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Uranouchi Inlet, situated on the Pacific coast of southwestern Japan, has been a

highly enclosed inlet known for yellowtail farming since 1959. Since the 1980s,

harmful algal blooms (HABs) have repeatedly occurred, resulting in mass mortality

of fish and shellfish. In the sediment at the inlet, the resulting cysts of the HAB

species may be preserved, which reflects the history of HAB events. However, the

vertical distributions of HAB species in sediment have not been elucidated. In this

study, core sediment samples were analyzed by metabarcoding. The dating of

each sample was cited from previous study dating the same samples. The findings

revealed the presence of eleven HAB species, with notable shifts from

approximately 1977–1988. The timing of the shifts corresponded to that of the

development of aquaculture and the resulting eutrophication. Vertical core

metabarcoding provides footprints of how HAB species composition may be

influenced by anthropogenic environmental changes.
KEYWORDS
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1 Introduction

Uranouchi Inlet, located on the Pacific coast of southwestern Japan, is a highly enclosed

inlet with a narrow bay mouth (Yamaguchi et al., 2018). These characteristics enabled the

start of yellowtail farming in 1959. Since then, fish farming has continued in the inlet, with

nearly 3,500 tons of farmed fish (mainly yellowtail or red sea bream) produced in 2018

(Ministry of Agriculture, Forestry and Fisheries, 2018;Takahashi et al., 2021a). Harmful

algal blooms (HABs) have repeatedly occurred in the inlet since the 1980s, resulting in mass

mortality of fish and shellfish (Takahashi et al., 2021a).

Some HAB-causative species are known to form cysts, resulting in the accumulation of

these cysts in sediments. These cysts germinate when the surrounding environment is
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suitable for growth (Borsato et al., 2023; Brosnahan et al., 2020;

Ellegaard and Ribeiro, 2018; Zingone and Oksfeldt Enevoldsen,

2000). It has been reported that some cysts in bottom sediments

collected by a core sampler and found to be almost a century old

could still germinate (Feifel et al., 2012, 2015; Härnström et al.,

2011; Lundholm et al., 2011; Miyazono et al., 2012), which enables

us to speculate on the history of HABs caused by cyst-forming

species by identifying the species of cysts in bottom sediments.

However, species identification of HAB cysts is difficult because of

the lack of understanding of their morphological characteristics in

some cases (Hallegraeff et al., 2003; Thoha et al., 2019; Yamaguchi

et al., 1995). Recently, DNA-based species identification by

metabarcoding via high-throughput sequencers has been

performed to detect HAB-causative species in surface sediment

samples because of the fast, work-saving, and comprehensive

identification of multiple species (Dzhembekova et al., 2018; Liu

et al., 2023; Wang et al., 2022a, 2022b). Studies that attempt to

identify HAB species by collecting surface sediment samples at

shallow depths (from 0 to 15 cm of collected surface sediments)

have been performed to determine the HAB species that have been

present recently in the nearby collection area. However, several

studies have focused on the detection of HAB-causative species

collected from sediment core samples that are more than 15 cm

depths (Armbrecht et al., 2024; Boere et al., 2011; Coolen et al.,

2013; Siano et al., 2021). Among them, few studies have focused on

how marine eukaryotic HAB communities have been influenced by

anthropogenic activities, such as heavy metal pollution and

agricultural pollution (Siano et al., 2021), climate change (Boere

et al., 2009) and nutrient runoff from rivers (Coolen et al., 2013).

Under these circumstances, there are no studies on the long-term

history of the transition of HAB-causative species due to

eutrophication in coastal areas caused by aquaculture. In this

study, we aimed to clarify the vertical distribution of cyst-forming

HAB species in sediment core samples from Uranouchi Inlet by

metabarcoding, where fish farming has been continuously

performed since the 1960s and HAB events have repeatedly

occurred, and discuss the possibility that environmental changes

caused by fish farming have contributed to changes in the

community compositions of HAB species.
2 Method

The sediment core sample (0–57 cm depth) was collected as

described by Takahashi et al. (2021a) at Menokuso Station in

Uranouchi Inlet, Kochi, Japan (33.25.346N, 133.23.522E), on

August 22, 2016 (Supplementary Figure 1). The sediment core

was sliced into 3-cm layers each with a thread saw, and the nineteen

layered samples were named URA01 (0–3 cm) to URA19 (54–57

cm), which were obtained as described previously by Takahashi et

al. (2021a). To avoid contamination between each sample, only the

center of each sediment sample was collected and peripheral

sediment was removed by washing with sterile seawater. Prior to

DNA extraction, the samples were stored in the dark at -80°C to

prevent degradation of the genomic DNA of cysts of HAB species in
Frontiers in Protistology 02
the sediment. Radiometric dating of the nineteen samples (Figure 1)

was conducted with Pb-210 and Cs-137 by Takahashi et al. (2021a).

The result of estimated year of each sample by Takahashi et al.

(2021a) was shown in Figure 1.

The processes required for MiSeq sequencing, such as DNA

extraction and MiSeq library preparation, were essentially

performed following the methods described by Funaki et al.

(2022). DNA was extracted from 250 mg of raw sediment taken

from each layer of the core sample in duplicate via a DNeasy®

PowerSoil® Kit according to the manufacturer’s protocol

(QIAGEN, Hilden, Germany). The eukaryotic universal V8–V9

primer set was used to amplify the V8–V9 region of the 18S rDNA

(approximately 350 bp). The primers used were forward primer

V8F+adapter 5 ’- TCGTCGGCAGCGTCAGATGTGTAT

AAGAGACAG+ATAACAGGTCTGTGATGCCCT-3’ and reverse

primer 1510R+adapter 5’-GTCTCGTGGGCTCGGAGATGT

GTATAAGAGACAG+CCTTCYGCAGGTTCACCTAC-3 ’

(Funaki et al., 2022). PCR was conducted using the primers and the

extracted DNA from core samples as templates, and the amplified

products (approximately 400 bp) were purified via the method

described in Funaki et al. (2022). Equimolar quantities of the

purified amplicons were pooled and subjected to 2 × 250-bp

sequencing (MiSeq Reagent Nano Kit v2, Illumina) on an inhouse

MiSeq platform (Illumina). The raw data (fastq file) of both the

forward and reverse sequences obtained fromMiSeq were deposited

in the DDBJ Sequence Read Archive under BioProject number

PRJDB17880 (DRR Run number: DRR543997–DRR544015).

After MiSeq paired-end sequencing (2 × 250 bp), raw sequences

were trimmed in Mothur ver. 1.40.3 (Schloss et al., 2009) on Galaxy

(Afgan et al., 2018) and Mothur ver. 1.36.1 (Schloss et al., 2009) in

the laboratory based on the bioinformatics method described by

Funaki et al. (2022). After trimming the sequences, only the

sequences expected for the 18S rDNA V8–V9 region were

retrieved, and singleton sequences were also removed based on

the method of Funaki et al. (2022).

For HAB species identification of unique sequences, a BLAST

(basic local alignment search tool) 2.7.1+ search (Camacho et al.,

2009) was conducted via the Protist Ribosomal Reference database

ver. 5.0.1 (PR2, Guillou et al., 2013). After a BLAST search against

the reference database described above, only sequences showing

more than 97% similarity to those of HAB species and more than

281-bp query coverage were selected for further analysis. To

understand the full picture of eukaryotes obtained by MiSeq, the

total number of reads in all samples of each taxon group from

Supergroup to Division was calculated, as well as the relative

number of reads in each of the 19 samples for each taxon group.

Since this study focused on HAB species in sediment samples,

unique sequences associated with HAB genera and species listed in

the IOCUNESCO Taxonomic Reference List of Harmful Micro

Algae (Lundholm et al., 2009) were retained. In addition, the genus

Skeletonema, which is known to cause nori bleaching in Japan (Hori

et al., 2019; Imai et al., 2006; 2021, Minamiura and Yamaguchi,

2019; Sakamoto et al., 2021) and caused fish kill events by

Skeletonema costatum in British Columbia, Canada (Kent et al.,

1995) was also treated as a HAB genus.
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To prevent misidentification of HAB species with unique

sequences at the genus or species level, maximum likelihood

(ML) molecular phylogenetic trees were constructed using unique

sequences and reference sequences belonging to each genus

obtained from GenBank and PR2. Multiple alignments, best

model selection and ML molecular phylogenetic trees were

constructed via the methods described by Funaki et al. (2022). If

the unique sequence appeared in the same clade as the reference

HAB species, it was assigned to the same HAB species. However, if

the reference sequences of multiple HAB species were mixed in the

same clade, misidentification was avoided by listing multiple

species together.

To investigate the vertical distribution of HAB species detected

in the sediment samples, a heatmap with hierarchical clustering was
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generated on the basis of the read numbers of each HAB species in

each sediment sample. The detailed heatmap analysis method

followed the same approach as that in Funaki et al. (2022) and

was performed in R 4.3.1 (R Core Team, 2023) and RStudio

2023.06.0 + 421 (RStudio Team, 2023).

To discuss the occurrence of HAB species detected by

metabarcoding, the occurrence species of major HAB species and

their cells measured by light microscopy when fishery damage

occurred in Uranouchi Inlet from 1984 to 2017 was provided by

the Kochi Prefectural Fisheries Experiment Station. Simultaneously,

water quality survey results (NH4-N, NO2-N, NO3-N, PO4-P, DIN-

N, DON-N, DOP-P, T-N and T-P) from 1980 to 2020 surveyed

every 2 to 5 years in Mitsumatsu station near Menokuso Station in

Uranouchi Inlet, where the core sample used in this study was
FIGURE 1

Heatmaps and histogram based on the log10 transformed read numbers of HAB species and nori bleaching diatoms contained in the sediment
samples from Uranouchi Inlet, Kochi, Japan. The solid line in the age column on the left side of the figure indicates the start of the aquaculture in
Uranouchi Inlet. 1: Radiometric dating using Pb-210 and Cs-137 of sediment samples was determined by Takahashi et al. (2021a). 2: URA01—03,
URA04—13 and URA14—19 were surface mixed layers, layers determined by radiometric dating, and layers out of the dating range, respectively. 3:
The core sample was collected from Uranouchi inlet in 2016.
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collected, was provided by Kochi Prefectural Fisheries Experiment

Station and Fisheries Research Institute, Japan Fisheries Research

and Education Agency.
3 Results

3.1 Overview of metabarcoding results

A total of 561,941 raw sequences were obtained from MiSeq

paired-end sequencing, and all the raw sequences were generated as

contig sequences (Supplementary Table 1). The sequences filtered

and trimmed via Mothur were 179,827 unique sequences, and

465,118 reads were obtained. Among the sequences, 164,789

unique sequences and a total of 433,983 reads of the 18S rDNA

V8–V9 region were obtained. After removal of chimeras and

‘pre.cluster’, 35,897 unique sequences and a total of 332,895 reads

were passed through filtering. After singleton sequences were

removed, 10,224 unique sequences and a total of 307,222 reads

were obtained (Supplementary Table 1).

Eight supergroups of Eukaryota were identified from

metabarcoding sequences using BLAST search with PR2 database

(Supplementary Table 2 and Supplementary Figure 2). The total read

number identified by the BLAST search in the 19 sediment samples

was 234,173 reads, with the highest number of 139,129 reads for

Alveolata in the TSAR (Supplementary Table 2). Total reads of the

supergroups and divisions derived from the 19 sediment samples

were varied among 5,124 reads at URA18 to 17,703 reads at URA02

(Supplementary Table 3). Supergroup and division showing the most

abundant reads was TSAR and Alveolata, respectively, in URA01–

URA14 and URA19 samples (ranged from 33.79% at URA19 to

79.83% at URA09, Supplementary Table 4 and Supplementary

Figure 2). In contrast, Obazoa and Opisthokonta were the most

dominant supergroup and division in URA15–URA18 (ranged from

33.86% at URA15 to 42.59% at URA17), respectively.
3.2 Molecular phylogenetic position of
each identified HAB species

Ten HAB species belonging to the genera Alexandrium,

Azadinium, Chattonella, Fibrocapsa, Heterocapsa, and Heterosigma

were identified in this study (Table 1). In the case of the genus

Skeletonema, the total numbers of unique sequences and reads of the

genus were also shown in Table 1 because not only Skeletonema

costatum but also many species of the genus are considered to cause

nori bleaching in Japan. The HAB species Aureococcus

anophagefferens, Azadinium dexteroporum and A. spinosum,

Dictyocha fibula, Karenia mikimotoi, Pseudo-nitzschia delicatissima,

P. multiseries, P. pseudodelicatissima, and P. pungens were also

detected. However, the total read numbers of those HAB species

were less than fifty which was difficult to examine for vertical
Frontiers in Protistology 04
distribution in the sediment samples, so those species were

excluded from the subsequent analysis.

In the molecular phylogenetic tree of the genus Alexandrium,

unique sequences of the genus Alexandrium obtained this study were

separated into five major clades (Supplementary Figure 3). Four

clades contained sequences of A. affine, A. leei, A. pacificum (group

IV) and A. tamiyavanichii, whereas the remaining clade contained

two species (A. hiranoi and A. pseudogonyaulax) in the molecular

phylogenetic tree. A. pacificum (Group IV) and A. tamiyavanichii

have been reported as paralytic shellfish toxin (PST) producers (A.

pacificum: Brown et al., 2021; Li et al., 2011; Wang et al., 2005, A.

tamiyavanichii: Hashimoto et al., 2002; Lim et al., 2006; Sagara et al.,

2010, Table 1). A. affine and A. leei have been reported to be

associated with fish mortality (A. affine: Nguyen-Ngoc, 2004, A.

leei: Shikata et al., 2020; Tang et al., 2007, Table 1). A. hiranoi and

A. pseudogonyaulax produce goniodomin A, which is an antifungal

polyether macrolide that inhibits actin reorganization and

angiogenesis (Murakami et al., 1988, 1998; Triki et al., 2016, Table 1).

Regarding the toxic species of the genus Azadinium, three unique

sequences belonging to the clade A. poporum/A. dalianense were

obtained (Supplementary Figure 4). Since A. dalianense has not been

found and A. poporum has recently been found in Japanese coastal

waters via many water samples collected from various locations in

Japan (Takahashi et al., 2021b), these unique sequences may be those

of A. ‘poporum’, known as an azaspiracid producer (Krock et al.,

2015; Luo et al., 2017, 2018; Tillmann et al., 2011, 2018, Table 1). The

azaspiracid is known to cause symptoms similar to diarrheal shellfish

poisoning, including nausea, vomiting, abdominal pain, and severe

diarrhea symptoms in humans who ingest mussels or scallops

contaminated with azaspiracids (Twiner et al., 2008).

The unique sequences belonging to the Chattonella marina

complex (C.marina var. antiqua, C. marina var. marina, C.marina

var. ovata and C. minima) were detected (Supplementary Figure 5).

Several strains of the C. marina complex produce reactive oxygen

species (ROS), which may affect the gills of fish during red tide

outbreaks and cause fish mortality (Shikata et al., 2021, Table 1).

Regarding phylogeny, the C. marina complex detected in the

sediment sample may also have the potential for ROS production

because sequences of the productive ROS strains and those of the C.

marina complex detected in this study appeared in the same clade

on the tree (Supplementary Figure 5). The unique sequences

assigned to Fibrocapsa japonica were detected (Supplementary

Figure 5). Fish mortality caused by F. japonica has been reported

(Iwasaki, 1971; Landsberg, 2002, Table 1), and some studies have

reported that this species produces ROS and hemolysins, which

may cause cell clogging in the gills (de Boer et al., 2009, 2012). The

unique sequence of Heterosigma ‘akashiwo’, which has been

reported as a HAB that causes fish mortality, was detected

(Table 1 and Supplementary Figure 5). The genus Heterosigma

contains a new species, H. minor, described in 2016 (Engesmo et al.,

2016). These two species ofHeterosigma are indistinguishable in the

18S rDNA V8–V9 region analyzed in this study. However,H. minor
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has only been described from a strain isolated from Virginia, USA

(strain ARC HA0504-1), and no Japanese strain has been isolated to

date (Engesmo et al., 2016; Imai et al., 2021; Mehdizadeh Allaf,

2023). Therefore, we determined the unique sequences in the

phylogenetic tree as H. ‘akashiwo’ (Supplementary Figure 5).

Three unique sequences were found in the genusHeterocapsa, but

the position of those sequences in the phylogenetic tree of the genus

Heterocapsa was difficult to identify at the species level, since those

sequences belonged to one clade along with several other species of the

genus Heterocapsa (Supplementary Figure 6). This is because the 18S

rDNA V8–V9 region, which is the target region for metabarcoding in

this study, cannot identify each species of the genus Heterocapsa.

However, considering that there are reports of bivalve mortality

caused by H. circularisquama in Uranouchi Inlet (Horiguchi, 1995;

Imai et al., 2006; Matsuyama, 2012; Sakamoto et al., 2021; Shiraishi

et al., 2008), these three sequences were considered as H.

circularisquama and named as H. ‘circularisquama’ (Table 1).

The blooms of Skeletonema have been reported to be

responsible for the color bleaching of nori (Pyropia spp.) in Japan

(Imai et al., 2006, Table 1) and gill lesions and mortality of Atlantic

salmon Salmo salar in British Columbia (Kent et al., 1995), unique

sequences assigned to this genus were treated as HAB species in this

study (Supplementary Figure 7).
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3.3 Monitoring data of HAB species and
water quality survey

The HAB monitoring data provided by the Kochi Prefectural

Fisheries Experiment Station for fishery damage in Uranouchi Inlet

between 1984 and 2017 showed that the largest fishery damage on

record occurred in 2001 in this inlet, with the damage amounting to

60 million yen (Table 2).

Water quality survey results from 1980 to 2020 showed that

DIN-N, DON-N, DOP-P, T-N and T-P stayed high in 2005, while

inorganic nitrogen (NH4-N, NO2-N, NO3-N and DIN-N) and

inorganic phosphorus (PO4-P) were intermittently high from

1980 to 2020 (Table 3).
3.4 Vertical distribution of HAB species

The vertical distribution of HAB species analyzed via a heatmap

revealed that the eleven HAB species could be divided into three groups

(Figure 1). The first group was composed of six species found in samples

from almost all the sediment layers: A. hiranoi/pseudogonyaulax, C.

marina complex, F. japonica, H. ‘circularisquama’, H. ‘akashiwo’ and

Skeletonema spp.
TABLE 1 List of HAB species and nori bleaching/fish kill species detected by metabarcoding in this study, their harmful effects, and their numbers of
unique sequences and reads obtained in this study.

Genus Species Harmful effects and toxins of each
HAB species

Unique
sequence
numbers

Numbers
of reads

Alexandrium affine ichthyotoxicity (Nguyen-Ngoc Lim, 2004) 3 132

hiranoi/
pseudogonyaulax

goniodomin A from A. hiranoi (Murakami et al., 1988; 1998)
goniodomin A from A. pseudogonyaulax (Triki et al., 2016)

4 552

leei ichthyotoxicity (Tang et al., 2007 and Shikata et al., 2020) 10 183

pacificum (Group IV) paralytic shellfish toxins (neosaxitoxin and gonyautoxins 1–6)
(Wang et al., 2005; Li et al., 2011; Brown et al., 2021)

9 591

tamiyavanichii
paralytic shellfish toxins (neosaxitoxin and gonyautoxins 1–5)
(Hashimoto et al., 2002; Lim et al., 2006; Sagara et al., 2010)

2 177

Azadinium ‘poporum’1
azaspiracids (Tillmann et al., 2011; 2018, Krock et al., 2015; Luo
et al., 2017; 2018)

3 85

Chattonella marina ichthyotoxicity (Shikata et al., 2021) 2 827

Fibrocapsa japonica ichthyotoxicity (de Boer et al., 2009; 2012) 24 5,560

Heterocapsa ‘circularisquama’2 bivalve mortality (Matsuyama, 2012) 3 228

Heterosigma ‘akashiwo’3
ichthyotoxicity (Flores-Leñero et al., 2022 and Astuya et al., 2015;
2018; 2023)

2 364

Skeletonema spp.
nori bleaching and fish kill (Hori et al., 2019; Imai et al., 2006;
2021, Kent et al., 1995; Minamiura and Yamaguchi, 2019;
Sakamoto et al., 2021)

23 3,742
1The sequences of Azadinium dalianense/poporum (Supplementary Figure 4) were determined to be those of A. ‘poporum’ in this study, because A. poporum has been found at various locations in
Japan (Takahashi et al., 2021b).
2The sequences of Heterocapsa circularisquama (Supplementary Figure 6) were determined to be those of H. ‘circularisquama’ in this study, because H. circularisquama has been found at
Uranouchi Inlet (Shiraishi et al., 2008).
3The sequences ofHeterosigma akashiwo/minor (Supplementary Figure 5) were determined to be those of H. ‘akashiwo’ in this study, because H. akashiwo has been found at various locations in
Japan (Engesmo et al., 2016; Imai et al., 2021; Mehdizadeh Allaf, Malihe, 2023).
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TABLE 2 Summary of the dominant HAB species of the red tides and the economic damage to fish aquaculture in Uranouchi Inlet, compiled by the
Kochi Prefectural Fisheries Experiment Station.

Year Species observed during red tide out-
break (concentration : cells/L)

Damaged fish
species

Damage quantity Damage amount
(multiplied by
thousands of JPY)

1984 Heterosigma
sp. (ND)

Japanese amberjack 2,500 fishes 1,950

1991 Chattonella
marina (640)

Japanese amberjack 21,500 fishes 8,920

1992 Heterosigma
akashiwo
(4,880)

greater amberjack 600 fishes 540

1993 Chattonella
marina
(10,533)

Heterosigma
akashiwo
(ND)

Karenia
mikimotoi
(ND)

Japanese amberjack,
striped jack

Japanese amberjack 50,000 fishes,
striped jack 20,000 fishes

35,000

1994 Chattonella
marina (ND)

Karenia
mikimotoi
(35,000)

red sea bream 800 fishes 800

1994 Chattonella
marina
(3,300)

striped jack 1,000 fishes 1,500

1997 Chattonella
antiqua
(8,300)

Japanese amberjack 15,000 fishes 20,000

2001 Heterosigma
akashiwo
(113,800)

red sea bream, yellowtail red sea bream 2,000,000 fishes,
yellowtail 600,000 fishes

60,000

2001 Fibrocapsa
japonica
(1,600)

Chattonella
spp. (ND)

greater amberjack 10,000 fishes ND

2002 Chattonella
antiqua
(4,100)

C. marina
(ND)

Japanese amberjack 1,100 fishes 270

2003 Chattonella
antiqua/
marina
(25,700)

Japanese amberjack 54,000 fishes 26,000

2003 Chattonella
antiqua/
marina
(4,134)

Japanese amberjack,
greater amberjack

Japanese amberjack 6,180 fishes,
greater amberjack 400 fishes

1,600

2004 Chattonella
marina (ND)

Karenia
mikimotoi
(16,664)

greater amberjack, red
sea bream, abalone

greater amberjack
343 fishes, red sea bream 269 fishes,
250,000 abalones

ND

2006 Heterosigma
akashiwo
(27,800)

red sea bream,
striped jack

ND ND

2006 Chattonella
marina (ND)

Karenia
mikimotoi
(52,580)

greater amberjack, red
sea bream

greater amberjack 2,000 fishes, red
sea bream 300 fishes

ND

2007 Chattonella
marina
(15,400)

Japanese amberjack,
greater amberjack

Japanese amberjack 40 fishes,
greater amberjack 40 fishes

20

2008 Chattonella
spp. (18,700)

Japanese amberjack,
greater amberjack, red sea
bream, striped jack

ND 5,856

(Continued)
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TABLE 2 Continued

Year Species observed during red tide out-
break (concentration : cells/L)

Damaged fish
species

Damage quantity Damage amount
(multiplied by
thousands of JPY)

2009 Chattonella
spp. (13,320)

Japanese amberjack ND ND

2009 Heterosigma
akashiwo
(12,400)

striped jack 220 fishes ND

2010 Chattonella
marina
(6,250)

Karenia
mikimotoi
(1,640)

yellowtail 1,500 fishes ND

2011 Chattonella
spp. (16,500)

Japanese amberjack,
greater amberjack,
bluefin tuna

Japanese amberjack 2,200 kg,
greater amberjack 6,960 kg, bluefin
tuna 4.2 kg

8,371

2011 Chattonella
spp. (3,080)

Karenia
mikimotoi
(1,170)

Japanese amberjack 20,200 kg 14,650

2012 Chattonella
spp. (5,230)

Fibrocapsa
japonica
(1,080)

Karenia
mikimotoi
(8,875)

Dictyocha
fibula
(4,690)

yellowtail, greater
amberjack, red sea bream

yellowtail 50 fishes, greater
amberjack 504 fishes, red sea bream
773 fishes

ND

2012 Chattonella
spp. (5,230)

Fibrocapsa
japonica
(1,080)

Karenia
mikimotoi
(27,300)

Dictyocha
fibula
(4,690)

2013 Heterosigma
akashiwo
(515,000)

greater amberjack 5 fishes ND

2014 Chattonella
marina
(6,800)

greater amberjack, red
sea bream

greater amberjack 10,000 fishes, red
sea bream 172 fishes

ND

2014 Chattonella
marina
(6,800)

2015 Chattonella
spp. (61)

Japanese amberjack,
greater amberjack, red
sea bream

Japanese amberjack 2,900 fishes,
greater amberjack 6,990 fishes, red
sea bream 18,400 fishes

23,890

2015 Chattonella
spp. (170,000)

Karenia
mikimotoi
(ND)

2015 Chattonella
spp. (11,300)

Karenia
mikimotoi
(ND)

2015 Chattonella
spp. (4,900)

Karenia
mikimotoi
(ND)

2016 Pseudochatton
ella
verruculosa
(450)

greater amberjack 110 fishes ND

2017 Heterosigma
akashiwo
(20,500)

red sea bream 2,900 fishes 2,540

2017 Chattonella
spp. (6,650)

yellowtail, greater
amberjack, bluefin tuna

yellowtail 3,500 fishes, greater,
amberjack 500 fishes, bluefin tuna
60 fishes

6,330
F
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ND, No data.
HAB species highlighted by bold: HAB species detected in the metabarcoding that were included in this study.
HAB species shown by fine: HAB species detected by metabarcoding but excluded from analysis in this study.
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The second group of A. affine, A. pacificum (Group IV), and A.

tamiyavanichii was not detected or was detected at low abundance in

the upper layers of the core sample (Figure 1, URA01–08), whereas

these species were detected in the deeper layers (under URA09 and

URA10, whose years of occurrence were estimated to be 1980s).

The third group was composed of two HAB species, A. leei and

A. ‘poporum’, which were not detected in the deep layers, unlike the

URA10 and URA11 samples, respectively, but were detected in the

upper layers (Figure 1, URA01–URA11).
4 Discussion

4.1 DNA of HABs found by metabarcoding

Among the detected HAB species, Alexandrium hiranoi is

known to form resting cysts in the winter and can remain

dormant until the environmental conditions become suitable for

germination (Kita et al., 1985). A. leei (Anderson et al., 2012;

Shikata et al., 2020), A. pseudogonyaulax (Anderson et al., 2012;

Lassus et al., 2016; Montresor, 1995; Montresor and Marino, 1996),

A. affine, A. pacificum (Group IV) and A. tamiyavanichii are also

known to form cysts (Anderson et al., 2012; Nguyen-Ngoc, 2004).

The following other HAB species are also known to form resting

cysts in the sediment: A. poporum (Gu et al., 2013a; Luo et al., 2018),

C. marina complex (Imai and Yamaguchi, 2012; Ishikawa et al.,

2022; Katano et al., 2014), F. japonica (Cucchiari et al., 2010;

Yoshimatsu, 1987), H. circularisquama (Shiraishi et al., 2008), H.

akashiwo (Mehdizadeh Allaf, 2023; Mehdizadeh Allaf and Trick,

2023) and Skeletonema spp (Ellegaard and Ribeiro, 2018; McQuoid

and Hobson, 1996; Stenow et al., 2020). Therefore, those DNAs

detected in the sediment samples have the possibility of originating

from cysts or from DNA adsorbed on humic acids (Lewis et al.,
Frontiers in Protistology 08
2023; Pedersen et al., 2015; Saeki et al., 2011) in the

sediment samples.
4.2 Insights into the occurrence trends of
HAB species group

From the vertical distribution of eighteen HAB species analyzed by

heatmap, the first six HAB species group (A. hiranoi/pseudogonyaulax,

C. marina complex, F. japonica, H. ‘circularisquama’, H. ‘akashiwo’

and Skeletonema spp.) which appeared in almost every sediment

sample suggest that these six cyst-forming species occurred

continuously throughout the ages, and DNA derived from the cysts

or cells were deposited in the bottom sediment resulting in their

detection in all sediment samples. Since 1984, when records began to

be kept by the Kochi Prefectural Fisheries Experimental Station, four

genera, Chattonella, Fibrocapsa, Heterocapsa, and Heterosigma, have

repeatedly formed red tides and caused economic damage to

aquaculture (~60 million JPY, Table 2). Although there are no

records prior to 1984, these records after 1984 seem to correspond

to the existence of those four genera in the sediments during that

period (Figure 1, URA01–URA09).

According to Kochi Prefectural Fisheries Experimental Station,

four Alexandrium species (A. affine, A. pacificum (Group IV), A.

tamiyavanichii and A. leei) detected by metabarcoding have not

been reported by direct cell counting, but three Raphidophyta

(genera Chattonella, Fibrocapsa, and Heterosigma) have been

reported (Table 2). The reason for this difference is the number

of copies of 18S rDNA per cell in Alexandrium spp. and

Raphidophyta. It is known that the copy number of 18S rDNA

per cell in the genus Alexandrium is higher than that in

Raphidophyta (Yarimizu et al., 2021). Therefore, it is likely that

metabarcoding would have detected Raphidophyta but
TABLE 3 Summary of water quality survey results in Mitsumatsu station near Menokuso Station in Uranouchi Inlet, where the core sample used in this
study was collected, conducted by Kochi Prefectural Fisheries Experiment Station and Fisheries Research Institute, Japan Fisheries Research and
Education Agency.

Year
NH4-N
(mg/L)

NO2-N
(mg/L)

NO3-N
(mg/L)

PO4-P
(mg/L)

DIN- N
(mg/L)

DON- N
(mg/L)

DOP- P
(mg/L)

T-N
(mg/L)

T-P
(mg/L)

1980 0.080 0.009 0.034 0.028 0.123 NDa NDa NDa NDa

1985 0.119 0.004 0.008 0.057 0.131 0.128 0.014 0.260 0.070

1987 0.086 0.142 0.043 0.077 0.271 0.068 0.046 0.339 0.123

1990 0.184 0.018 0.009 0.082 0.211 0.092 0.004 0.303 0.086

1995 0.196 0.003 0.005 0.074 0.204 0.122 0.012 0.326 0.086

2000 0.013 0.121 0.041 0.067 0.175 0.102 0.011 0.277 0.078

2005 NDa NDa NDa 0.140 0.365 0.840 0.119 1.205 0.259

2010 0.073 0.005 0.005 0.018 0.084 0.189 0.011 0.272 0.029

2015 0.158 0.010 0.007 0.030 0.175 0.063 0.009 0.238 0.038

2020 0.003 0.191 0.053 0.062 0.247 0.067 0.008 0.314 0.070
fr
aData not available.
Data from 2007 onward are available to the public online page in Kochi Prefectural Fisheries Experiment Station website written in Japanese (https://www.pref.kochi.lg.jp/soshiki/
040409/akashiojoho.html).
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Alexandrium was not. This is a weakness of the occurrence analysis

by metabarcoding and should be analyzed by quantitative

metabarcoding in the future (Ushio et al., 2018; Sato et al., 2021;

Tsuji et al., 2022).

The reason why A. ‘poporum’ was detected by metabarcoding but

its occurrence has not been recorded may be because the size of this

species is small and difficult to identify under microscopic

observation (Takahashi et al., 2021b; Tillmann et al., 2011).

Considering these issues, analysis of HAB species in bottom

sediments by metabarcoding is useful for clarifying the occurrence

history of HAB species.

In relation with the second HAB species group (A. affine, A.

pacificum (Group IV), and A. tamiyavanichii) in the heatmap,

Alexandrium spp. blooms occur on a large scale in Osaka Bay

and Hiroshima Bay in the Seto Inland Sea, Japan, when nutrient

concentrations such as DIN and PO4 are less than 12.8 mM and 0.4

mM, respectively (Itakura et al., 2002; Yamamoto, 2019).

Considering these issues, it has been reported that conditions

suitable for Alexandrium spp. proliferation may involve

oligotrophic or mesotrophic waters rather than eutrophic waters

(Itakura et al., 2002; Natsuike et al., 2018a, 2018b; Yamamoto,

2019). Therefore, the bloom formation of the Alexandrium species

in Uranouchi Inlet may have been suppressed by eutrophication

caused by aquaculture after 1977–1988 (Table 3), as discussed later.

There are two possibilities for why the third HAB species group

(A. leei and A. ‘poporum’) in the heatmap were not detected in deeper

samples than the URA11 and URA12 samples, whose years estimated

by radiometric dating (Takahashi et al., 2021a) were 1977 and 1954.

First, these two species did not occur in Uranouchi Inlet prior to 1977

or 1954 and appeared after those years; second, the cysts that formed

prior to 1977 or 1954 might have decomposed since the cysts of these

two HAB species are not highly durable. Regarding the first

possibility, yellowtail aquaculture started in Uranouchi Inlet in

1959, and the aquaculture industry may have caused environmental

changes such as eutrophication, as discussed later in the enclosed

inlet, which may have enhanced bloom formation in these two

species. The cyst durability of these two species should be

investigated to clarify which possibility is conceivable.
4.3 Replacement of HAB species groups in
the sediment of Uranouchi Inlet

Possible causes of the change in HAB species composition after

1977–1988 (URA09–11) include the following two possibilities:

first, eutrophication of Uranouchi Inlet due to the start of

aquaculture, and second, climate change, such as global warming.

Regarding the first possibility, the total N (T-N) and total P (T-P)

concentrations in Uranouchi Inlet in 1985 were 0.260 mg/L and

0.070 mg/L, respectively (Table 3). These values suggest that the

seawaters in Uranouchi Inlet were eutrophicated or polluted at that

time, based on the criterion of eutrophication (T-N: 0.220– 0.650

mg/L, T-P: 0.03–0.09 mg/L, Tavakoly Sany et al., 2014) and
Frontiers in Protistology 09
pollution in coastal waters (‘low-level’ T-N pollution: 0.252–0.308

mg/L; and ‘very high level’ T-P pollution: > 0.031 mg/L, Smith,

2003). It is possible that the eutrophication in Uranouchi Inlet may

have occurred as a result of the proliferation of aquaculture in

Uranouchi Inlet from the 1960s to the 1970s, which resulted in

changes in HAB species composition from 1977–1988. However,

information on nutrient concentrations in the years prior to the

1980s is not available. This hypothesis is supported by the finding

that Skeletonema spp., a known indicator of eutrophication in the

Seto Inland Sea of Japan (Itakura and Yamaguchi, 2007; Nishikawa

et al., 2010; Yamada et al., 1980a, 1980b, 2011), have been detected

in greater numbers in Uranouchi Inlet since 1977–1988 (Figure 1).

On the other hand, there is a gap of more than a decade between the

start of aquaculture in Uranouchi Inlet (1959) and the transition

timing of the HAB species groups occurred (1977– 1988). This gap

may be due to eutrophication caused by nutrients increasing

beyond the environmental capacity while the aquaculture was

gradually expanded since the start of aquaculture was not sudden

on a large scale.

Second, the sea surface temperature (SST) around Japan has

increased due to global warming, and the annual average SST in the

northwestern Pacific around Japan has shown an increasing trend

(1.24 °C/100 years, Japan Meteorological Agency, 2023). The

annual average SST in Uranouchi Inlet increased by 0.19 °C/

decade from the 1970s to the 2010s (Tanaka et al., 2012). Such

SST trends in Uranouchi Inlet and nearby sea areas may increase

blooms of HAB species such as A. leei, which have been reported to

occur in tropical and subtropical areas, such as Malaysia (Usup

et al., 2002), Singapore (Tang et al., 2007), Thailand (Kodama et al.,

1982), Vietnam (Nguyen-Ngoc, 2004), and China (Gu et al., 2013b).

This hypothesis was supported by the report that A. leei recently

formed blooms and caused fish mortality in Nomi Bay in 2017

(Shikata et al., 2020), which is close to Uranouchi Inlet. Although it

is difficult to directly link such changes in the bloom formation of

HAB species with global warming, it may be important to consider

global warming as at least one of the factors that caused the changes

in the occurrence trends of HAB species in Uranouchi Inlet

observed in this study.

In this study, we revealed the presence of eleven HAB species,

with notable shifts from approximately 1977–1988 in Uranouchi

Inlet, Kochi, Japan. This shift corresponded to two hypotheses: the

development of aquaculture and the resulting eutrophication, or sea

surface temperature rising due to global warming. Moreover,

metabarcoding using vertical core sediment samples provides

footprints of how HAB species composition has changed and

maybe be affected by anthropogenic environmental changes.
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The Galaxy platform for accessible, reproducible and collaborative biomedical analyses:
2018 update. Nucleic Acids Res. 46, W537–W544. doi: 10.1093/nar/gky379

Anderson, D. M., Alpermann, T. J., Cembella, A. D., Collos, Y., Masseret, E., and
Montresor, M. (2012). The globally distributed genus Alexandrium: Multifaceted roles
in marine ecosystems and impacts on human health. Harmful Algae. 14, 10–35.
doi: 10.1016/j.hal.2011.10.012

Armbrecht, L., Bolch, C. J. S., Paine, B., Cooper, A., McMinn, A., Woodward, C., and
Hallegraeff, G. (2024). Recovering sedimentary ancient DNA of harmful dinoflagellates
accumulated over the last 9000 years off Eastern Tasmania, Australia. ISME Commun.
4. doi: 10.1093/ismeco/ycae098
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