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2000), the α-Synuclein-binding protein, synphilin-1 (Chung et al., 
2001), actin filaments (Huynh et al., 2000) and αβ tubulin (Ren 
et al., 2003). Parkin is up-regulated during the integrated cellular 
response to misfolded protein-induced endoplasmic reticulum 
stress (Imai et al., 2000). Deletions in the parkin gene result in 
the accumulation of non-ubiquitinated forms of α-Synuclein and 
Pael-R in the brain (Imai et al., 2000; Shimura et al., 2001).

Parkin may reduce the levels of intracellular proteins by ubiq-
uitination and proteasomal degradation in cell culture and animal 
models. Parkin rescues the toxic effects of mutant α-Synuclein 
or proteasome inhibition in catecholaminergic neurons in 
primary midbrain cultures in a manner dependent on its E3 
ubiquitin-ligase activity (Shimura et al., 2001). Knockdown of 
parkin increases sensitivity to proteasome inhibitors (Petrucelli 
et al., 2002). Several pieces of evidence suggest that α-Synuclein 
and proteasome function may be related. Whether α-Synuclein 
turnover is regulated by the proteasome is still controversial, 
with both positive (Bennett et al., 1999; Tofaris et al., 2001) 
and negative (Ancolio et al., 2000; Paxinou et al., 2001) results 
reported. However, over-expression of α-Synuclein, especially 
the mutant forms, sensitize PC12 (Stefanis et al., 2001; Tanaka 
et al., 2001), NT2 and SK-NMC (Lee et al., 2001a) neuroblastoma 
cells to toxicity induced by the proteasome inhibitor lactacys-
tin. Over-expression of α-Synuclein mutants produces an inhi-
bition of proteasome-associated proteolytic activities (Stefanis 
et al., 2001) and proteasome function is impaired in sporadic PD 
(McNaught and Jenner, 2001). Taken together, these studies sug-
gest that proteasome function and protein accumulation maybe 
a common link in neurodegenerative diseases, including PD and 
other Synucleinopathies. The association of β-amyloid (Aβ) 
with ubiquitin in Alzheimer’s disease (AD) (He et al., 1993) and 

Parkin as an E3-ubiquitin ligasE
Parkin is an E3 ubiquitin-protein ligase, which facilitates protea-
somal degradation of misfolded proteins (Shimura et al., 2000). 
Mutations in the parkin gene are linked to autosomal-recessive 
juvenile onset Parkinson disease (ARJPD) (Kitada et al., 1998; 
Lucking et al., 2000). Parkin is a 465-amino acid protein containing 
an N-terminal ubiquitin-like (Ubl) domain linked to a C-terminal 
RING box (Shimura et al., 2000). The latter is divided into two 
RING-finger domains and a third RING-finger motif referred 
to as “in-between-RING” (IBR) (Morett and Bork, 1999; Ardley 
et al., 2001). Over a hundred parkin mutations have been identified 
and one of the earliest familial PD-causing mutations in parkin is 
T240R, a Threonine to Arginine substitution in the RING1 domain 
(Hattori et al., 1998). Parkin E3 ubiquitin-ligase activity targets a 
number of substrates, which have intrinsic toxic and aggregative 
properties in vivo, including an O-glycosylated form of α-Synuclein 
and α-SynucleinP22 (Shimura et al., 2001). Parkin suppresses the 
toxicity of parkin-associated endothelin-like receptor Pael-R (Imai 
et al., 2000, 2001), mutated α-Synuclein A53T (Petrucelli et al., 2002; 
Lo Bianco et al., 2004) and a poly (Q)-expanded mutant of ataxin-3 
(Tsai et al., 2003). In cell culture systems, parkin fusion proteins 
interact with the synaptic vesicle protein, CDC-rel-1 (Zhang et al., 
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autophagy. Recently, the ubiquitin-ligase parkin and the protein 
kinase PINK1 were shown to function in a pathway that links 
ubiquitination with selective autophagy of damaged mitochon-
dria (Wild and Dikic, 2010). The interaction between PINK1 and 
parkin appears to be pivotal in cellular coping mechanisms with 
mitochondrial damage. Silencing PINK1 leads to neuronal death 
accompanied by mitochondrial dysfunction and compensatory 
responses that facilitate clearance of defective mitochondria by co-
operation with parkin (Cherra et al., 2009; Narendra et al., 2010; 
Vives-Bauza et al., 2010). Therefore, PINK1 and parkin collaborate 
to maintain mitochondrial homeostasis (Dagda and Chu, 2009; 
Geisler et al., 2010), but when mitochondria become defective, 
PINK1 interacts with parkin to promote mitophagy (Kanki and 
Klionsky, 2010; Michiorri et al., 2010; Vives-Bauza et al., 2010). The 
relationship between parkin, ubiquitination and the mitochondria 
is a triad that deserves more research. Further studies of the bio-
chemical interactions between parkin and PINK1 and the identifi-
cation of the components that underlie the parkin-PINK1 pathway 
(Kawajiri et al., 2010; Tanaka, 2010; Zhang and Ney, 2010; Ziviani 
et al., 2010) are likely to provide insights into PD pathogenesis 
and cellular post-ubiquitination strategies to cope with aggregated 
proteins and mitochondrial stress, including autophagy (Dodson 
and Guo, 2007).

α-synuclEin and nEurodEgEnErativE disEasEs
α-Synuclein is localized primarily to synaptic terminals (Jakes 
et al., 1994). Duplication or triplication of α-Synuclein gene 
is the cause of familial PD, which is clinically characterized 
by bradykinesia, tremor and rigidity (Chartier-Harlin et al., 
2004; Ibanez et al., 2004). Mutations in α-Synuclein, including 
A30P, A53T and E46K, are reported in autosomal dominant PD 
(Polymeropoulos et al., 1997; Kruger et al., 1998; Spira et al., 2001; 
Zarranz et al., 2004) and Parkinson and DLB (Spillantini et al., 
1997). α-Synuclein is the major component of LB inclusions, the 
pathological hallmarks of a group of diseases collectively known 
as Synucleinopathies, including PD, DLB and multiple system 
atrophy (MSA) (Spillantini et al., 1997; Jellinger, 2004). The A30P 
mutation, a substitution of alanine with proline at amino acid 
30, presents clinically, as typical PD (Kruger et al., 1998, 2001), 
whereas affected members of PD families with the A53T muta-
tion, a substitution of alanine with threonine at amino acid 53, 
have early dementia as a common feature (Polymeropoulos et al., 
1997; Spira et al., 2001). Therefore, mutations in the α-Synuclein 
gene can cause a spectrum of clinical phenotypes ranging from 
pure Parkinsonism to Parkinsonism with dementia and DLB. 
LBs and immunoreactivity to α-Synuclein are also present in 
the brains of AD patients (Hamilton, 2000) and in cases of pro-
gressive supranuclear plasy (PSP) (Mori et al., 2002; Jellinger, 
2004), amyotrophic lateral sclerosis (ALS) and frontotemporal 
dementia-linked to chromosome-17 (FTDP-17) (Wilhelmsen 
et al., 2004). A diffuse distribution of α-Synuclein staining is 
reported in 50% of brains from patients with a pathological diag-
nosis of AD (Jellinger, 2004).

Several studies show a relationship between parkin, ubiquitin 
and Tau as well as α-Synuclein and Tau. α-Synuclein and Tau self-
aggregate (Dickson, 1999; Dawson and Dawson, 2003), and the 
respective pathologies for Tau or α-Synuclein, are frequently found 

the co-occurrence of diffuse amyloid deposits with α-Synuclein 
and ubiquitin-positive Lewy bodies (LBs), which are intracel-
lular inclusions, in Dementia with LB (DLB) (Harrington et al., 
1994), suggest that parkin may participate in the ubiquitination of 
intracellularly expressed Aβ and stimulate its removal. The ability 
of parkin to function as an E3 ubiquitin-protein ligase and its 
relationship with proteasomal function suggest that parkin may 
contribute to proteasomal clearance of α-Synuclein and Aβ, thus 
attenuating the toxicity of these amyloids. However, because of the 
selective vulnerability of various groups of neurons in different 
diseases, implicating proteasome dysfunction as an explanation 
for neurodegenerative diseases remains conjecture.

Parkin, thE mitochondria and autoPhagy
Parkin is a broad neuro-protective agent against a wide range of 
toxic insults including those that are not even part of the ubiquitin-
proteasome system (UPS) (Hyun et al., 2002, 2005; Darios et al., 
2003; Staropoli et al., 2003; Manfredsson et al., 2007). Increasing 
parkin expression reduces oxidative stress (Hyun et al., 2002), while 
blocking parkin expression increases oxidative damage (Palacino 
et al., 2004; Greene et al., 2005). Loss of function mutations of 
parkin result in degeneration of dopaminergic neurons which 
could be rescued by increased glutathione S-transferase expres-
sion in transgenic flies (Whitworth et al., 2005). The effects of 
parkin on markers of oxidative stress may be a result of parkin’s 
role in mitochondria function as parkin knockout transgenic mice 
(Palacino et al., 2004) and flies (Greene et al., 2003) have deficient 
mitochondria. The oxidative damage that can be prevented with 
parkin expression is a likely mechanism that could be targeted 
for therapeutic intervention. Parkin has mitochondrial trophic 
properties in vivo, where in Drosophila, the mutation of parkin 
increases sensitivity to free oxy-radical stress (Pesah et al., 2004) 
and mitochondrial dysfunction and build-up of peroxidized pro-
tein and lipid products is shown in parkin deficient mice (Palacino 
et al., 2004). We previously showed that wild type and mutant 
α-Synuclein differentially cause leakage of mitochondrial cyto-
chrome c in human SH-SY5Y neuroblastoma cells (Moussa et al., 
2004), and parkin is shown to prevent cytochrome c release in 
mitochondria-dependent cell death (Darios et al., 2003). Therefore, 
parkin’s protective effect against mitochondrial toxicity is expected 
to restore ATP levels, on which both ubiquitination and the protea-
some heavily depend, thus, enhancing the ubiquitin-proteasome 
activity to clear toxic proteins.

Parkin also associates with mitochondrial membranes (Darios 
et al., 2003) and interacts with PTEN-induced putative kinase 
(PINK1) gene, to protect mitochondrial function (Winklhofer 
and Haass, 2010). The relationship between parkin, ubiquitina-
tion and mitochondrial function emerged as an interesting area of 
investigation of protein aggregation and defected organelles in neu-
rodegenerative diseases. Several findings demonstrated that parkin 
is associated with enhanced activity of the autophagy-lysosome 
system, by promoting the autophagy of dysfunctional mitochondria 
following loss of mitochondrial membrane potential (Matsuda and 
Tanaka, 2009; Chin et al., 2010). These new findings challenged 
the exclusive role of the proteasome as parkin’s sole medium to 
clear ubiquitinated proteins, and raised more  questions about the 
relationship between parkin, the proteasome and  mitochondrial 
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also present in AD, where deposition of Aβ
42

 is believed to be the 
initiating molecular mechanism for the disease process (Younkin, 
1995). Over-expression of/or mutations, outside the Aβ region 
affecting the amyloid precursor protein (APP) gene, are sufficient 
to cause early onset AD in Down’s syndrome (DS) and rare fami-
lies. Whereas, the primary Tauopathies and PD have distinctive 
clinical features, significant overlap exists, particularly manifest 
in the variable appearances of dementia and Parkinsonism (Klein 
et al., 2006). Aβ

42
 and/or α-Synuclein depositions to varying 

degrees or ratios may share a property to incite Tau aggregation. 
However, it is not known how either of them interacts with Tau 
to provoke NFT formation across the Tauopathies. Because of the 
clinical and pathological overlap across the Tauopathies and PD, 
abnormalities in neurofilament and Tau protein aggregation seem 
to constitute a fairly common denominator among degenerative 
disorders with Parkinsonism and dementia.

nEuroinflammation is a common fEaturE of 
nEurodEgEnEration
Glial pathology and inflammation are a common secondary 
denominator in neurodegenerative diseases. Particular variants 
in the Tau gene are associated with increased risk for Parkinsonian 
disorders including PSP (Baker et al., 1999) and CBD (Di Maria 
et al., 2000). Mutations in the parkin gene which result in ARJPD 
(Kitada et al., 1998) have notable formation of NFTs in the cor-
tex and brainstem (Mori et al., 1998). Pathologically, NFTs are 
detected in the spinocerebellar system, along with selective loss of 
dopaminergic neurons in the SN, in a Dutch family with ARJPD 
and heterozygous missense mutation in combination with a het-
erozygous exon deletion in the parkin gene (van de Warrenburg 
et al., 2001). Neuronal loss with gliosis and NFTs in the brainstem, 
basal ganglia, entorhinal and premotor cortices are prominent 
pathological findings in PSP (Hof et al., 1992; Hanihara et al., 
1995; Ito et al., 2008). Other studies point to a single heterozygous 
C212Y parkin mutation in the brain of a patient with a clinical 
and pathological phenotype of PSP, and with Tau pathology and 
high levels of phosphorylated Tau (Morales et al., 2002; Sanchez 
et al., 2002). An association between the V380L polymorphism 
of parkin and Tau pathology in PSP (Ros et al., 2008), suggests 
an intimate link between the genetic variants of parkin and risk 
of Tau pathology in PSP and, perhaps, other Tauopathies. The 
changes in Tau and parkin observed in PSP may be coincidental, 
but more studies are needed to better understand the relationship 
between these two major genes in the pathogenesis of PSP and 
development of new therapeutic interventions. Filamentous Tau 
inclusions, which are accompanied by extensive neuronal loss and 
gliosis, are the neuropathological hallmarks of neurodegenerative 
diseases (Lee et al., 2001b). In some primary Tauopathies, NFTs 
are not restricted to neurons, but they also are abundant, mainly 
in PSP and CBD, in glia as astrocytic plaques, tufted astrocytes or 
coiled bodies in astrocytes (Nishimura et al., 1992; Yamazaki et al., 
1994; Feany and Dickson, 1995; Dickson et al., 1996). Gliosis is also 
well established in AD, even in the absence of NTFs in glial cells 
(Iwatsubo et al., 1994; Nishimura et al., 1995). Oligodendrocytic 
inclusions formed by α-Synuclein in MSA can also occur with Tau 
pathology (Tu et al., 1995; Chin and Goldman, 1996). Transgenic 
mouse models overexpressing three-repeat Tau isoforms display 

co-expressed in several neurodegenerative diseases (Dickson, 1999; 
Giasson et al., 2003; Galpern and Lang, 2006). Tau expression and 
neurofibrillary tangle (NFT) formation are evident in studies using 
viral vector gene transfer targeted to either the rat cholinergic basal 
forebrain (Klein et al., 2006) or the dopaminergic substantia nigra 
(SN) (Klein et al., 2005), where parkin is protective against Tau 
toxicity in vivo. Cross-linking ubiquitin, parkin and α-Synuclein 
by gamma-glutamyl-epsilon-lysine bonds is reported in NFT in AD 
(Nemes et al., 2004). Intraneuronal inclusions containing ubiquiti-
nated filamentous protein aggregates are a common feature of AD 
and PD (Layfield et al., 2003) and ubiquitin immunoreactivity is 
observed in Tauopathies (Paviour et al., 2004). Furthermore, Tau 
and α-Synuclein co-aggregate in LBs in PD (Ishizawa et al., 2003; 
Yancopoulou et al., 2005). Abnormal aggregates of α-Synuclein, 
Aβ and Tau are found in neurodegenerative diseases with second-
ary LBs (Popescu et al., 2004; Lippa et al., 2005). Aβ deposition is 
associated with increased cortical α-Synuclein regions in PD and 
DLB (Pletnikova et al., 2005). These data suggest that α-Synuclein 
and Aβ may provide an amyloid scaffold that trigger Tau modifica-
tion in certain neurodegenerative diseases, suggesting a convergent 
point in amyloid pathology. Furthermore, parkin multifunctional 
role may serve as a mitigating factor that attenuates amyloid effects 
on Tau pathology.

thE microtubulE-associatEd ProtEin tau
Changes in Tau metabolism are common to primary Tauopathies, 
including AD, FTDP-17, CBD, Pick’s Disease and PSP (Dickson, 
1999; Buee et al., 2000; Di Maria et al., 2000; Dawson and Dawson, 
2003; Popescu et al., 2004; Lippa et al., 2005; Pletnikova et al., 
2005; Yancopoulou et al., 2005). Tau is a causal factor for neu-
rodegeneration in primary Tauopathies. Tau comprises a family 
of six proteins from a single gene by alternative mRNA splicing 
(Goedert et al., 1989; Himmler et al., 1989). In AD, all six isoforms 
are present in a hyperphosphorylated state in paired helical fila-
ments (PHFs), which form NTFs (Grundke-Iqbal et al., 1986, 
1989). In AD, hyperphosphorylation of Tau appears to precede 
the appearance of NTFs (Bancher et al., 1989; Kopke et al., 1993). 
Mutations in the Tau gene causes FTDP-17 (Hutton et al., 1998), 
and particular variants are associated with increased risk for other 
Parkinsonian disorders including PSP (Baker et al., 1999) and 
CBD (Di Maria et al., 2000). The P301L FTDP-17-related form of 
Tau is particularly pathogenic as it exhibits accelerated filament 
formation in vitro (Nacharaju et al., 1999) and transgenic mice 
expressing P301L Tau develop NTFs (Lewis et al., 2000). Genetic 
variants of Tau may also be risk factors for PD (Martin et al., 
2001; Healy et al., 2004). While idiopathic PD is not associated 
with NTFs, Tau has been demonstrated in a sub-population of 
LBs (Ishizawa et al., 2003). Using a viral vector for P301L Tau, 
targeted to the SN in rats, dopamine neuron function was affected 
by Tau gene transfer and these neurons were more susceptible 
to Tau rather than α-Synuclein in this animal model, but both 
Tau and α-Synuclein induced degeneration in SN (Klein et al., 
2004, 2005, 2006). Taken together, these data indicate the impor-
tance of Tau protein in the group of diseases with dementia and 
Parkinsonism and, are suggestive of the potential to target Tau 
cytopathy for therapeutic strategies in neurodegenerative dis-
eases. Changes in Tau phosphorylation and conformation are 
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 projections and synapses, presumably transported from the soma 
of Aβ-bearing neurons, involving the perforant path originating 
from layer II entorhinal cortex (Gouras et al., 2000). Accumulation 
of intracellular β-amyloid appears to be critical in AD pathogenesis, 
leading to build-up of extracellular Aβ and plaques derived from 
degenerated neuronal cell bodies (Gouras et al., 2000; D’Andrea 
et al., 2001). Therapeutic intervention that decreases the level of 
intracellular Aβ is a strategic step in the prevention of Aβ accumula-
tion in AD pathology and other diseases that implicate Aβ patho-
genesis. Clearance or degradation of extracellular and intracellular 
Aβ-amyloid is exploited therapeutically to lessen amyloid burden. 
Insulin degrading Enzyme (IDE) appears to engage extracellular 
secreted monomeric Aβ, plaque Aβ and the amyloid intracellular 
domain (AICD), the latter through the cytosolic pool of enzyme 
(Qiu et al., 1998; Edbauer et al., 2002; Farris et al., 2003; Leissring 
et al., 2003). Less is known about the clearance of intracellularly 
generated Aβ. Both IDE and a proteasome-dependent pathway 
degrade ER-localized Aβ in transfected Hela cells. However, only 
30% of Aβ is sensitive to the proteasome inhibitor MG132, suggest-
ing an inefficient process (Schmitz et al., 2004). The details behind 
the proteasome effects are not further explored, nor were any role of 
ubiquitin demonstrated. We have shown that Aβ inhibits proteaso-
mal activity and parkin reserves these effects, suggesting that parkin 
can alleviate intracellular Aβ burden (Rosen et al., 2010). The effects 
of parkin on amyloid seem to play a role in cell survival (Burns 
et al., 2009; Perucho et al., 2010) and parkin deficiency can result 
in behavioral changes and amyloid processing in APP transgenic 
mice (Perucho et al., 2010). Parkin can promote intraneuronal Aβ 
degradation via ubiqutination and proteasomal degradation (Burns 
et al., 2009; Rosen et al., 2010). Although parkin is not associated 
with AD, but immunoreactivity to parkin in LBD, along with Aβ 
and α-Synuclein in LBs, suggest that parkin may ubiquitinate and 
degrade intraneuronal Aβ.

tdP-43 in nEurodEgEnErativE disEasEs
The number of neurodegenerative diseases associated with path-
ological aggregates of transactivation response element (TAR)-
DNA-binding protein 43 (TDP-43) has increased in the last 
decade. Full-length TDP-43 has been localized predominantly 
to the nucleus, with small amounts of cytosolic presence under 
normal conditions (Wang et al., 2004; Buratti et al., 2005; Buratti 
and Baralle, 2008; Winton et al., 2008). TDP-43 pathology both in 
the brain and spinal cord is characterized by decreased solubility, 
ubiquitination, hyperphosphorylation and cleavage of TDP-43 
into 25- and 35-kDa fragments, as well as cellular translocation 
from the nuclear to cytosolic compartments (Neumann et al., 
2006, 2007a,b; Amador-Ortiz et al., 2007; Hasegawa et al., 2007; 
Mackenzie et al., 2007; Tan et al., 2007; Zhang et al., 2007; Geser 
et al., 2008). Neumann and colleagues identified TDP-43 in the 
inclusions of frontotemoral lobar degeneration with ubiquitin-
positive inclusions (FTLD-U) and ALS (Neumann et al., 2006). 
FTLD is one of the major causes of dementia in young adults 
(Ratnavalli et al., 2002; Snowden et al., 2002) and comprises a 
group of heterogeneous neurodegenerative disorders that are 
occasionally associated with motor neuron disease (MND) 
(Neary et al., 1990, 2000). FTLD associated with MND is a non-
Tauopathy in which neuronal and glial inclusions are positive for 

degeneration and glial pathology similar to human Tauopathies 
(Higuchi et al., 2002). The development of α-Synuclein immu-
noreactive astrocytes parallels the stages of intraneuronal pathol-
ogy in PD (Braak et al., 2007). In AD brains, parkin colocalizes 
with Aβ plaques as well as astrocytes associated with plaques and 
Aβ-containing vascular lesions and enhanced astrocytic parkin 
immunoreactivity is observed in inflammatory lesions in Mulitple 
Sclerosis (MS) (Witte et al., 2009). Parkin mRNA expression 
increases in an astrocytoma cell line after free radical exposure, 
indicating that parkin is upregulated in AD and MS brain tissue 
and might represent a defense mechanism to counteract stress-
induced damage in pathogenesis (Witte et al., 2009). Recently, 
we found that intracellular Aβ

1–42
 or α-Synuclein expression in 

lentiviral gene transfer animal models induce gliosis, and par-
kin reverses these effects when it is co-expressed with Aβ

1–42
 or 

α-Synuclein (Rebeck et al., 2010). Parkin deficiency increases the 
risk of inflammation in SN neurons in an animal model of PD 
(Frank-Cannon et al., 2008). These findings suggest that parkin 
has an anti-inflammatory function in neurodegenerative diseases. 
This hypothesis needs further examination to better understand 
the mechanisms by which parkin exerts its protection against 
neuro-inflammation. Parkin protects against mitochondrial dys-
function and oxidative damage, which may induce inflammation 
in mitochondria based diseases. Alternatively, parkin ability to 
target some amyloid proteins for proteasomal degradation and 
decrease inclusion formation may also indirectly contribute to 
anti-inflammation.

intracEllular aβ42
The pathology of AD is characterized by intraneuronal depo-
sition of hyperphosphorylated Tau as well as extracellular Aβ 
plaques (Hardy and Selkoe, 2002). Aβ is produced intracellularly 
via the endosomal system and secretory pathways that mediate the 
processing of APP (Haass et al., 1992; Koo and Squazzo, 1994). 
Aβ

1–40 
and Aβ

1–42 
are produced intracellularly (Cook et al., 1997; 

Xu et al., 1997; Lee et al., 1998; Skovronsky et al., 1998; Greenfield 
et al., 1999), and accumulate in the brain of individuals with AD 
(Wilson et al., 1999; Gouras et al., 2000). Both intracellular and 
extracellular oligomeric Aβ have been implicated in AD pathol-
ogy, but intracellular oligomeric species may be formed first and 
thus act in the earlier stages of disease (Oddo et al., 2003; Li 
et al., 2007). In primary cultures of neurons over-expressing APP, 
accumulation of intraneuronal Aβ

 
induces neuronal apoptotic 

cell death (Octave, 2005). In AD, endosomes in the pyramidal 
neurons are significantly bigger than control (Cataldo et al., 
1997), and endocytic alterations can even happen before clinical 
symptoms and accumulation of Aβ (Cataldo et al., 2000), sug-
gesting a crucial role for intracellular Aβ production in the early 
stages of AD. The brain of AD patients also has a high level of 
LBs, which amounts to 13% of cognitively normal aged individu-
als (Knopman et al., 2003) compared to ∼60% of sporadic AD 
patients (Hamilton, 2000).

Immunocytochemical studies on AD, DS and APP transgenic 
mouse brains reveal abundant intraneuronal Aβ (LaFerla et al., 
1995; D’Andrea et al., 2001; Gyure et al., 2001; Wirths et al., 
2001, 2004; Echeverria and Cuello, 2002; Mori et al., 2002; Tabira 
et al., 2002). Aβ immunoreactivity is observed within neuronal 
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and Haass, 2010). At least in cell culture studies, inhibition of 
proteasomal activity causes formation of nontoxic inclusions in 
cells over-expressing parkin, suggesting that parkin requires pro-
teasome activity (Ardley et al., 2001; Hyun et al., 2002). Parkin 
reverses proteasomal inhibition by β-amyloid by decreasing the 
level of intracellular Aβ

1–42
 (Rosen et al., 2006; Burns et al., 2009), 

which was shown to directly bind to the proteasome (Serpell et al., 
2000; Lopez Salon et al., 2003). Inhibition of the proteasome in 
the presence of wild type parkin, or the use of parkin (T240R) 
mutation, leads to proteasomal inability to reduce β-amyloid levels 
(Rosen et al., 2006, 2010; Burns et al., 2009). Parkin over-expression 
significantly increases the activity of the 20S proteasome (Rosen 
et al., 2006, 2010; Burns et al., 2009), demonstrating that par-
kin is involved in mechanisms that enhance proteasome activity 
and degradation of proteins (Petrucelli et al., 2002; Dawson and 
Dawson, 2003; Lo Bianco et al., 2004), while inhibition of the 20S 
proteasome indicates that parkin function depends on proteaso-
mal integrity. The ability of parkin to promote proteasomal activity 
is very useful to degrade or clear proteins to prevent accumula-
tion and inclusion formation. Clearance of intracellular Aβ

 
may 

be a strategic step to prevent accumulation of amyloids in certain 
neurodegenerative diseases. We have shown that parkin knockout 
muscle cells are sensitive to Aβ

1–42
 toxicity, while cells virally over-

expressing parkin have increased resistance (Rosen et al., 2006). 
In a parkin-null mouse model, over-expressing human mutated 
Tau, accumulation of extracellular Aβ deposits were observed in 
the brain (Rodriguez-Navarro et al., 2008), suggesting that lack of 
parkin may result in accumulation of Aβ deposits. We also showed 
that parkin can at least mono-ubiquitinate intracellular Aβ

1–42
 and 

significantly reduce its level (Burns et al., 2009; Rosen et al., 2010), 
indicating that parkin can decrease amyloid levels in AD, add-
ing β-amyloid to the list of parkin substrates. The clinical and 
pathological overlap across neurodegenerative diseases, including 
abnormalities in neurofilament formation, protein aggregation, 
inflammation and cell death suggest convergent molecular and cel-
lular pathways at least at later stages of theses diseases. This review 
explains some overlapping pathologies that lead to similar pheno-
types in certain neurodegenerative diseases. Parkin is a protective 
gene that may be exploited as a therapeutic agent to counteract 
multiple pathologies in neurodegenerative diseases.

We hypothesize that parkin reduces aggregated protein bur-
den in neurodegenerative diseases by ubiqutination of aggregated 
proteins and clearance either via the proteasome or autophagy. 
Although parkin is not directly associated with diseases other than 
PD, the multiple functions of this protein make it a very interesting 
molecule to study in neurodegenerative diseases. Protein degrada-
tion and autophagy of aggregated molecules and malfunctioning 
organelles are an important aspect of parkin function in cellular 
processes. The role of parkin in reducing oxidative stress should be 
tested in association with its role in mitophagy and interaction with 
kinases, including tau kinases. Parkin can induce post-translational 
modification of substrate proteins, and the potential for parkin 
to ubiquitinate non-PD related proteins, such as β-amyloid and 
TDP-43 should be further explored. The dual function of parkin as 
an E3-ubiquitin ligase and anti-oxidative stress may play a role in 
its emerging role in suppressing inflammatory reactions in animal 
models of neurodegeneration.

ubiquitin and negative for Tau and α-Synuclein (Forman et al., 
2006; Neumann et al., 2007a). TDP-43 is a major constituent of 
inclusions in motor and non-motor neurons in ALS and FTLD-
MND (Arai et al., 2006; Neumann et al., 2007a; Tan et al., 2007). 
Some inclusions in familial ALS have no TDP-43 immunoreactiv-
ity. ALS is a neurodegenerative disorder that affects both upper 
and lower motor neurons, leading to progressive paralysis and 
death (Pasinelli and Brown, 2006). Only ∼20% of ALS cases are 
familial associated with missense mutation in Cu/Zn superox-
ide dismutase gene (SOD1) (Rosen, 1993; Gros-Louis et al., 
2006). Most ALS cases are sporadic with 50% of patients display 
coincident deterioration of both motor and cognitive function 
(Morita et al., 2006; Talbot and Ansorge, 2006) and 20% develop 
clinical features suggestive of FTLD (Lomen-Hoerth et al., 2002, 
2003). Pathologically, ALS patients have TDP-43 accumulation 
in motor neurons (Ayala et al., 2005; Neumann et al., 2006) and 
Tau-negative ubiquitin inclusions identical to those of FTLD-U 
patients (Forman et al., 2006). Although no TDP-43 mutations 
have been associated with FTLD-U, several mutations (Q331K, 
M337V, G294A, A90V) have been identified in MND/ALS (Gitcho 
et al., 2008; Sreedharan et al., 2008). TDP-43 pathology has not 
been identified in primary Tauopathies, including FTD, PSP and 
CBD (Davidson et al., 2007) but Tau pathology associated with AD 
co-exists with TDP-43 pathology (Amador-Ortiz et al., 2007). A 
large number (75%) of AD cases, which are characterized by neu-
ronal loss and gliosis in the hippocampus, show TDP-43 pathology 
(Amador-Ortiz et al., 2007). Lewy body disorders also demonstrate 
TDP-43 pathology in AD with LBD (30%), PD (7%) and PD with 
dementia (19%) (Nakashima-Yasuda et al., 2007). Colocalization 
between TDP-43 and NFTs and TDP-43 and α-Synuclein in dys-
trophic neurites were also identified, despite studies showing lack 
of co-existence between TDP-43 and Tau pathologies (Arai et al., 
2006; Nakashima-Yasuda et al., 2007; Neumann et al., 2007b). The 
aggregative nature of TDP-43 inclusions is similar to amyloid pro-
tein aggregation. Therefore, increased or facilitated clearance of 
the protein via stimulation of the UPS or increased autophagy 
may lead to decreased level of protein aggregation and attenua-
tion of associated gliosis. A well known function of ubiquitination 
is to target substrates for degradation by the proteasome, so the 
dual role of parkin as an E3-ubiquitin ligase and a suppressant 
of inflammation could be exploited to lessen TDP-43 burden in 
neurodegenerative diseases, including MND-FTLD and AD.

convErgEnt cEllular and molEcular Pathways and 
thE rolE of Parkin in nEurodEgEnErativE disEasEs
The most reproducible function of parkin is its pan-protective 
activity as an E3-ubiquitin ligase involved in proteasomal deg-
radation of proteins, defense against mitochondrial insults, and 
potential suppressant of inflammatory signs either directly or 
indirectly via its effects on oxidative stress. Inhibition of the pro-
teasome could be a common link in neurodegenerative diseases 
marked by accumulation of intracellular proteins, providing a 
mechanistic link between Aβ, Tau, TDP-43 and α-Synuclein-
based diseases. Parkin can protect against proteasome inhibition 
and over- expression of α-Synuclein, Tau, Aβ peptide and poly-
glutamine fragments (Rosen, 1993; Moore, 2006; Burns et al., 2009; 
Moussa, 2009; Rebeck et al., 2010; Rosen et al., 2010; Winklhofer 
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