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Identifying biosignatures to assess the probability of response to an antidepressant for patients 
with major depressive disorder (MDD) is critically needed. Functional connectivity MRI (fcMRI) 
offers the promise to provide such a measure. Previous work with fcMRI demonstrated that 
the correlation in signal from one region to another is a measure of functional connectivity. 
In this pilot work, a baseline non-task fcMRI was acquired in 14 adults with MDD who were 
free of all medications. Participants were then treated for 8 weeks with an antidepressant and 
then clinically re-evaluated. Probabilistic anatomic regions of interest (ROI) were defined for 
16 brain regions (eight for each hemisphere) previously identified as being important in mood 
disorders. These ROIs were used to determine mean time courses for each individual’s baseline 
non-task fcMRI. The correlations in time courses between 16 brain regions were calculated. 
These calculated correlations were considered to signify measures of functional connectivity. 
The degree of connectivity for each participant was correlated with treatment outcome. 
Among 13 participants with 8 weeks follow-up data, connectivity measures in several regions, 
especially the subcallosal cortex, were highly correlated with treatment outcome. These 
connectivity measures could provide a means to evaluate how likely a patient is to respond to 
an antidepressant treatment. Further work using larger samples is required to confirm these 
findings and to assess if measures of functional connectivity can be used to predict differential 
outcomes between antidepressant treatments.
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connectivity MRI (fcMRI) during non-task (resting) periods 
(Biswal et al., 1995, 1997; Lowe et al., 1998; Xiong et al., 1999; Cordes 
et al., 2000; Greicius et al., 2003; Peltier et al., 2003; Beckmann et al., 
2005). Alterations in connectivity, as measured by fcMRI, have been 
used to study a number of brain illnesses including MDD (Irwin 
et al., 2004; Anand et al., 2005a; Greicius et al., 2007; Siegle et al., 
2007). In addition, the effect of antidepressants on brain connectiv-
ity measures for patients with MDD has been investigated in a few 
studies (Anand et al., 2005b, 2007). Although measures of regional 
brain connectivity have been used in several studies to investigate 
MDD, to the best of our knowledge, brain connectivity measures 
that were determined from non-task (resting) fcMRI to predict 
treatment outcome for an individual have not been reported.

In this study, non-task BOLD fcMRI was used to identify poten-
tial biological markers of treatment outcomes in patients with 
MDD. A critically important aspect of this study was the focus on 
the neurobiological markers at the individual level. For a clinical 
diagnostic test to be meaningful, the measured value must be valid 
for an individual patient and not require a group of patients to 
determine the value (Kozel and Trivedi, 2007). This individually 
measured value then needs to be tested in a group of participants 
to determine if the biomarker has clinical meaning (e.g., the blood 

IntroductIon
Major depressive disorder (MDD) is a serious brain syndrome that 
causes considerable morbidity and mortality. There are a number 
of treatments available for MDD, but no single treatment works 
for everyone. In addition, patients not responding to the first anti-
depressant may respond to a second antidepressant (Rush et al., 
2006c; Trivedi et al., 2006a,b). Clinicians currently have no way to 
determine which treatment option, if any, is most likely to get their 
patient better. Therefore, a method to identify brain biomarkers 
that predict treatment response is critically needed. This has been 
proposed to signify a patient’s phronotype (Kozel, 2010).

Functional neuroimaging has been used in various ways to inves-
tigate treatment response in MDD (Dougherty and Rauch, 2007). 
Most studies have looked at group differences at baseline and/or 
after treatment with a focus on regional differences in the level of 
brain activity. A growing body of literature, however, supports the 
concept that psychiatric illnesses are the result of neuropathology 
at the level of the brain circuit and not just regional differences 
(Andreasen, 1997; Phillips et al., 2003; Ressler and Mayberg, 2007; 
Taylor and Liberzon, 2007). This neuropathology can be revealed 
as altered connectivity between regions of the brain. Functional 
connectivity between brain regions can be assessed using  functional 
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an Annett handedness scale (Annett, 1970), the Quick Inventory 
of Depressive Symptomatology: Self-Rated (QIDS-SR; Rush et al., 
2003, 2006b; Trivedi et al., 2004), and an MRI safety form. A trained 
and certified clinical rater completed the HRSD-17 (Hamilton, 
1960), the clinician-rated Inventory of Depressive Symptomatology 
(IDS-C; Rush et al., 1996; Trivedi et al., 2004), the Hamilton Anxiety 
Rating Scale (HARS; Hamilton, 1959), and the Mini Mental State 
Evaluation (MMSE; Folstein et al., 1975). A physician performed the 
Structured Clinical Interview for DSM-IV (SCID) Axis I Disorders 
(First et al., 1995), a medical history, and a physical exam. Also, 
urine was obtained to screen for drugs of abuse as well as to test 
females of child-bearing potential for pregnancy. For those who 
passed the screening phase, Visit 2 was scheduled.

Visit 2 – MRI
Subjects were again screened to ensure that they were safe to enter 
the MRI environment and subsequently underwent MRI scanning. 
Once subjects completed the scanning portion of the study, they 
immediately started an antidepressant medication as part of other 
collaborative studies or clinical care.

Visit 3 – clinical assessment
After 8 weeks of treatment outside of the study, subjects presented 
for Visit 3 in order to be evaluated for clinical response to treatment. 
The IDS-C, QIDS-SR, HRSD, HARS, and antidepressant treatment 
history over the preceding 8 weeks were obtained.

treatment outcome
The a priori primary treatment outcome was defined as the percent 
change in the QIDS-SR from baseline to week 8 (Trivedi et al., 2004; 
Rush et al., 2006a,b). The QIDS-SR was chosen as the primary 
outcome measure because of its ability to be easily integrated into 
clinical practice and established psychometric properties (Trivedi 
et al., 2004; Rush et al., 2006a,b).

mrI ScannIng
Participants were placed in the MRI with hearing protection and 
foam padding around their head in order to reduce movement dur-
ing the scanning. Images were acquired using a research-dedicated 3T 
Philips Achieva scanner (Philips Medical System, Netherlands) with 
an eight-channel SENSE head coil. A high-resolution T1-weighted 
structural scan was obtained using a 3D MPRAGE sequence with 
one hundred sixty 1-mm slices and a 256 × 256 matrix. Participants 
were then instructed to hold still, keep their eyes open, and focus on 
a cross in the middle of the screen. The echo-planar imaging non-
task fcMRI scan was obtained with the parameters of TR 2000 ms, 
44 slices, 3 mm slices, FOV 220 × 132 × 220, matrix 64 × 64, with 
resulting voxel dimension of 3.4375 mm ×3 mm × 3.4375 mm. There 
were 240 time points with a total scan time of 502 s (8 min 22 s) 
that included dummy and saturation scans.

mrI analySIS to meaSure FunctIonal connectIvIty
The non-task EPI and structural images were exported from the 
Philips workstation and converted to NIfTI format using dcm-
2nii1. Using FMRIB Software Library (FSL; Jenkinson et al., 2002; 

pressure of an individual patient is measured in a group of patients 
to determine if the biomarker has clinical significance). In this ini-
tial study, connectivity values between brain regions were measured 
by determining the correlation between time courses of the various 
brain regions for each individual. These functional connectivity 
measures of the various brain regions were assessed to determine 
the most robust markers associated with treatment outcome.

materIalS and methodS
overvIew
Participants with MDD were screened, clinically evaluated, and 
underwent MRI scanning. Immediately after the scan, they were 
started on an antidepressant medication outside the study. The 
participant’s clinical physician or collaborating study protocol 
determined the type of medication and dosing. After 8 weeks of 
antidepressant medication, the participants were again clinically 
evaluated to assess for changes in depressive symptoms.

PartIcIPantS
Adult males and females of all races were recruited from the com-
munity using fliers, electronic message boards, and collaborating 
physicians in primary care. In addition, participants were recruited 
from other ongoing clinical treatment studies at the University of 
Texas Southwestern Medical Center. Inclusion criteria included the 
ability to provide informed consent; a diagnosis of non-psychotic 
MDD; a 17-item Hamilton Rating Scale for Depression (HRSD-17; 
Hamilton, 1960) score greater than or equal to 14; age 18–50 years; 
be cognitively intact; and the ability to read, speak, and under-
stand English. Exclusion criteria included a history of psychiatric 
illness except MDD, Generalized Anxiety Disorder, Social Phobia, 
or Specific Phobia. History of DSM-IV defined alcohol or substance 
abuse was allowed as long as diagnostic criteria were not met in 
the last 6 months; while for alcohol or substance dependence the 
criteria could not have been present within the last year. The greater 
time required for dependence versus abuse was due to the presumed 
greater impact on brain function of substance dependence versus 
abuse. Other exclusion criteria included clinically unsafe to partici-
pate in a research trial, diagnosis of an organic brain disease, serious 
unstable medical illness, history of serious head injury, unsafe or 
unable to have an MRI, previous inability to tolerate MRI, taking 
medication(s) with presumed effects on cerebral blood flow within 
2 weeks or five half-lives – whichever is longer, intake of other 
medications within five half-lives, women who are pregnant or 
breast feeding, or women of child-bearing potential who are not 
using an acceptable form of birth control.

Study ProcedureS
The study protocol was approved by the Institutional Review Board 
at the University of Texas Southwestern Medical Center. For those 
interested in participating in the study, an initial brief telephone 
screen was performed. Those who passed the phone screen were 
scheduled for Visit 1.

Visit 1 – screen and clinical assessment
Written informed consent was obtained prior to performing any 
study procedures. Participants completed self-reports regarding 
demographic information, prior antidepressant medication history, 1http://www.cabiatl.com/mricro/mricron/dcm2nii.html
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(with any slight departure from normality). Thus for an individual 
participant, connectivity measures from BOLD signal time courses 
between two ROIs were robust. Additionally at the group level, deter-
minations of correlation between connectivity measures and treat-
ment outcome were robust as well using Spearman’s rho.

We performed all of the statistical analyses using SAS software, 
version 9.2. The level of significance for all tests was set at α = 0.05 
(two-tailed) and, because of the exploratory nature of this pilot 
study, p-values were left unadjusted for multiple testing.

reSultS
PartIcIPantS
Seventeen adults (14 females) with mean age of 35.3 years (SD 
7.5, range 22–48 years) were enrolled. There were 10 Caucasians, 5 
African-Americans, and 2 Hispanic participants. Two subjects failed 
the screening and one failed to show for the MRI visit. There with 
14 subjects scanned with 13 having follow-up clinical evaluations 
at 8 weeks. The one participant with no follow-up data moved from 
the area after the scan and decided to discontinue from the study. Of 
the 13 participants (11 right handed, 10 female, mean age 33.7, SD 
7.4, range 22–48 years) with follow-up data, 10 took bupropion SR 
150 mg twice a day as part of a clinical trial, two took escitalopram 
20 mg once a day, and one took aripiprazole 5 mg once a day. Seven 
of the 13 who were evaluated at 8 weeks met criteria for response 
(greater than or equal to 50% improvement in the QIDS-SR from 
baseline to week 8).

BaSelIne FunctIonal connectIvIty related to treatment 
outcome
The degree of connectivity between several regions was robustly 
related to treatment outcome (percent change in QIDS-SR; see 
Table 1). The connectivity between left subcallosal cortex with the 
left anterior cingulate cortex (see Figure 1) demonstrated the strong-
est correlation; the magnitude of negative correlation between sub-
callosal cortex and the anterior cingulate cortex was associated with 
the degree of treatment response (see Figure 2). Interestingly, of the 
15 most significant correlations between structures (of 120 possible), 
11 involve the subcallosal cortex (six left, five right hemisphere). 
Thus, the connectivity measures from the baseline fcMRI scans pro-
vide an objective measure that is related to treatment outcome and 
possibly predictive. As an example, choosing a connectivity value 
of less than 0.1 for the left subcallosal cortex to the left anterior 
cingulate as a predictor of treatment response, 11 of the 13 par-
ticipants (85% accuracy) would have had their treatment outcome 
correctly ascertained prior to treatment. A one-sample test here of 
the binomial proportion (H

0
: Proportion = 0.5) revealed rejection 

of the null hypothesis (two-sided exact test, p = 0.02).

dIScuSSIon
This study demonstrates the potential to use functional connec-
tivity measures derived from non-task fcMRI scans in order to 
provide critically needed assistance to clinicians. The connectivity 
of both subcallosal cortices to the left anterior cingulate gyrus were 
strongly correlated with treatment outcome. The preponderance 
of subcallosal cortex connectivity values that strongly correlated 
with treatment outcome demonstrated a non-random pattern. This 
suggests a critical role for the subcallosal cortex’s connectivity in 

Smith et al., 2004) 4.1.22, the structural images were reoriented to 
the standard position using fslswapdim and then skull stripped using 
BET2 (Smith, 2002). Using FEAT (Jenkinson et al., 2002; Smith et al., 
2004) in FSL, the non-task fcMRI data were then motion corrected, 
spatial smoothed with 6 mm, high-pass filtered with setting of 100 s, 
registered using the participant’s structural image (6 DOF) and then 
to the MNI152_T1_2mm_brain (using 12 DOF) using non-linear 
normalization. These preprocessed functional data were used to 
determine the mean time courses for the various structures.

To create the brain masks of the 16 regions of interest (ROI 
masks), standardized templates available in FSL were used. The sub-
cortical structures were obtained by thresholding the structures in 
the Harvard–Oxford subcortical atlas by 60% using the fslmaths 
function. The cortical structures were obtained by thresholding the 
structures in the Harvard–Oxford cortical atlas by 60% using the 
fslmaths function as well. The cortical masks were then split between 
left and right. The masks were then converted to the same dimen-
sions as the preprocessed fcMRI data using FLIRT (Jenkinson et al., 
2002) with a 7-DOF global rescale. Using the preprocessed fcMRI 
data as the reference and the standard MNI152_T1_2mm_brain as 
the input, the 16 masks for each individual were then shadow-reg-
istered. The positioning of the resulting masks on the preprocessed 
fcMRI data was visually confirmed to be reasonable. The resulting 
masks for the left and right hemispheres included the amygdala, the 
hippocampus, the anterior cingulate gyrus, the posterior cingulate 
gyrus, the medial frontal cortex, the  orbitofrontal cortex, the middle 
frontal cortex, and the subcallosal cortex (Fitzgerald et al., 2008).

Using the created ROI masks and the preprocessed fcMRI data, 
mean time courses for the 16 regions of the brain were determined 
using the fslmeants function in FSL. The resulting time courses of 
each structure for each participant were entered into SAS, version 
9.2 (Statistical Analysis Systems Institute, Cary, NC, USA). Measures 
of connectivity were then determined by estimating the Spearman 
rank-order correlation coefficient between the time course of all 
ROIs for each individual (120 measures of connectivity were esti-
mated in total). Thus the level of assessment (i.e., connectivity 
value as determined by correlation coefficient) was based on the 
individual’s results, not a group of individuals.

Although all participants were aware that they were receiving active 
treatment, the extent of treatment response was variable. This corre-
sponds to a clinical situation. The focus of this study was to investigate 
whether brain biomarkers could be predictive treatment outcome and 
not whether the participants would respond to a particular treatment. 
Therefore, the investigators were blind to degree of treatment response 
while calculating brain region connectivity values.

data analySIS
Brain region functional connectivity related to treatment outcome
A simple correlation analysis (using the Spearman rank-order corre-
lation coefficient) was conducted to assess the relationship between 
each of the 120 pre-treatment (baseline) brain region connectivity 
measures and the percent change in QIDS-SR (treatment outcome). 
The main purpose of using Spearman’s rho (i.e., at the individual 
level and group level) was to provide resistant (robust) estimates in 
the presence of any potential outliers detected in the sample data 

2http://www.fmrib.ox.ac.uk/fsl/
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FIguRe 1 | Location of left subcallosal cortex (red) and left anterior 
cingulate gyrus (blue) regions of interest (ROI). The thresholded ROIs are 
displayed using Mricron with the structural T1-weighted Montreal Neurological 
Institute (MNI) 1 mm template in FSL.

Table 1 | Spearman correlation coefficients between brain region 

connectivity measures and the percent change in QIDS-SR (treatment 

outcome).

Structures Spearman CC p-Value*

L subcallosal cortex to −0.73077 0.0045

L anterior cingulate gyrus

R subcallosal cortex to −0.73077 0.0045

L anterior cingulate gyrus

L subcallosal cortex to −0.65385 0.0153

L posterior cingulate gyrus

R orbitofrontal cortex to 0.64286 0.0178 

L frontal medial cortex

L subcallosal cortex to  −0.63736 0.0191

R anterior cingulate gyrus

L subcallosal cortex to  0.62637 0.022 

R frontal medial cortex

R subcallosal cortex to 0.60989 0.0269 

L frontal medial cortex

L subcallosal cortex to −0.59341 0.0325

R posterior cingulate gyrus

R orbitofrontal cortex to 0.58242 0.0367 

L orbitofrontal cortex

L subcallosal cortex to 0.57692 0.039 

L frontal medial cortex

R orbitofrontal cortex to 0.57143 0.0413 

R amygdala

R subcallosal cortex to −0.57143 0.0413

L posterior cingulate gyrus

R orbitofrontal cortex to 0.56044 0.0463 

R frontal medial cortex

R subcallosal cortex to −0.56593 0.0438

R anterior cingulate gyrus

R subcallosal cortex to 0.55495 0.049 

R frontal medial cortex

Spearman CC, Spearman’s correlation coefficient; L, left; R, right.
*p-Values unadjusted for multiple testing.

developments may involve acquiring information simultaneously 
from diverse methods and integrating this information into a treat-
ment predictive model that is more robust.

The development of objective measures to help guide treatment 
decisions could also provide important insights into the neurobiol-
ogy of mood disorders and patients’ response to treatment. This 
knowledge could guide treatment development and move the field 
toward a more individualized approach to treatment.

Although this study demonstrates the potential of this technique 
to provide an objective measure at the individual level to predict 
treatment outcome in MDD, further work is clearly required to 
determine whether the technique can provide clinically useful 
information. A much broader sample of participants with mood 
disorders will need to be tested using models that are defined a pri-
ori. Various treatment modalities will need to be tested which would 
offer a unique opportunity to develop treatment algorithms based 
on objective measures. The ultimate goal is to develop diagnostic 
models that improve clinical outcome. As such, these models should 
be tested to assess whether they improve treatment outcome.

In addition to a broader sample of the population, future studies 
should address if changes in the analysis method could improve 
treatment prediction. The choice of ROIs was based on the need 
for a clinical diagnostic test to have a standard methodology that 
could be incorporated into routine practice. The ROIs chosen 
encompassed regions that were potentially functionally distinct 
as well as containing different tissue types such as gray and white 
matter. Whether refining these ROIs would improve treatment 
prediction is something that should be empirically tested in 
future studies. Also, factoring out certain signals (e.g., global brain 
changes) in the time course may improve the treatment prediction 
as well. These changes would also need to be tested empirically, 
however, because they may degrade the signal in an unexpected 
way that actually would reduce the clinical utility of the measure. 
The important endpoint to use in assessing any changes would 
need to be impact on treatment prediction and not theoretical 
considerations (Kozel, 2010).

Several limitations in the study design should be considered 
when interpreting these data. First, the sample size is small. 
Although the sample size does bring the generalizability of these 

treatment outcome. This is especially interesting as the subcallosal 
cortical region has been implicated in antidepressant treatment 
response for medications (Mayberg et al., 1997; Kennedy et al., 2001, 
2007), cognitive behavioral therapy (Siegle et al., 2006; Kennedy 
et al., 2007), cingulotomy (Dougherty et al., 2003), and transcranial 
magnetic stimulation (Teneback et al., 1999).

Using this connectivity approach has a number of advan-
tages when developing a clinically useful diagnostic test (Fox and 
Greicius, 2010). The technology of fcMRI is widely available and can 
be tolerated by the majority of people. The test provides an objective 
measure that does not rely on patient effort, reading a particular 
language, or any task. Because the MRI scanner can acquire multiple 
other forms of information (structural, perfusion, diffusion ten-
sor imaging for structural connectivity, spectroscopy, etc.), future 



www.frontiersin.org March 2011 | Volume 2 | Article 7 | 5

Kozel et al. Connectivity and treatment outcome MDD

Andreasen, N. C. (1997). Linking mind 
and brain in the study of mental ill-
nesses: a project for a scientific psy-
chopathology. Science 275, 1586–1593.

Annett, M. (1970). A classification of hand 
preference by association analysis. Br. 
J. Psychol. 61, 303–321.

Anand, A., Li, Y., Wang, Y., Wu, J., Gao, S., 
Bukhari, L., Mathews, V. P., Kalnin, A., 
and Lowe, M. J. (2005b). Antidepressant 
effect on connectivity of the mood-
regulating circuit: an FMRI study. 
Neuropsychopharmacology 30, 
1334–1344.

Anand, A., Li, Y., Wang, Y., Wu, J., Gao, S., 
Bukhari, L., Mathews, V. P., Kalnin, A., 
and Lowe, M. J. (2005a). Activity and 
connectivity of brain mood regulat-
ing circuit in depression: a functional 
magnetic resonance study. Biol. 
Psychiatry 57, 1079–1088.

reFerenceS
Anand, A., Li, Y., Wang, Y., Gardner, K., and 

Lowe, M. J. (2007). Reciprocal effects of 
antidepressant treatment on activity and 
connectivity of the mood regulating cir-
cuit: an FMRI study. J. Neuropsychiatry 
Clin. Neurosci. 19, 274–282.

In conclusion, objective measures of connectivity derived from 
non-task fcMRI scans could provide critically needed assistance to 
clinicians. Developing these objective measures would significantly 
advance the field of psychiatry and potentially lead to novel treat-
ment development. Future work is required to test the benefit of 
this approach.

acknowledgmentS
This project was supported with pilot study funding to Dr. Kozel 
as part of the “North and Central Texas Clinical and Translational 
Science Initiative” grant number UL1RR024982 (Milton Packer, M.D., 
PI) from the National Center for Research Resources (NCRR), a com-
ponent of the National Institutes of Health (NIH) and NIH Roadmap 
for Medical Research. Dr. Kozel was supported by a Mentored Patient-
Oriented Research Career Development Award grant number 
5K23MH070897 (F. Andrew Kozel, PI) from the National Institute 
of Mental Health (NIMH). Dr. Lu was supported by NIH grant R01 
MH084021. The authors acknowledge the editorial support of Ms 
Jeanne McCurdy. The views expressed in this article are those of the 
authors and do not necessarily reflect the official policy or position 
of the NIMH, the NCRR, the NIH, or the U.S. Government.

findings into question, it does demonstrate that the effect seen – if 
real – was robust. This is important because the magnitude of these 
effects make them more plausible choices as clinically relevant 
treatment predictors. The limited number and non- uniformity 
of treatments that were assessed may have introduced some con-
founds that we are not able to predict. The lack of a placebo arm 
and randomization makes it difficult to tease apart whether the 
results were related directly to the antidepressant treatment or as 
a function of non-specific clinical improvement over time. Finally, 
to identify whether structures’ connectivity values were signifi-
cantly correlated with treatment outcome, a statistical threshold 
of p < 0.05 unadjusted for multiple testing was used. The rationale 
for using an unadjusted p-value was that the focus of this pilot 
study was to identify brain structures that could be incorpo-
rated into future research. This more definitive research would 
develop brain-based models of treatment response using specific 
a priori defined regions. Thus, the important test of significance 
ultimately is not whether particular regions are significantly cor-
related to each other, but whether the future models built on the 
functional connectivity values can improve treatment prediction 
and  clinical outcome.

FIguRe 2 | Brain connectivity and antidepressant response. The figure 
displays the strong negative correlation between connectivity of the left 
subcallosal cortex to the left anterior cingulate gyrus and treatment outcome 
(percent change in QIDS-SR). The x-axis is the brain connectivity for the left 
subcallosal cortex (L_SC) to left anterior cingulate gyrus (L_ACG). The y-axis is 

the percent change in QIDS-SR score from baseline to 8 weeks of treatment 
(percent change in QIDS-SR). The two participants’ coordinates for L_SC 
to L ACG who took escitalopram are (−0.130, 88.2) and (0.188, 16.7). The 
participant’s coordinates for L_SC to L_ACG who took aripiprazole are 
(0.019, 61.1).
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