Once an appropriate model has been selected to capture the

selection mechanism and there are no empty cells in the data,

the PS-IPW can be used to build reliable estimators. A first

assumption of this approach is that every unit in the population

has a non-zero propensity score. A second important assumption

is that the covariates X should include all relevant confounders

(Lee and Valliant, 2009). The main danger in using this method

emerges when the selected X variables do not fully account for the

sample selection mechanism, or in other words, there is significant

selection bias that cannot be controlled by the available covariates.

In that case, adjusting for the propensity score will not produce

unbiased estimates of the treatment effect. A further requirement

of PS-IPW is called “common support” and requires that the

distribution of the covariates in the reference sample is similar to

the distribution in the sample to be adjusted. For example, there

should not be population cells completely absent from the non-

probability sample (Valliant, 2020). Pseudo-inclusion probabilities

are typically estimated using weighted logistic regression (Lee and

Valliant, 2009).

4 Modeling

Another popular approach to adjust non-probability surveys

and reduce selection bias is modeling. In this case, the non-random

sample is employed to train a model used to predict the dependent

variable for each cell of the missing rows, corresponding to the

population. This approach is also called superpopulation model

estimation (Valliant, 2020), model-based predictive inference

(Buelens et al., 2018), or model-based estimation (Wu, 2022). In

modeling, the yi values of the non-sampled units are predicted with

a variety of methods trained on the sampled units. In this way, the

value for the total population is considered the union of both the

sampled and non-sampled units. That is, the non-sampled units

correspond to all individuals who are in the target population, but

not in the sample.

4.1 Post-stratification

Superpopulationmethods are therefore comprised of two steps,

a first modeling step, where the model is estimated from the

observed data, and a post-stratification step, where the value

is predicted for each cell of the population. The sum of all

predicted values for all cells gives the estimated value for the entire

population. After modeling, the post-stratification step allows for

balancing for sample discrepancy.

An estimate of the population mean for a given cell of the

population, yc, where the subscript c indicates the cell, can be

obtained by first estimating amodel betweenY andX in the sample,
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FIGURE 2

Application example of MRP.

for example, a linear regression. This can be described as:

logit(P(Y = 1|X)) = β0 + βTX. (5)

Then, the cell total can be obtained using the following formula:

µ̂(Yc) =
Nc

N
(β0 + βTXc) (6)

where Nc is the known size of the population cell c, Xc indicates

the matrix of covariates data for the cell c, and β̂ are the estimated

regression coefficients. The estimate for the whole population will

be the sum of all cell totals, so that µ̂(Y) =
∑

c µ̂(Yc).

While the post-stratification adjustment step remains the same

across applications, what can be changed is the model used

for prediction. A simple linear model can be substituted with

more complicated or non-linear models. In this regard, Ferri-

García et al. (2021) and Castro-Martín et al. (2020) examine the

use of machine-learning models as prediction models, such as

neural networks and decision trees. However, when predictors

are demographic categorical variables, a hierarchical model is

most effective, and such adjustment is referred to as Multilevel

Regression and Post-stratification (MRP). MRP is not of recent

development, with Gelman (1997) being the original proposer of

themethod. Nonetheless, MPR is one superpopulationmethod that

is frequently used with non-representative surveys (McPhee et al.,

2022; Si, 2020). In MRP, a multilevel regression model is used to

estimate the outcome variable using a larger number of auxiliary

variables and their interactions than is possible with standard

weighting methods. The particularity of MRP is that it performs a

cell-based (sub-group) estimation, and the hierarchical component

(with Bayesian prior in its original specification, see Li and Si, 2022)

regularizes the model and allows for borrowing of information.

MRP is a key method in the field, and it provides several

advantages over post-stratification with a simple linear regression.

To best understand the mechanics of MPR, it can be useful to

examine the following formula for estimating the population mean

using MPR (Si, 2020, p. 5):

µ̂MRP(Y) =
∑

c

Nc

N

µ̂(Yc)+ δcµ̂(Y)

1+ δc
, where δc =

σ 2
c

ncσ
2
Y

. (7)

Here, as in Equation 6 the subscript c indicates a post-stratification

cell, µ̂(Yc) is the model estimate for cell c, Nc is the size of cell c

in the population, µ̂(Y) is the estimated population mean, σ 2
c is

the variance of the outcome variable for cell c, nc is the sample size

for cell c and σ 2
Y is the outcome between-cell variance. Between-

cell variance is a measure of how much the mean of Y differs

from one cell to another, reflecting systematic differences between

groups defined by the stratifying variables (e.g., age, gender, region).

Therefore, what this formula tells us is that the less information we

have on cell c, both in terms of sample size and variety, the more we

are going to “borrow” from the other cells. Thismethod is especially

effective in non-probability online panel samples or social media

samples, where it’s quite often the case to have cells with very few

observations.

For uncertainty measures on the population estimates of both

post-stratification and MRP usually a Bayesian approach with

posterior draws is usually preferred (Lopez-Martin et al., 2022).

For illustration purposes, an example of an electoral poll

adjustment using Bayesian MRP is presented in Figure 2. In the

plot, the blue dotted and dashed line represents the unadjusted

sample mean, while the red dotted line represents the true

population value for the share of votes of the center-left coalition in

the 2022 Italian elections. The black dashed line represents instead

Frontiers in Political Science 06 frontiersin.org

https://doi.org/10.3389/fpos.2025.1592589
https://www.frontiersin.org/journals/political-science
https://www.frontiersin.org


Arletti et al. 10.3389/fpos.2025.1592589

the adjusted population estimate using MRP. In each subplot, the

marginal probability of each subpopulation cell to vote for that

party is plotted, together with credibility interval bands.

It has been noted that post-stratification is useful in

reducing selection bias and correcting imbalances in the sample

composition. One advantage of such estimators is their ability to

reduce bias (Kim et al., 2021). In this regard, the method has

shown to be capable of impressive bias-correcting performances in

election forecasting, for example inWang et al. (2015). Nonetheless,

when drawing inference with such method, some factors come

into play to determine its performance. The first factor is the

need for high-quality predictive post-stratification variables, or, in

other words, variables with a strong relationship with the outcome

variable. Authors have reported how poorly predictive auxiliary

information might have an important effect on the final outcome

(Si, 2020), and that variables chosen for post-stratification are more

relevant than the model used for estimation (Prosser and Mellon,

2018). For example, Buttice and Highton (2013) examines the

correlates of MRP performance in various scenarios. The authors

examine how MRP accuracy of estimates of election results varies

as the strength of the relationship between voting opinion and

state-level covariates increases. They observe that as the strength

of the relationship between opinion and the state-level covariates

increases, then also MRP estimates get closer to the true values.

This is not seen with the same strength for the individual-level

covariates.

The requirement for high-quality post-stratification variables

can be challenging when the census is limited. The requirement to

have cross-tabulated population tables can be daunting, especially

as the number of covariates increases. Therefore, it is often the case

that variables useful for adjustment are not included in the census,

such as party identification or previous vote (Gelman, 2021).

Usually, due to non-availability in census, post-survey adjustments

are limited to basic demographics such as age, gender, race, and

education from large-scale government surveys (Chen et al., 2019).

Moreover, for the case of electoral polling, these problems can

be exacerbated for practitioners working outside of the United

States. For example, pollsters in the United States can access

party registration information, which is generally unavailable in

other countries (Prosser and Mellon, 2018). Therefore, MRP has

generally been applied so far in election forecasts for a few countries

(Leemann andWasserfallen, 2017). As a possible solution, Kastellec

et al. (2015) suggests expanding the post-stratification table by

incorporating a survey that includes one or more non-census

variables, which can aid in adjusting for discrepancies between the

sample and the target population. Such practice can be referred to

as “embedded MRP” or e-MRP (Li and Si, 2024; Ornstein, 2023).

5 Other methods

5.1 Statistical matching

Statistical Matching, also known as Sample Matching or Mass

Imputation, is a technique that can be applied both before the

sample is selected (Cornesse et al., 2020; Bethlehem, 2016) or

after the non-probability sample is already obtained (Mercer et al.,

2018). The approach for the second case, the one of interest for

the purpose of the present work, is attributed to Rivers (2007).

Similarly to Propensity Score Adjustment, it requires a probability

sample where the target variable does not need to be measured,

but where there are matching covariates. The reference sample is

treated as a target, where each row of the target is paired with the

closest observation in the non-probability sample. The “matching”

observation is chosen to be an observation that has the strongest

similarity in the covariates. A Euclidean distance metric can be

used (Cornesse et al., 2020), as well as any sort of similarity matrix,

such as one obtained from a Random Forest (Mercer et al., 2018).

Alternatively, a nearest neighbor approach can be useful, especially

in the cases of continuous variables or categorical variables with

many ordinal levels (Chen and Shao, 2000). The closest match is

chosen for each row of the reference sample, and any remaining

observation that has not been paired is discarded. Sequentially, each

observation in the target dataframe is matched one at a time, and

the most similar case is chosen among the cases which has not been

matched previously. Then, the statistics of interest are obtained

using the target variable y of the matched cases. In other words,

each row of the target reference sample is substituted with the most

similar observation in the non-probability case.

The main limitation of matching is that, in order to obtain

a meaningful matching, a sufficiently large set of variables

should be available in the required probability sampling. Most

often, these variables should be different than the common

demographic variables and might not be present in the available

census. Otherwise, other forms of adjustment would be more

straightforward. For the case of electoral polling, obtaining a

reference sample with such characteristics can be challenging.

5.2 Inverse sampling

Inverse Sampling is presented for the estimation of non-

probability big data samples in Kim and Wang (2019). The idea

of inverse sampling is to leverage the large n of the non-probability

sample to make a sub-selection. The first-phase sample consists of

big data, named A, which is affected by selection bias. The second-

phase sample, named A2, is a subset of the first-phase sample,

designed to adjust for this selection bias. To extract the subsample,

inclusion probabilities proportional to the importance weights are

used for selection. External information from a reference sample or

from the census is used to correct for selection bias in the second

step.

5.3 Doubly-robust estimation

Doubly-Robust estimation or Doubly-Robust Post-

stratification (DRP) is substantially a combination between

weighting, seen in Section 3, and modeling, seen in Section

4. The fundamental idea is to combine the two components,

a propensity score component and modeling with a post-

stratification component. When estimating a propensity score

model, the specified model might be incorrect; for example, it

might ignore interactions that influence the selection mechanism.

The same might be for the modeling approach, where the chosen
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model might not be the best fit to describe the relationship between

the target variable (Y) and the available covariates (X) (Tan,

2007). In DRP, the final estimate will be correct as the sample size

increases even if one of the two models, either the modeling or the

propensity score model, is incorrect or misspecified (Theorem 2;

Chen et al., 2020). This guarantees further protection against bias.

Similarly to DR-IPW, imagine a second reference sample where Y

is missing. We call the non-probability sample A and the reference

probability sample B. To obtain DRP, two models are fitted,

1. A propensity score model on the probability of j-th being

included in A, using, for example, a weighted logistic regression

as in Equation 4. The predicted propensity score is again π̂j for

row j.

2. A model of the relationship between the target Y and the

covariates X, using A data only, as in Equation 5. The predicted

value of y for row j by this model is indicated as ŷj.

For the case of a linear model, the final DRP population estimate is

obtained by:

µ̂DR(Y) =
1∑

i∈A 1/π̂i

∑

i∈A

1

π̂i
(yi − ŷj)+

1

N

∑

c

Nc(β0 + βTXc).

(8)

Unpacking this expression,
∑

i∈A indicates to sum across all rows

in the A dataframe, while
∑

c for each population cell. The first

term in Equation 8 sums the difference between the predicted

and the measured values of Y for the non-probability sample,

weighted by the inverse of the probability score obtained with the

propensity score model. The second term is a post-stratification, as

in Equation 6.

An estimate of variance of the DRP is present in Chen

et al. (2020), but bootstrap resampling can also be used (e.g., see

Beresewicz and Szymkowiak, 2024). Point estimation of DRP in

R can be easily carried out with the nonprobsvy and Non-

ProbEst packages (Chrostowski and Beraesewicz, 2024; Rueda

et al., 2020), for example, which also provide estimates of the

uncertainty of the predicted population mean. For a list of R

packages to this aim, the reader is directed to Cobo et al. (2024).

The method has a set of strong qualities on paper, but real-world

application might vary widely (Si, J., personal communication,

11/2023). This might be due to the fact that the two model

components’ effects might interact with one another, creating

either a more unpredictable behavior (Meng, X. L., personal

communication, 11/2023). In conclusion, DRP offers notable

advantages theoretically, but has not yet replaced other methods in

practical applications automatically.

6 Limits of the presented approaches

All the models presented in the previous sections assume that

the selection mechanism is entirely explained by the X covariates

alone. If the selection mechanism is not entirely explained by X,

then the estimated model might not provide accurate estimates

of the population of interest. Importantly, there is abundant

evidence that non-probability samples might suffer from non-

ignorable selection, or in other words, that S is not only influenced

by X alone but by the target variable Y as well. In political

polling, this might be the case due to a variety of reasons. For

example, respondents in non-probability panels being generally

more politically engaged than the general population (Prosser and

Mellon, 2018), respondents who vote for a candidate who is doing

well might be more likely to answer a survey (Gelman et al.,

2016), ads being used to target responders failing to be neutral

or to attract voters of a specific political affiliation (Matz et al.,

2017; Zarouali et al., 2022; Schneider and Harknett, 2022; Kühne

and Zindel, 2020), online responders having different personality

characteristics compared to the global population (Valentino et al.,

2020; Brüggen and Dholakia, 2010), or online samples having no

respondents in certain cells of the population (Bartoli et al., 2019).

Despite the many mechanisms that can lead to non-ignorability

in online samples, available methods to address this problem are

not widely diffused. Examples of useful approaches in this regard

are Burakauskaitė and Čiginas (2023) or Marella (2023). One field

where methods might be applied to this case is missing data theory,

where mechanism missingness can be considered the same driving

selection, simply inverted. In this case, some reweighing methods

have been proposed to adjust for non-ignorable missingness (for

example, see Matei, 2018), as well as models which use assumptions

on the selection mechanism to adjust for selection bias (see West

and Andridge, 2023 and Andridge, 2024).

All in all, while the methods presented here might prove to be

capable in reducing selection bias from samples collected online,

researchers should be conscious that some selection mechanisms

cannot be completely undone without stronger assumptions or

knowledge of the sampling mechanism.

7 Conclusions

This paper reviewed the main methods used for adjusting a

non-probability sample, such as an online sample, with a focus

on electoral polling. While each method has been described in

general terms, the choice of which one to use in each situation

can depend on the specific setting, data availability, and research

goal. One useful resource in this regard is Cornesse et al. (2020),

which also had a setting centered on non-probability samples used

to estimate election polls. The authors compare probability samples

with corrected or weighted non-probability samples. They compare

some approaches listed in the previous sections: (a) Calibration

weighting using post-stratification or raking; (b) Sample matching;

(c) Propensity score weighting; (d) Pseudo-design based estimation

such as propensity score weighting; They find that weighting can

reduce the bias in some cases, but in general the authors arrived

to the conclusion that weighting does not suffice in completely

eliminating bias in non-probability based surveys.

One general rule that can be applied to all methods is that

as long as strong predictive variables are available, in weighting

or in modeling alike, most of the selection mechanisms can be

accounted for. As X decreases in predictive power, things get more

complicated: selection might be unaccounted for, and researchers

have fewer tools at their disposal in obtaining an estimate.

Concluding, we go back to an important concept expressed in

the introduction: the large n (typical of non-probability samples),

is, alone, unable to provide unbiased estimation. Nonetheless, a

rich X, or a wide dataset of covariates, might instead be a more

fruitful pathway toward robust estimation. In this sense, to work
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TABLE 1 Summary of adjustment methods pros and cons.

Method Pros Cons Use when

Raking Can be used when

population

marginals only

are available.

Does not capture

higher-order

interaction.

No

cross-tabulated

data is available.

PS-IPW Flexible, large

availability of

models to

estimate weights.

Propensity model

must be correctly

specified, requires

cross-tabulated

population table.

Modeling the

inclusion S

variable is

priority.

Model-based

inference

Large availability

of models.

Requires

cross-tabulated

data, model must

be correctly

specified.

Modeling the Y|X

relationship is

priority.

DRP Only the

inclusion model

or the outcome

model needs to be

correctly

specified.

Results can vary

widely from

application to

application.

When data and

variables are rich

and of good

quality, but there

is uncertainty in

which is the

correct model for

S or for Y|X.

well, non-probability online samples should not just be big, but

rich as well. Techniques that might be the most promising in

this sense are therefore the ones which allow for an expansion of

prediction variables, such as in Li and Si (2024); Kuriwaki et al.

(2024), and methods that allow the researcher to add previous

knowledge on the possible selection mechanism, such as in Little

et al. (2020). In general, estimation with non-probability samples

in electoral polling should proceed carefully, depending on the

selection mechanism.

For this reason, it is difficult to give general recommendations

on when to use this or that other method. Mostly, the literature

points out to the fact that variables, rather than the chosen

adjustment method, have the lion’s share in making the adjustment

effective (Little and Vartivarian, 2005; Elliott and Valliant, 2017;

Gelman, 2007; Rafei et al., 2020; Mercer et al., 2018; Prosser and

Mellon, 2018). Nonetheless, as a general rule, a few directions

can be indicated to guide a researcher. If only the population

marginal totals are available, then raking can be a robust adjustment

option. When cross-tabulated population totals are available, both

propensity score based methods and predictive modeling methods

are valid, where the first concentrates more on modeling the S

selection mechanism while the latter the Y|X mechanism, so the

choice between the two should be guided by considering weather

the data and variables might be more informative on one or

the other mechanism. Finally, DRP is also a useful approach,

especially in the case where variables are strongly predictive

of both the S and Y|X mechanisms, but the researcher is not

certain of the shape of the relationship. With proper caution and

consideration of the factors discussed earlier, readers may refer

to Table 1 for a summary of the key use cases for each statistical

method.

While non-probability samples pose significant challenges due

to selection bias, they also offer valuable opportunities when

handled with the right statistical methods. This paper has provided

both an intuitive and technical overview of key approaches to

adjust for bias and improve inference. Although no method

can fully replace probability sampling, the techniques discussed

here can enhance the reliability of estimates derived from non-

representative data. By increasing awareness of both the risks and

potential of these samples, this work aims to support researchers

in making informed methodological choices when working with

online and other non-probability datasets.
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