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Background: Few systematic studies exist on the effects of chronic reuptake of
monoamine neurotransmitter systems during pregnancy on the regulation of maternal
behavior (MB), although many drugs act primarily through one or more of these sys-
tems. Previous studies examining fluoxetine and amfonelic acid treatment during gestation
on subsequent MB in rodents indicated significant alterations in postpartum maternal
care, aggression, and oxytocin levels. In this study, we extended our studies to include
chronic gestational treatment with desipramine or amitriptyline to examine differential
effects of reuptake inhibition of norepinephrine and combined noradrenergic and sero-
tonergic systems on MB, aggression, and oxytocin system changes. Methods: Pregnant
Sprague-Dawley rats were treated throughout gestation with saline or one of three doses
of either desipramine, which has a high affinity for the norepinephrine monoamine trans-
porter, or amitriptyline, an agent with high affinity for both the norepinephrine and serotonin
monoamine transporters. MB and postpartum aggression were assessed on postpartum
days 1 and 6 respectively. Oxytocin levels were measured in relevant brain regions on
postpartum day 7. Predictions were that amitriptyline would decrease MB and increase
aggression relative to desipramine, particularly at higher doses. Amygdaloidal oxytocin was
expected to decrease with increased aggression. Results: Amitriptyline and desipramine
differentially reduced MB, and at higher doses reduced aggressive behavior. Hippocampal
oxytocin levels were lower after treatment with either drug but were not correlated with
specific behavioral effects. These results, in combination with previous findings following
gestational treatment with other selective neurotransmitter reuptake inhibitors, highlight
the diverse effects of multiple monoamine systems thought to be involved in maternal
care.
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INTRODUCTION
Given the prevalence of pregnant women who use drugs that
block neurotransmitter reuptake, such as antidepressants, anti-
anxiety medications, or antipsychotics as well as illegal drugs of
abuse (Ritz et al., 1990; Kessler et al., 1994; Cooper et al., 1996;
Thomas and Palmiter, 1997), it is surprising to find so little data
on the effects of alterations in various neurotransmitter systems on
maternal behavior (MB). Depression is among the most prevalent
acute and chronic mental health conditions reported by perina-
tal women (Gaynes et al., 2005) and has been estimated to occur
in 8–20% of women of childbearing age (Weissman et al., 1988;
Kessler et al., 1993; Ferro et al., 2000). One study in 2003 esti-
mated that approximately 13% of women take an antidepressant

at some point during their pregnancy (Cooper et al., 2007). Many
antidepressants commonly prescribed during pregnancy (Gold-
berg and Nissim, 1994) differentially act as reuptake inhibitors of
norepinephrine (NE), dopamine (DA), and/or serotonin (5-HT)
systems (Marek et al., 1988; Porrino et al., 1989; Kessler et al.,
1993; Schatzberg, 1998; Bennett et al., 2004; Grover et al., 2006).
Therefore, manipulation of neurotransmitter systems in a preclin-
ical model of MB is a potentially useful pharmacological tool to
explore their relative contribution to this behavior.

Preclinical models using neurotransmitter reuptake inhibitors
during various stages of pregnancy have reported disruptions
in MB (Gore, 2001; Johns et al., 2005a,b; Lerch-Haner et al.,
2008; Cummings et al., 2010; Strathearn and Mayes, 2010)
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postpartum maternal aggression (MA; Johns et al., 1994; Lonstein
and Gammie, 2002) and changes in oxytocin, a neuropeptide
known to play an important role in both human and rodent preg-
nancy, parturition, and subsequent MB (Johns et al., 1997, 2004;
Bosch et al., 2005; Feldman et al., 2007; Levine et al., 2007; Neu-
mann, 2008). To date, there is sparse information on the effects of
reuptake inhibition of NE or combined NE and 5-HT systems dur-
ing pregnancy on subsequent measures of MB. In general, central
NE depletion and changes in NE metabolism have been associated
with disruptions in the onset of MB in rats (Rosenberg et al., 1977;
Thomas and Palmiter, 1997). Additionally, studies have found that
mice lacking NE show impaired MB and that this impairment
can be reversed if NE is restored before parturition (Thomas and
Palmiter, 1997).

The 5-HT system has been associated with specific compo-
nents of MB in animal models, including promotion of lactation,
breastfeeding, and oxytocin secretion (Saydoff et al., 1991; Bagdy
et al., 1992; Bagdy and Kalogeras, 1993; Uvnas-Moberg et al., 1996;
Nissen et al., 1998), whereas reduced 5-HT levels are generally
associated with increased aggression (Miczek et al., 2007). Keer
and Stern (1999) found that following an intracerebral ventricular
infusion of a 5-HT antagonist, crouching behavior in rat dams
on postpartum day (PPD) 6 was not disturbed, but when injected
into the nucleus accumbens, crouching duration was increased.
Johns et al. (2005b) reported that gestational treatment with the
5-HT reuptake inhibitor fluoxetine resulted in strong trends for
decreased crouching in dams treated with the high dose compared
to controls, and that all doses of fluoxetine treatment increased
levels of licking and touching of pups. These same dams also had
an increased level of MA toward an intruder on PPD 6, indicating
a probable role for 5-HT in pup-directed MB and MA (Johns et al.,
2005b).

A single study has investigated the effects of 5-HT reup-
take inhibition given during the postpartum period on human
maternal–infant interactions. It found that in depressed women,
SSRIs can increase maternal gratification (the mother’s apprecia-
tion of motherhood), but did not improve maternal–infant inter-
actions at 8 weeks postpartum (Logsdon et al., 2009). Although
fluoxetine’s effect on child abuse in humans has not been examined
directly, it has been found to decrease general levels of impulsive
aggressive behaviors (Coccaro and Kavoussi, 1997; Coccaro et al.,
1997). Yet interestingly, the tricyclic antidepressant amitriptyline,
which acts in part by inhibiting 5-HT and NE but not DA reup-
take, has been found to increase levels of aggression (Soloff et al.,
1986a,b). While these studies were conducted in non-lactational
adults with psychiatric conditions, they suggest that the combined
reuptake of 5-HT and NE might interact to differentially alter
aggression than either 5-HT or NE alone. While NE has been pre-
viously associated with increased aggression in humans (Chichi-
nadze et al., 2010) and parallel findings of NE and aggression
in animal models have been shown in male rodents (Matsumoto
et al., 1995) it is important to note that the few studies that have
examined NE-induced alterations in females have shown little
association between aggression and NE (Scholtens et al., 1990;
Sorensen et al., 2005). This suggests that NE involvement in aggres-
sive behavior is sex specific. There are no published reports, to
our knowledge, on NE’s role in postpartum aggression. Therefore,

combined 5-HT/NE reuptake inhibition could behaviorally mani-
fest itself similarly to what we previously observed following 5-HT
alone. With regard to MB, studies suggest NE plays a role in the
onset of MB (Rosenberg et al., 1977), while 5-HT-induced changes
have been associated more often with active pup-induced MBs, i.e.,
licking, touching, and crouching over pups (Johns et al., 2005b).
Therefore, combined reuptake inhibition could result in greater
disruptions in MB than either alone. However, there are a very
limited number of studies that explore behavioral consequences
from drug exposure during pregnancy on subsequent MB. It is
currently unknown whether reuptake inhibition of the combined
5-HT and NE systems compared to either system individually
might differentially alter MB or MA.

Increased oxytocin levels in several brain regions [medial pre-
optic area (MPOA), ventral tegmental area (VTA), hippocampus,
and amygdala] at critical time points during pregnancy or in the
postpartum period have been shown to be extremely important in
rodent MB and may also play a role in MA. Alterations in the oxy-
tocin system (peptide levels, receptors, and peptide synthesis) in
these regions are correlated with abnormalities in MB and/or MA
(Ferris et al., 1992; Bosch et al., 2005; Febo et al., 2005; Neumann,
2009). Of interest to the work presented here, studies suggest that
decreased oxytocin levels in the amygdala (Lubin et al., 2003) and
the MPOA and VTA (Pedersen et al., 1994; Elliott et al., 2001; Johns
et al., 2004) are associated with increased postpartum aggression
and deficits in maternal care, respectively. 5-HT receptors have
been shown to regulate oxytocin neurons (Sawchenko et al., 1983)
and stimulate oxytocin release (Jorgensen et al., 2003), and admin-
istration of 5-HT antagonists blocks stress-induced increases in
oxytocin secretion (Jorgensen et al., 2002). NE is also an impor-
tant contributor to the release of oxytocin, speculated to be even
more important than 5-HT (Russell et al., 2003; Lipschitz et al.,
2004), and NE reuptake inhibitors have been shown to increase
hypothalamic oxytocin potency (Bealer and Flynn, 2003). Oxy-
tocin is reduced following gestational treatment with fluoxetine,
amfonelic acid, and the combination of both drugs (Johns et al.,
2005b). It is unknown if reuptake inhibition of NE, or of both NE
and 5-HT, will alter oxytocin at critical periods in the early post-
partum period, which could, if true, impact the early maternal
environment.

The present study seeks to extend previous findings to deter-
mine the effects of gestational treatment with the neurotransmitter
reuptake inhibitors amitriptyline (combined 5-HT and NE sys-
tems) and desipramine (NE system) on MB using a previously
established preclinical model (Johns et al., 2005b). We hypothe-
sized that gestational treatment with amitriptyline and to a lesser
degree desipramine alone would decrease MB resulting from the
additive effect of combined neurotransmitter reuptake. Addition-
ally, combined reuptake inhibition was expected to increase MA
relative to desipramine treatment alone. Associated increases in
aggression were predicted to correlate with decreased oxytocin lev-
els in the amygdala following aggression testing as oxytocin levels
have been shown to be inversely correlated with higher aggression
levels in this region in previous studies (Lubin et al., 2003). Alterna-
tively, a previous study using combined serotonin and dopamine
reuptake inhibitors during gestation resulted in lower levels of
oxytocin in the hippocampus associated with somewhat increased
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levels of MA on PPD 6, which implicates this region as one of
interest as well (Johns et al., 2005b). Given previous peptide level
findings, this study also examined oxytocin levels as opposed to
receptors as an initial level of comparison between groups.

MATERIALS AND METHODS
SUBJECTS
Virgin female Sprague-Dawley rats (200–230 g) were group-
housed in a temperature and humidity controlled room for a 7-day
habituation period prior to breeding. Females were then individu-
ally housed with a sexually active male until conception was noted
by the presence of a sperm plug. On the day a sperm plug was
discovered, designated as gestation day (GD) 0, the female was
removed from the breeding cage, randomly assigned to a treat-
ment group (see below), individually housed, and provided food
(Purina Rat Chow) and water ad libitum. Pregnant females were
maintained on a reversed 12:12 hour light cycle (lights out at 0900)
for 8 days, then transferred to a room with a regular 12:12 hour
light cycle (lights on at 0700) for the remainder of the experiment,
a procedure that generally results in dams delivering their litters
during daylight hours (Mayer and Rosenblatt, 1998).

CHOICE OF DRUGS
The drugs, amitriptyline and desipramine, were chosen specifically
for these studies based on our goals and the attributes of the drugs
at the highest doses utilized in this study and following consul-
tation with our pharmacology consultant (Dr. Brian McMillen).
With minimal literature available to facilitate even high dose selec-
tion (see remainder of this paragraph for review), medium and
low doses were chosen relative to high dose for a descending dose
response curve. Amitriptyline is a tertiary amine with preference
for both the 5-HT and NE transporters, with a half-life in the
rat of around 8–12 h. Review of available literature suggests that
doses of 10 mg/kg or less of amitriptyline ensure moderate inhi-
bition of both the 5-HT and NE transporters (Henderson and
McMillen, 1993). Amitriptyline’s inhibition of both 5-HT and
NE transporters are considered comparable in this experimen-
tal paradigm because amitriptyline has a similar binding affinity
for 5-HT and NE transporters in the adult rat (see Ki column of
Table 1), particularly at the likely cerebral spinal fluid concentra-
tions achieved following amitriptyline doses utilized in this study

(see CSF column of Table 1). Desipramine, a secondary amine
with the greatest known selectivity for the NE transporter, has a
half-life of about 8 h in the rat. Desipramine, when administered
to pregnant rats at doses as high as 10 mg/kg, had no overt effect
on dam gestational weight gain or number of pups born com-
pared to vehicle injected controls (Montero et al., 1990; Goldberg
and Nissim, 1994). Desipramine at the doses used in this study
(all less than 7.5 mg/kg) will have pharmacokinetic effects (see
Table 1 for details) of near total inhibition of the NE transporter
and mild to minimal inhibition of the 5-HT transporter (Gould
et al., 2006). In addition to their effects as monoamine reuptake
inhibitors, both amitriptyline and desipramine function as neu-
ronal sodium and potassium channel blockers when administered
in the μM concentration range (Nicholson et al., 2002). Cere-
bral spinal fluid concentrations of amitriptyline and desipramine
achieved in this experiment fall in the nM concentration range (see
Table 1), making blockade of sodium or potassium channels in
central nervous system unlikely. At the site of subcutaneous injec-
tion, both amitriptyline and desipramine would have been present
for short periods of time at μM concentrations. Thus, amitripty-
line and desipramine may have functioned as local anesthetics
for a period of hours post-injection. All local anesthetic effects
would have dissipated by the time of parturition and postpartum
behavior testing.

TREATMENT
The females were randomly assigned to one of seven treatment
groups, or as an untreated surrogate. Throughout gestation (GD
1–20), treatment groups received twice daily subcutaneous (SC)
injections (on alternating flanks) of either drug (amitriptyline or
desipramine) or 0.9% normal saline for controls in a 1-ml/kg vol-
ume at 9:00 AM, with all control and treatment dams receiving
normal saline at 4:00 PM (2 ml/kg total) to match previous treat-
ment regimens used to test MB and MA (Johns et al., 2005b).
Amitriptyline treated rats received either a low, medium, or high
dose SC injection (2.5, 5, or 10 mg/kg respectively) of amitripty-
line hydrochloride (Research Biomedicals Inc., Natick, MA, USA)
in a pH 10 solution (0.1 ml 1 N NaOH and 0.6 ml of 0.1 N HCl
in distilled water) at 9:00 AM. on one flank, followed by their
saline injection at 4:00 PM. Desipramine treated rats received
either a low, medium, or high dose (1.25, 2.5, or 5.0 mg/kg

Table 1 | Estimated cerebral spinal fluid concentration by drug dose and reported Ki for individual monoamine transporter proteins.

Drug Dose (mg/kg) Plasma (nM) Plasma protein binding (%) CSF (nM) Ki (nM)

5-HT NE DA

Amitriptyline 8 82 95 4.1 84 13.9 8600

15 371 95 18.55 84 13.9 8600

Desipramine 7.5 664 90 66.4 180 0.6 11000

Table reviewing available literature of studies using: chronic subcutaneous administration, adult rats, drugs of interest at comparable doses to those used in this study,

and reported plasma concentrations [8 mg/kg amitriptyline (Brodin et al., 1994), 15 mg/kg amitriptyline (Benmansour et al., 1999), and 7.5 mg/kg desipramine (Gould

et al., 2006)]. Reported cerebrospinal fluid (CSF) concentrations were calculated by multiplying reported drug plasma concentrations and reported plasma protein

binding percentages [amitriptyline (Schulz et al., 1985) and desipramine (Sallee and Pollock, 1990)]. Reported Ki values for serotonin (5-HT), norepinephrine (NE), and

dopamine (DA) transport proteins are for rat synaptosomes (Bolden-Watson and Richelson, 1993).
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respectively) of desipramine hydrochloride at 9:00 AM and saline
at 4:00 PM. Single rather than twice daily doses of amitripty-
line and desipramine were also given because of the long half-life
(Ghose, 1980) of these drugs and to match previous studies (Johns
et al., 2005b). Twice daily injections given on alternate flanks have
been shown to minimize skin trauma from injections, although we
saw no significant evidence of skin trauma with amitriptyline as
we have seen in previous studies using either cocaine or fluoxetine
treatment (Johns et al., 2005b).

Weight gain was recorded daily except for surrogate dams.
Surrogate dams received no treatment other than handling and
were weighed every 5 days. All treatment dams received eight age
matched male pups from a surrogate dam within 12 h of partu-
rition. All procedures were conducted under an approved pro-
tocol using federal and University Institutional Animal Care and
Use Committee guidelines for humane treatment of laboratory
subjects.

MATERNAL BEHAVIOR TESTING
Upon delivery of their last pup, designated as PPD 1, the dams
were brought in their home cage to a 10 × 12 ft. observation room.
Dam and pups were not brought to the test room until all pups
had delivered, been cleaned and all had milk bands showing they
had nursed. This treatment regimen has been used in a number of
past studies (Johns et al., 1994; Lonstein and Gammie, 2002) since
a primary interest of this work is in the onset of MB when oxytocin
is most relevant. Dams and their litters were brought to the test
chamber for habituation only after they have cleaned all pups and
pups have milk bands. Since dams had time to clean and feed their
pups before they were separated, an essential element for mater-
nal response, we do not feel pup separation on PPD 1 disrupted
MB. Pilot work showed when pups are removed immediately after
birth and mothers are not given time to clean or feed pups over-
all MB is reduced but this is not the case with this paradigm. The
home cage was placed into a 24 × 16 × 20 in. dimly lit testing cubi-
cle, designed to reduce environmental distractions during testing,
and the subject’s pups were removed. Gestational weight gain and
length, litter size and weight, and gender of pups were recorded.
Eight male surrogate pups born within 12 h of a test dam’s delivery
were placed in a warm cage above the test cubicles while the dam
to be tested habituated to the room for 30 min. After the habitua-
tion period, 10 pieces of nesting material (paper towel strips) were
placed at the rear of the cage and the eight male surrogate pups
were placed in the front of the cage. Surrogate pups were used to
control for any confounds of pup behavioral differences related to
prenatal drug exposure that might affect maternal care. Cross fos-
tering at this time point has been shown in a number of previous
studies in our laboratory to have no deleterious effects on mater-
nal acceptance of offspring, given that all mothers have nursed and
cleaned their own litters and pups are readily accepted and cared
for (Johns et al., 2005b). Untreated male surrogate pups were used
to eliminate the possible effects of differential pup treatment due
to gender preference, which has sometimes been reported (Hahn
and Lavooy, 2005), we have seen little evidence of this in past test-
ing with other drug treatment paradigms (Johns et al., 2005b).
MB was tested on PPD 1 both to compare to previous studies and
because we were most interested in the early onset of MB, which is

most dependent on oxytocin system related changes. Videotaping
with a VHS recorder with low light sensitivity began as soon as
the pups were placed into the cage and continued for 30 min. All
pups were observed for any physical danger from the dam during
testing. Typical MBs of interest in our lab, which have been previ-
ously described (Johns et al., 1994), focus primarily on activity and
pup-directed behavior displayed by the dam. These include: nest-
build (dam manipulates paper strips with her mouth or paws);
touch/sniff pups (dam touches pups with her front paws or nose);
retrieve pups (dam retrieves two, six or eight pups from the front
to the back of the cage); self-groom (dam grooms herself with her
tongue or paws); rest off/lie on (dam rests away from the pups
or lies flat on top of pups); crouch (dam stands over the pups
with her back arched in the nursing position with stiff straight legs
and head lowered); lick pups (dam licks the pups); rear/sniff (dam
rears and sniffs the cage or air); and other (any behavior other than
those designated above including locomotor activity). Following
MB testing, dams and their surrogate litters were returned to the
colony and monitored daily to assure pup health. This model used
to study rodent maternal neglect has been employed successfully in
previous studies following gestational drug treatment (Henderson
and McMillen, 1993).

POSTPARTUM AGGRESSION TESTING
On PPD 6, dams and their litters were brought in their home cage
to the behavioral observation room where pups and dams were
weighed. PPD 6 was chosen for the study of MA testing to match
previous studies which show that drug related changes have peak
effects on MA on this day (Johns et al., 2005b). Additionally, oxy-
tocin system changes in the amygdala are particularly associated
with behavioral increases in aggressive behavior by PPD 6. Dams
and litters were then returned to their home cages which were
then placed in the testing cubicle for a 5 min chamber habituation
period. Following the habituation period, a smaller male intruder
(175 g) was placed in the cage on the end opposite the dam and
her litter, and the session was videotaped for a 10-min period.
The sessions were closely observed for danger to the pups, male
intruder, or dam, and if harm appeared imminent then the session
was stopped and data from that session was excluded from the
statistical analysis. A new male was used for each test so that pre-
vious experience of the intruder would not affect their behavior.
Following testing, the male was removed from the cage, and the
dam and pups were returned to the colony room. The behaviors of
interest for postpartum aggression have been previously described
(Lubin et al., 2003), and include: push/box/kick (dam pushes or
kicks the intruder); MB (dam licks pups, retrieves, or crouches over
pups); rough groom (dam grooms intruder male roughly, usually
around head, neck, or back); self-groom (dam grooms herself);
lateral/front threat (dam threatens male while approaching lat-
erally, or face to face); fight attack (a quick lunge by the female
usually followed by rolling, biting, and fur pulling directed toward
the neck and back regions of the intruder); rear/sniff (dam rears
on hind legs and sniffs the top or sides of cage); nip/bite (dam
nips or bites male but not in a fight attack); chase male (female
chases intruder); aggressive posture (dam stands over a submissive
intruder with extended front paws pressing down on him); and
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other (any behavior other than those included in the categories
above).

BRAIN DISSECTION
On PPD 7, at approximately 9:00 AM, 1 day following postpar-
tum aggression testing, dams were killed by decapitation. The
brain was removed and the whole MPOA, hippocampus, amyg-
dala, and VTA were dissected on ice, weighed, and rapidly frozen
and stored at −80˚C for later oxytocin radioimmunoassay as
previously described (Johns et al., 1997). Brains were coronally
sectioned from the ventral side rostral to the optic chiasm, approx-
imately A7100 (Konig and Klippel, 1963), and just caudal to the
optic chiasm, approximately A5800 (Konig and Klippel, 1963), to
define the preoptic–anterior hypothalamic area. The MPOA was
dissected by making a horizontal cut ventral to the anterior com-
missure and vertical cuts inferior to the lines of lateral ventricles.
The brains were sectioned once again just caudal to the tuber
cinereum, approximately A3800 (Konig and Klippel, 1963), to
define the medial basal hypothalamus. The amygdala was removed
from these two sections. The VTA was dissected from the caudal
section by making dorso-ventral cuts medial to the optic tracts
with a dorsal cut at the ventral extent of the central gray and the
whole hippocampus was then removed from the caudal remainder
of the brain.

OXYTOCIN RADIOIMMUNOASSAY
Brain region tissues were homogenized in cold buffer (19 mM
monobasic sodium phosphate, 81 mM dibasic sodium phosphate,
0.05 M NaCl, 0.1% BSA, 0.1% Triton 100, 0.1% sodium azide, pH
7.4) and centrifuged at 3000 × g for 30 min. Oxytocin immunore-
active content was assayed in the supernatant according to a
protocol from Peninsula Labs (Belmont, CA, USA). Samples and
standards (1.0–128.0 pg) were incubated in duplicate for 16–24 h
at 4˚C with rabbit anti-oxytocin serum. They were then incubated
for 16–24 h at 4˚C with 125I-oxytocin after which time normal
rabbit serum and goat anti-rabbit IgG serum were added and incu-
bated 90 min at room temperature. The 125I-oxytocin bound to the
antibody complex was separated from free by a 30-min centrifu-
gation at 4˚C. The radioactivity in the pellet was measured using a
LKB CliniGamma counter, which calculates the picogram content
of oxytocin in each sample from the standard curve.

DATA ANALYSES
Taped sessions were scored by two independent observers blind to
treatment condition with inter-and intra-reliability set at 90% or
better concurrence for frequency and latency, and 80% or better
for duration of behaviors displayed by the dam. No sessions had
to be excluded for physical danger to the pups during testing for
MB or MA. A computer program calculated the frequency, dura-
tion, latency, and sequence of all relevant behaviors displayed by
the rat dams. If a particular behavior of interest was not exhib-
ited by a dam, she was assigned a frequency and duration of 0,
and the highest possible latency for the behavior (1800 s for MB,
and 600 s for MA). Weighted additive models for time to event
best fit the duration data analyzed from the MB dataset as well as
the oxytocin and gestational datasets. Log linear models for count
data fit the frequency data analyzed from the postpartum aggres-
sion dataset best. These models were used to examine within drug

group differences (high, medium, low dose) as well as between
drug group differences (amitriptyline, desipramine, saline) in all
datasets.

Considering the large number of observations made for MB
and postpartum aggression for each dam, general estimating
methods were used to obtain group estimates and standard errors.
Additionally p-values were adjusted for multiple comparisons via
the FDR method (Benjamini et al., 2001). Only measures we felt
most relevant to our specific hypotheses were chosen a priori,
for group comparison for both MB (duration of touch, crouch,
lick) and a composite measure of activity (combined categories of
other and rear/sniff) and for postpartum aggression (frequency of
threat, fight attack, and aggressive posture). Using the Pearson
product-moment correlation coefficient, there were no signifi-
cant direct correlations between oxytocin levels on PPD 7 and
aggression measures on PPD 6, thus comparisons of oxytocin lev-
els (picograms/mg) were made between all groups for all four
brain regions. Estimates of the means and standard errors under
the model are presented graphically for frequency and duration
data. Statistical significance was set at the p ≤ 0.05 level. Results
are significant unless otherwise stated and are presented in the
text under relevant subheadings and reported first within each
drug (amitriptyline-A, desipramine-D), at each treatment level
(high-H, medium-M, low-L), between drug treatment and control
treatment (saline) dam groups, and lastly between correspond-
ing drug treatment groups (for example, amitriptyline high dose
treatment vs. desipramine high dose treatment). Statistically sig-
nificant results directly relevant to hypotheses are described in
text, with details of all statistical comparisons and individual sig-
nificance levels contained in relevant figures and legends. Groups
are designated by abbreviations of their respective drug or control
(amitriptyline/desipramine/saline) groups, followed by letters (see
above) indicating dose level. For example, desipramine low dose
treatment dams would be labeled as DL.

RESULTS
GESTATION VARIABLES
Dam test numbers are noted in Table 2 with the exception of a
lower number of MB dams coded in the AH (7 total) and DM
(9 total) dam groups compared to those coded for postpartum
aggression testing, brain oxytocin level measurement, and gesta-
tional variables. This was the result of VHS tape failure during
recording or playback of MB testing sessions for these animals.
Though no MB data was available for those particular dams, they
all completed MB testing so their data were included for remaining
assessments of postpartum aggression, brain oxytocin levels, and
gestational variables.

Amitriptyline
There were no significant differences within or between amitripty-
line treatment and saline control groups on the measures of
gestation length, gestational weight gain, or birth litter size (see
Table 2). AL dams’ weight on gestational day 0 was significantly
higher than both AM dams [χ2

(1) = 6.85, p ≤ 0.01] and saline
control dams [χ2

(1) = 4.24, p ≤ 0.05]. AH birth litters weighed
less on PPD 1 than AL [χ2

(1) = 4.91, p ≤ 0.05], however average
individual AH pup weight did not differ (litter weight divided by
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Table 2 | Gestational variables.

Drug Number

tested

(# dams)

Gestational

length

(days)

Dam

weight

gain (g)

Litter

weight on

PPD 1 (g)

Average

birth

litter size

(# pups)

Average

PPD 1 pup

weight

(g/pup)

Surrogate litter

weight

PPD 1 (g)

Surrogate litter

weight gain

PPD 1–6 (g)

AH 11 * 21.0 ± 0.14 132.27 ± 5.51 78.82 ± 4.50 l 12.55 ± 0.80 6.31 ± 0.14 47.64 ± 2.08 M,S,d 41.45 ± 2.94 M,L,S,d

AM 7 21.0 ± 0.18 146.57 ± 6.92 81.43 ± 5.64 12.86 ± 1.00 6.32 ± 0.18 59.71 ± 2.60 l 60.43 ± 3.69

AL 9 21.0 ± 0.16 137.33 ± 6.10 93.67 ± 4.97 14.78 ± 0.88 6.37 ± 0.15 50.33 ± 2.30 s 53.67 ± 3.25

Saline 9 21.0 ± 0.15 147.11 ± 6.10 89.67 ± 4.97 14.11 ± 0.88 6.42 ± 0.15 58.11 ± 2.30 60.78 ± 3.25

DH 11 20.91 ± 0.14 142.45 ± 5.52 81.73 ± 4.50 14.00 ± 0.80 5.85 ± 0.14 S,a 57.18 ± 2.08 52.45 ± 2.94 a

DM 11 * 20.64 ± 0.14 130.27 ± 5.52 s 75.27 ± 4.50 s 13.09 ± 0.80 5.78 ± 0.14 S,a 56.73 ± 2.08 52.45 ± 2.94

DL 11 21.00 ± 0.14 140.00 ± 5.52 83.00 ± 4.50 13.91 ± 0.88 6.08 ± 0.14 53.45 ± 2.08 51.45 ± 2.94 s

Mean ± SEM of all gestational measures. Group means designated with an italicized lower case letters are statistically significant at p ≤ 0.05, italicized CAPITAL letters

are significant at the p ≤ 0.01. h, m, and l denotes a significant difference between high, medium, and low dose groups within a drug treatment group. An s denotes

significant differences between drug treatment group and saline control; a denotes statistical difference for a desipramine group from corresponding amitriptyline

treatment group; and a d for a amitriptyline group from corresponding desipramine treatment group. By corresponding treatment group authors mean that high,

medium, and low doses in the amitriptyline groups were compared to the same relative doses (i.e., high, medium, low) in the desipramine groups. AH, amitriptyline

high group (10 mg/kg); AM, amitriptyline medium (5 mg/kg); AL, amitriptyline low (2.5 mg/kg); DH, desipramine high (5 mg/kg); DM, desipramine medium (5 mg/kg);

DL, desipramine low (1.25 mg/kg); Saline (2 ml/kg). *The number of coded observations of MB was reduced in the DH and DM groups as stated in the Section

“Results.”

litter number) at this time, suggesting this is an effect of slight dif-
ferences in litter number (not significantly different) rather than
individual pup size. On PPD 1, AH surrogate litters weighed less
than surrogate litters of AM [χ2

(1) = 13.15, p ≤ 0.01] and saline
control litters [χ2

(1) = 11.45, p ≤ 0.01]. Surrogate litters of AH
dams gained significantly less over PPDs 1–6 than did those of
AM [χ2

(1) = 16.16, p ≤ 0.01], AL [χ2
(1) = 7.75, p ≤ 0.01] or saline

control litters [χ2
(1) = 19.40, p ≤ 0.01].

Desipramine
There were no significant differences within any desipramine
treated or between desipramine and saline dams on gestation
length, birth litter size, or PPD 1 surrogate litter weight. DM
dams gained less weight across gestation (GD 1–20) than did saline
dams [χ2

(1) = 4.19, p ≤ 0.05, see Table 2]. DL dams’ weight on GD
0 was significantly higher than both DH [χ2

(1) = 4.75, p ≤ 0.05]
and saline control [χ2

(1) = 8.78, p ≤ 0.01] dams. The average indi-
vidual pup weight of DH litters on PPD 1 was lower than saline
controls [χ2

(1) = 7.66, p ≤ 0.01]. DM litters had a lower litter birth
weight [χ2

(1) = 4.61, p ≤ 0.05] and individual pup birth weight
[χ2

(1) = 9.42, p ≤ 0.01] than did litters born to saline dams.

Amitriptyline vs. desipramine
As illustrated in Table 2, AH surrogate litters gained less weight
over PPDs 1–6, than did DH litters [χ2

(1) = 6.98, p ≤ 0.01].
AM dams weighed less on GD 0 than DM dams [χ2

(1) = 5.17,
p ≤ 0.05]. AH and AM birth litters had higher average individual
pup weights on PPD 1 than DH [χ2

(1) = 5.62, p ≤ 0.05] and DM
[χ2

(1) = 5.75, p ≤ 0.05] litters, respectively.

MATERNAL BEHAVIOR
Amitriptyline
There were significant within treatment dose effects with
amitriptyline groups and between amitriptyline and saline con-
trol groups on all measures of MB analyzed (see Figure 1). AH

dams crouched for a shorter duration than all other amitriptyline
dams AM [χ2

(1) = 17.69, p ≤ 0.01]; AL [χ2
(1) = 15.26, p ≤ 0.01]

or saline controls [χ2
(1) = 20.81, p ≤ 0.01]. Interestingly, the

AH dams touched pups more AM [χ2
(1) = 13.77, p ≤ 0.01];

AL [χ2
(1) = 12.89, p ≤ 0.01]; saline controls [χ2

(1) = 8.13,
p ≤ 0.01] and also licked them longer than other dams AM
[χ2

(1) = 17.14, p ≤ 0.01]; AL [χ2
(1) = 18.91, p ≤ 0.01]; saline con-

trols [χ2
(1) = 18.88, p ≤ 0.01]. Finally, AH dams were gener-

ally more active than other dams AM [χ2
(1) = 19.65, p ≤ 0.01];

AL [χ2
(1) = 11.45, p ≤ 0.01]; and saline controls [χ2

(1) = 24.63,
p ≤ 0.01], as shown in Figure 1.

Desipramine
DH [χ2

(1) = 3.94, p ≤ 0.05] and DM [χ2
(1) = 6.05, p ≤ 0.05] dams

crouched less than did saline treated dams, as shown in Figure 2.
The DM dams were more active [χ2

(1) = 4.60, p ≤ 0.05] than were
the saline controls. There were no other statistically significant
between group differences on MB measures in desipramine or
saline control dams.

Amitriptyline vs. desipramine
AH dams crouched over pups for a shorter duration [χ2

(1) = 8.47,
p ≤ 0.01] but touched [χ2

(1) = 7.77, p ≤ 0.01] and licked
[χ2

(1) = 19.53, p ≤ 0.01] pups longer than did the DH dams (see
Figure 3). AH dams were also more active [χ2

(1) = 19.95, p ≤ 0.01]
than were DH dams in general. Conversely, AM dams crouched
longer than did DM [χ2

(1) = 4.84, p ≤ 0.05] dams while DM
and DL dams touched pups longer than did AM [χ2

(1) = 5.31,
p ≤ 0.05] or AL [χ2

(1) = 5.49, p ≤ 0.05] dams.

POSTPARTUM AGGRESSION
Amitriptyline
As shown in Figure 4, AH dams attacked intruders less saline
controls [χ2

(1) = 5.26, p ≤ 0.05], had a higher frequency of aggres-
sive postures aggressive posture AL only [χ2

(1) = 5.63, p ≤ 0.05]
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FIGURE 1 | Mean ± SEM of all MB measures organized in four panels of

bar charts for all amitriptyline groups. Each panel is for a specific behavior
[(A) Crouch; (B) Activity; (C) Lick; (D) Touch]. All four panels measure duration
in seconds (s) on the Y axis and X axis includes categories for all amitriptyline

groups and saline controls. Gray bars denote amytriptyline groups [AH,
amitriptyline high (10 mg/kg); AM, amitriptyline medium (5 mg/kg); AL,
amitriptyline low (2.5 mg/kg)]. While bars denote saline control group [Saline =
normal saline (2 ml/kg)]. * p ≤ 0.05; **p ≤ 0.01.

FIGURE 2 | Mean ± SEM of all MB measures organized in four panels of

bar charts for all desipramine groups. Each panel is for a specific behavior
[(A) Crouch; (B) Activity; (C) Lick; (D) Touch]. All four panels measure duration
in seconds (s) on the Y axis and X axis includes categories for all desipramine

groups and saline controls. Black bars denote desipramine groups [DH,
desipramine high (5 mg/kg); DM, desipramine medium (2.5 mg/kg); DL,
desipramine low (1.25 mg/kg)]. While bars denote saline control group [Saline
= normal saline (2 ml/kg)]. * p ≤ 0.05; **p ≤ 0.01.
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FIGURE 3 | Mean ± SEM of all MB measures organized in four panels of

bar charts by behavior for all amitriptyline and desipramine groups.

Each panel is for a specific behavior [(A) Crouch; (B) Activity; (C) Lick;
(D) Touch]. All four panels measure duration in seconds (s) on the Y axis and
X axis includes categories for all amitriptyline groups in gray [AH,
amitriptyline high group (10 mg/kg); AM, amitriptyline medium (5 mg/kg); AL,
amitriptyline low (2.5 mg/kg)], all desipramine groups in black [DH,

desipramine high (5 mg/kg); DM, desipramine medium (5 mg/kg); DL,
desipramine low (1.25 mg/kg)] and saline control group in white
[Saline = normal saline (2 ml/kg)]. Comparisons between amitriptyline
and desipramine groups were only tested between the high, medium,
or low dose groups for each respective drug treatment group. All
significant AH–DH, AM–DM, and AL–DL comparisons are denoted
*p ≤ 0.05; **p ≤ 0.01.

and threatened intruders less than other dam groups all dams,
AM [χ2

(1) = 14.84, p ≤ 0.01]; AL [χ2
(1) = 50.16, p ≤ 0.01]; and

saline controls [χ2
(1) = 16.03, p ≤ 0.01]. AL dams threaten intrud-

ers more than AM [χ2
(1) = 6.29, p ≤ 0.05] or saline treated dams

[χ2
(1) = 9.48, p ≤ 0.05].

Desipramine
As shown in Figure 4, all desipramine dams threatened intrud-
ers less than saline treated dams DH [χ2

(1) = 40.36, p ≤ 0.01];
DM [χ2

(1) = 31.52, p ≤ 0.01]; and DL [χ2
(1) = 24.71, p ≤ 0.01].

DH treated dams also attacked intruders less DM [χ2
(1) = 11.18,

p ≤ 0.01]; saline controls [χ2
(1) = 16.47, p ≤ 0.01], and were less

likely to pin intruders with an aggressive posture than were
other dam groups DM [χ2

(1) = 4.13, p ≤ 0.05]; DL [χ2
(1) = 6.09,

p ≤ 0.05]; saline controls [χ2
(1) = 7.46, p ≤ 0.01]. DL dams

attacked intruders less often than did saline treated dams
[χ2

(1) = 6.33, p ≤ 0.05].

Amitriptyline vs. desipramine
All doses of amitriptyline significantly increased the fre-
quency of threat when compared to their corresponding high

[χ2
(1) = 5.56, p ≤ 0.05], medium [χ2

(1) = 28.36, p ≤ 0.01], or low
[χ2

(1) = 65.85, p ≤ 0.01] dose desipramine groups (see Figure 4).
AH dams had a higher frequency of aggressive postures compared
to DH dams [χ2

(1) = 17.58, p ≤ 0.01].

OXYTOCIN RADIOIMMUNOASSAY
Amitriptyline
AL dams had higher oxytocin levels in the MPOA than did saline
controls [χ2

(1) = 3.99, p ≤ 0.05]. AH [χ2
(1) = 30.20, p ≤ 0.01],

AM [χ2
(1) = 40.15, p ≤ 0.01], and AL [χ2

(1) = 46.83, p ≤ 0.01]
treated dams all had lower hippocampal levels of oxytocin (pg/mg)
compared to saline controls (see Figure 5).

Desipramine
As seen in Figure 5, there were no significant differences between
desipramine and saline control groups on levels of oxytocin in
the MPOA, amygdala, or the VTA. DH treated dams had sig-
nificantly lower levels of oxytocin (pg/mg) in the hippocampus
compared to saline controls [χ2

(1) = 31.43, p ≤ 0.01] and signif-
icantly increased hippocampal oxytocin levels compared to DM
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FIGURE 4 | Mean ± SEM of all postpartum aggression measures

organized in three panels of bar charts by behavior between (A) all

amitriptyline and saline, (B) all desipramine and saline, and (C) all

amitryptline and desipramine groups. All panels measure frequency
of behavior on the Y axis and X axis includes categories for all
amitriptyline groups in gray [AH, amitriptyline high group (10 mg/kg); AM,
amitriptyline medium (5 mg/kg); AL, amitriptyline low (2.5 mg/kg)], all

desipramine groups in black [DH, desipramine high (5 mg/kg); DM,
desipramine medium (5 mg/kg); DL, desipramine low (1.25 mg/kg)]) and saline
control group in white [Saline = normal saline (2 ml/kg)]. Comparisons
between amitriptyline and desipramine groups were only tested between the
high, medium, or low dose groups for each respective drug treatment group.
All significant AH–DH, AM–DM, and AL–DL comparisons are denoted
*p ≤ 0.05; **p ≤ 0.01.

dams [χ2
(1) = 7.06, p ≤ 0.01]. DM [χ2

(1) = 66.05, p ≤ 0.01] and
DL dams [χ2

(1) = 50.47, p ≤ 0.01] also had lower hippocampal
oxytocin levels than did saline treated dams.

Amitriptyline vs. desipramine
There were no significant differences between amitriptyline and
desipramine groups on oxytocin levels in any brain region tested.

DISCUSSION
We predicted that gestational desipramine treatment would have
less effect on MB compared to amitriptyline treatment based on
previous work with serotonergic reuptake inhibitors (Johns et al.,
2005b). Our present data supports this hypothesis as combined
5-HT/NE reuptake inhibition resulted in greater MB alterations
compared to NE reuptake inhibition alone. Chronic NE reup-
take inhibition by the medium and high doses of desipramine in
this study resulted in decreased crouching of dams compared to

saline treated controls, and desipramine treatment was generally
associated with lower levels of aggression. Results from this study
support previous findings indicating a role for NE in MB. Previ-
ous studies have suggested NE plays a role in pup retrieval and
disrupted nursing, as Thomas and Palmiter (1997) reported that
pups born to mice lacking NE did not exhibit visible milk bands.
However, the data ultimately indicated the deficits in pup feed-
ing resulted primarily from poor maternal retrieval, resulting in a
high percentage of pup litters not surviving (Thomas and Palmiter,
1997). In the present study, all dams retrieved pups with no dif-
ferences in the latency to retrieve (data not shown), suggesting
disruptions in crouching behavior in the desipramine treated dams
were not related to retrieval. Although DM dams were more active
than controls, the DH dams were not, so for this group at least
hyperactivity did not prevent crouching. Crouching, or assuming
the nursing posture, by dams is one of the most important dam
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FIGURE 5 | Mean ± SEM of all brain oxytocin measures organized in four

panels of bar charts by anatomical region for all amitriptyline and

desipramine groups. Each panel is for a specific anatomical region [(A)

MPOA; (B) Hippocampus; (C) VTA; (D) Amygdala). All four panels measure
picograms of oxytocin per milligram of brain tissue (pg/mg) on the Y axis and
X axis includes categories for all amitriptyline groups in gray [AH, amitriptyline
high group (10 mg/kg); AM, amitriptyline medium (5 mg/kg); AL, amitriptyline

low (2.5 mg/kg)], all desipramine groups in black [DH, desipramine high
(5 mg/kg); DM, desipramine medium (5 mg/kg); DL, desipramine low
(1.25 mg/kg)] and saline control group in white [Saline = normal saline
(2 ml/kg)]. Comparisons between amitriptyline and desipramine groups were
only tested between the high, medium, or low dose groups for each
respective drug treatment group. All significant AH–DH, AM–DM, and AL–DL
comparisons are denoted *p ≤ 0.05; **p ≤ 0.01.

behaviors in the early postpartum period for pup survival, as they
need to nurse often and starting soon after birth. Since untreated,
surrogate pups were fostered to dams, we assume that pup behav-
ior such as kneading and moving to stay under the ventrum was
adequate to stimulate dams to assume the posture, and that vari-
ability in pup response would be random. NE may affect milk
production by dams, and although we did not check specifically
for amount of milk in dams, it is possible they could have pro-
duced somewhat less milk and thus spent less time crouching. As
only the DL litters gained less weight from PPD 1–6 (see Table 2)
than controls and DL dams did not differ in crouching, this argues
against this interpretation. Given the evidence, we might surmise
that the desipramine treatment either directly or indirectly altered
this crouching behavior.

Previous studies have suggested NE may play a role in aggressive
behavior of male mice, with effects dependent on the treatment
and drug regimen (Matsumoto et al., 1991). Higher levels of NE
have been previously associated with increased aggression in adult
male human prisoners (Chichinadze et al., 2010), but few effects
have been reported with respect to females in rodent or human
models. In the present study, desipramine treatment decreased all
aggressive behaviors measured. This is interesting as we expected
no increases but did not predict significant decreases. Chronic
reuptake inhibition, which would have resulted in lower levels
of NE during the course of treatment, might have resulted in
decreased NE levels or noradrenergic receptor binding at the time
of MA testing (Bondi et al., 2007), or, alternatively, the withdrawal
from desipramine may have resulted in a rebound by PPD 6 testing.
Our findings support previous data suggesting NE can alter MA

under some regimens, with an emphasis now on lactating females.
Since we did not measure levels of NE or receptors on PPD 6, we
can only speculate as to which mechanisms might be responsible
for the observed behavioral effects.

While manipulations of 5-HT levels have been correlated
with MB changes, few investigators have studied this association
directly. Findings presented here suggest that combined NE and
5-HT reuptake inhibition has a greater impact on crouching com-
pared to gestational treatment with drugs which affect either NE
or 5-HT systems individually (Johns et al., 2005b). In addition, it
appears more likely that activity changes may have played a role in
amitriptyline related effects. Reduced crouching behavior is more
of a passive behavior whereas increased touching and licking of
pups seen in the high dose amitriptyline dams is more appetitive
and activity specific. In light of our previous findings (Johns et al.,
2005b) that chronic 5-HT reuptake inhibition (fluoxetine) alone
results in strong trends for decreased crouching and increased
levels of licking and touching of pups, we feel that amitripty-
line’s effects are very similar to fluoxetine, and somewhat different
from NE reuptake inhibition alone (crouching deficits only). It
seems through manipulation of the independent and combined
monoamine neurotransmitter systems in this and other stud-
ies (Johns et al., 2005b), that particular behaviors may be more
strongly related to specific effects of one particular monoamine
neurotransmitter rather than thecombination of effects from sev-
eral systems. However, it is important to note that behavioral
changes observed here with the highest dose of amitriptyline,
could also be related to altered DA reuptake. Although amitripty-
line is relatively selective for NE and 5-HT, Di Matteo et al. (2000)
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reported an increase in DA levels in the nucleus accumbens
following acute amitriptyline administration at the highest dose
(10 mg/kg) used here. Gestational treatment with a low dose of
a DA reuptake inhibitor also has been shown to reduce crouch-
ing, decrease latency to lick and increase pup licking and touching
(Johns et al., 2005b). Future studies could examine the impact of
drug dose on specific neurotransmitter system dynamics (levels,
binding) to aid in interpreting pharmacological findings.

Higher 5-HT levels have been correlated with lower levels
of aggression in numerous reports in rodent models, especially
male rodents (Olivier and Mos, 1992; Olivier et al., 1995; Holmes
et al., 2002; Miczek et al., 2007). Few reports are available for
female models, particularly lactating females employing single
reuptake inhibitors over gestation. Previously, we reported that
dams treated chronically with fluoxetine during gestation at a high
dose (8 mg/kg) resulted in dams that were less likely to nip/bite or
threaten an intruder, but more likely to attack and fight them for
a longer duration than controls (Johns et al., 2005b). This is inter-
esting in light of our present findings (contrary to our predictions)
that AH treated dams actually threatened and attacked intruders
less than other amitriptyline treated and control dams. Overall, all
amitriptyline treated dams threatened intruders more often com-
pared to all desipramine treated dams, suggesting that lower levels
of NE may play an inhibitory role in MA. In humans, amitripty-
line has generally been found to increase aggression (Soloff et al.,
1986a,b), suggesting again that the combined reuptake of 5-HT
and NE might interact to offset the effect of 5-HT inhibition
alone. Doses of amitriptyline and desipramine were selected to
ensure minimal DA reuptake inhibition and retained selectiv-
ity for 5-HT and NE transporters; these findings are somewhat
similar to the effects of combined DA and 5-HT reuptake inhibi-
tion during gestation in that the additive effect of a DA reuptake
inhibitor dampens the heightened aggression following fluoxetine
(Johns et al., 2005b). The doses used here do, however, have dif-
ferent pharmacokinetic effects on the monoamine transporters.
Future studies where doses of amitriptyline and desipramine are
selected to achieve different percent inhibition of 5-HT and NE
transporters may produce more pronounced behavioral and neu-
roendocrine effects, and aid in a clearer understanding of specific
neurotransmitter involvement in MBs.

We predicted oxytocin levels would be decreased in the
amygdala if they were associated with increased MA follow-
ing amitriptyline treatment. In light of low levels of aggression
observed in both treatment groups, it is not surprising that we
did not observe any oxytocin increases in the amygdala. It is
plausible that the aggression levels, specifically fighting, must be
significantly higher to find the related oxytocin changes we have
previously seen following treatment with drugs that alter multiple
reuptake inhibitor systems (Johns et al., 1994, 1998b). Decreased
drug-induced aggression has been associated with increased amyg-
daloid oxytocin (Johns et al., 1998a) in the postpartum period
after acute treatment (Johns et al., 1998a; Elliott et al., 2001) or
following gestational treatment with some doses of a DA reup-
take inhibitor (Johns et al., 1995). It may also be the case as
we and others have suggested, and this study may indicate, that
specific types of aggression may be differentially associated with
oxytocin level changes in different brain regions (Caldwell et al.,

1994; Bosch et al., 2005; Consiglio et al., 2005; McMurray et al.,
2008; Johns et al., 2010). Oxytocin levels were significantly lower
in the hippocampus following treatment with either drug com-
pared to saline controls, just as was the case in our earlier report
using selective serotonergic and dopaminergic reuptake inhibitors
(Johns et al., 2005b). The hippocampus has been more strongly
associated with MB (Kimble et al., 1967) than with MA specifi-
cally in lactating models. Reduced levels (Johns et al., 1997) and
receptors (Jarrett et al., 2006) for oxytocin in the early postpar-
tum environment have been reported following treatment with
cocaine, a non-selective monoaminergic reuptake inhibitor. The
hippocampus is well known for its role in integration spatiotem-
poral memories (Hasselmo et al., 2010) and the hippocampus
exhibits increased BOLD signal in response to pup suckling which
can be reduced by OT antagonists (Febo et al., 2005). The entorhi-
nal cortex, directly adjacent to the hippocampus, is involved in
social memory and also exhibits the positive BOLD response to
pup suckling (Febo et al., 2005). These results suggest a role for
hippocampal OT sensory response to pups, perhaps encoding spa-
tial memories of where the sensory stimulation occurred, although
this has yet to be tested. Oxytocin has previously been shown to
modulate neuroplasticity in the hippocampus, inducing long-term
potentiation in the hippocampus of postpartum mice (Tomizawa
et al., 2003) and long-term depression in male rats (Dubrovsky
et al., 2002). Hippocampal oxytocin has been associated with drug
dependence and tolerance (Sarnyai and Kovacs, 1994), and as such
may be playing a role in the present findings. Pervasive decreases in
hippocampal oxytocin with gestational administration of a wide
variety of monoaminergic agents, coupled with oxytocin’s known
role as a modulator of hippocampal synaptic strength and poten-
tial role in social recognition and perception (Cole and Young,
2009; Theodoridou et al., 2009), warrant future studies assessing
the role of monoaminergic reuptake inhibitors on hippocampal
neuroplasticity in the maternal brain.

The present study was not without limitations, including no
direct assessment of changes in NE, 5-HT, and DA levels or recep-
tors in brain regions of interest following drug treatment. Our
focus on the oxytocin system prevented these measurements of
monoamine system function in a single cohort of animals. The
use of only male surrogate pups results in a loss of generalizability
of the effects to a larger population, although previous studies have
shown drug-induced effects with mixed litters as well (Johns et al.,
2005a). The drugs chosen for this study were not the most selec-
tive available for the respective neurotransmitter systems, but in
some respects quite relevant considering treatment for serotonin
selective reuptake inhibitor refractory depression employs the use
of combined NE/5-HT neurotransmitter uptake inhibitors like
amitriptyline and desipramine. However, as observed here, par-
ticular dose pharmacokinetics need to be further explored, as low
and medium doses of amitriptyline had little effect on MB, and
drug dose-behavior relationship studies aimed atunderstanding
complex mechanisms driving behavioral changes could be of
clinical relevance.

While we did not assess changes in anxiety and stress in this par-
ticular study, both have been correlated with deficits in maternal
care (Smith et al., 2004; Bosch et al., 2007; Chen et al., 2010; Kessler
et al., 2011). To the extent that dams in this study may have been
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experiencing some effects of drug withdrawal at time of testing
(none were noted), it is important to acknowledge that this could
have had some effects on the behaviors measured here. We did
not detect any problems with lesions or distress following either
drug administration. While the AH dams did gain less gestational
weight they did not suffer notable sudden weight loss. Milk pro-
duction did not seem to be restricted in AH dams as all pups
nursed and had milk bands. These animals were more active and
perhaps there were some anorectic effects as were evident in a pre-
vious fluoxetine study at the high dose level (Johns et al., 2005b)
which could have had some effects on behaviors measured. It is
also important to remember that effects of drugs used as anti-
depressants in an animal model must be carefully interpreted, as
this model does not have an overt depressive-like phenotype (Pol-
lak et al., 2010), and as such, may not reflect the pharmacological
effects these compounds would have in depressed or drug abus-
ing human mothers. Future studies like this one using an animal
model of depression might prove interesting. In conclusion, given
the high rates women use legal and illicit monoamine reuptake

inhibitors, further exploration of these models could prove useful
for studying how the action of these drugs may alter the dynamics
of the mother–infant relationship. This study, in combination with
other previous reports, highlights the complexity and importance
of understanding the biological underpinnings of maternal care.
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