
PSYCHIATRY
REVIEW ARTICLE

published: 05 January 2012
doi: 10.3389/fpsyt.2011.00077

Mapping the Alzheimer’s brain with connectomics
Teng Xie andYong He*

State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China

Edited by:

Alex Fornito, University of Melbourne,
Australia

Reviewed by:

Aristotle Voineskos, Centre for
Addiction and Mental Health, Canada
Christian Sorg, Klinikum rechts der
Isar Technische Universität München,
Germany

*Correspondence:

Yong He, State Key Laboratory of
Cognitive Neuroscience and Learning,
Beijing Normal University, Beijing
100875, China.
e-mail: yong.he@bnu.edu.cn

Alzheimer’s disease (AD) is the most common form of dementia. As an incurable, progres-
sive, and neurodegenerative disease, it causes cognitive and memory deficits. However,
the biological mechanisms underlying the disease are not thoroughly understood. In recent
years, non-invasive neuroimaging and neurophysiological techniques [e.g., structural mag-
netic resonance imaging (MRI), diffusion MRI, functional MRI, and EEG/MEG] and graph
theory based network analysis have provided a new perspective on structural and func-
tional connectivity patterns of the human brain (i.e., the human connectome) in health
and disease. Using these powerful approaches, several recent studies of patients with
AD exhibited abnormal topological organization in both global and regional properties of
neuronal networks, indicating that AD not only affects specific brain regions, but also
alters the structural and functional associations between distinct brain regions. Specifi-
cally, disruptive organization in the whole-brain networks in AD is involved in the loss of
small-world characters and the re-organization of hub distributions. These aberrant neu-
ronal connectivity patterns were associated with cognitive deficits in patients with AD,
even with genetic factors in healthy aging. These studies provide empirical evidence to
support the existence of an aberrant connectome of AD. In this review we will summarize
recent advances discovered in large-scale brain network studies of AD, mainly focusing on
graph theoretical analysis of brain connectivity abnormalities. These studies provide novel
insights into the pathophysiological mechanisms of AD and could be helpful in developing
imaging biomarkers for disease diagnosis and monitoring.
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INTRODUCTION
Alzheimer’s disease (AD) is the most common form of demen-
tia, comprising 50–70% of all dementia cases (Kukull and Bowen,
2002). Currently, 35.6 million people suffer from AD globally and
the number is predicted to rise to 115.4 million by 20501. As an
incurable, progressive, and neurodegenerative disease, it causes
memory loss and other cognitive deficits.

In recent years, modern magnetic resonance imaging [MRI;
e.g., structural MRI (sMRI), functional MRI (fMRI), and diffu-
sion MRI] and neurophysiological (e.g., electroencephalograph
and magnetoencephalograph, usually referred as EEG/MEG) tech-
niques have provided an efficient, feasible, and non-invasive way
to investigate the biological mechanisms of AD in vivo. A large
quantity of studies have found focal structural and functional
abnormalities of the brains of patients with AD, including dis-
turbed functional activation and reduced gray matter volume or
thickness in regions of the brain including the posterior cingulate,
the medial temporal lobe, the hippocampus, and the parahip-
pocampal gyrus (Rombouts et al., 2000; Frisoni et al., 2002;
Busatto et al., 2003; Sperling et al., 2003). Recent studies have
suggested that AD is not only associated with regional distur-
bance of brain structure and function but also with abnormal-
ities in the connections between different regions. De Lacoste
and White (1993) suggested that neurofibrillary tangles and

1http://www.alz.co.uk/

neuritic plaques (the two principle neuropathological biomarkers
of AD) are usually distributed in the regions where corticocor-
tical connections begin or end. Disruptive alterations in white
matter tracts have been observed in AD and involve the cin-
gulum, the uncinate fasciculus, the splenium, and the genu of
the corpus callosum (Rose et al., 2000; Bozzali et al., 2002; Nag-
gara et al., 2006; Xie et al., 2006; Fellgiebel et al., 2008; Ukmar
et al., 2008; Kiuchi et al., 2009). Abnormal functional connectiv-
ities have also been found, including abnormal interhemispheric
and intrahemispheric (frontoparietal, frontotemporal, and tem-
poroparietal) connections (Wada et al., 1998a,b; Berendse et al.,
2000; Grady et al., 2001; Greicius et al., 2004; Pijnenburg et al.,
2004; Koenig et al., 2005; Celone et al., 2006; Stam et al., 2006;
Wang et al., 2007). All of these studies proposed that AD is a
syndrome of disconnection in neuronal networks (for reviews,
see Delbeuck et al., 2003; He et al., 2009a; Filippi and Agosta,
2011).

Despite the number of studies of AD-related alterations in
structural and functional connections between brain regions, there
is increasing evidence that AD is also characterized by large-
scale brain system disruptions. Sporns et al. (2005) proposed the
notion of the “connectome” to describe the detailed structural
and functional connectivity pattern of the human brain. Since
then, many studies have utilized multi-modal neuroimaging and
neurophysiological techniques as well as advanced graph theo-
retical approaches to investigate the human brain connectome in
health and disease. These studies have discovered many important
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topological characteristics of the brain system such as efficient
small-worldness and distributed network hubs in the medial
frontal and parietal regions (for reviews, see Bullmore and Sporns,
2009; He and Evans, 2010; Stam, 2010; Sporns, 2011). Such
topology-based approaches have also been used to study the
neuronal systems of patients with AD and have revealed a dis-
ruption of the typical organizational pattern of brain networks,
including shifts in small-world topology and redistribution of
hub regions (Stam et al., 2007a, 2009; He et al., 2008; Supekar
et al., 2008; De Haan et al., 2009; Lo et al., 2010; Sanz-Arigita
et al., 2010; Yao et al., 2010). Moreover, these methods have also
been used to study topological organization of brain networks in
the apolipoprotein E epsilon 4 allele (APOE-4) carriers (APOE-
4 is a major genetic determinant for AD; Brown et al., 2011).
These findings have provided new insights into the understand-
ing of the biological mechanism of AD and could lead to the use
of a network based imaging biomarker for disease diagnosis and
monitoring.

In this review, we will summarize recent advances on graph
theory based network analysis of the brain connectome in AD.
First, we will briefly introduce several basic concepts of graph-
based network analysis and human connectomics. Then we will
review recent studies of graph theoretical analysis of AD brain net-
works derived from different imaging modalities including sMRI,
diffusion MRI, EEG/MEG, and fMRI. Next we will have a short
discussion regarding the effects of genetics on brain connectome
in AD. Finally, we will propose further considerations for future
studies of AD connectomics.

GRAPH THEORY AND HUMAN CONNECTOMICS
GRAPH THEORY
Generally speaking, a graph G (or a network) consists of N nodes
linked by K edges. Depending on whether the edges have a direc-
tion or not, the graphs can be classified into directed or undirected.
Furthermore, the graph is classified as weighted or unweighted
based on whether the edges are weighted. Graphs (networks) can
be described by an adjacent matrix A(n, n) in which n is the num-
ber of nodes and the value of Aij refers to the edge linking node i
and node j.

There are many graph metrics that can be used to describe the
topological properties of a network, including cost/sparsity, clus-
tering coefficient (Cp), characteristic path length (Lp), normalized
clustering coefficient (γ), normalized characteristic path length
(λ), small-worldness (σ), global efficiency (Eg), local efficiency
(E loc), degree (k), nodal efficiency (Enodal), and betweenness cen-
trality (Bc; Table 1). In this review we will only focus on undirected
and unweighted networks. For a detailed description of network
metrics in directed or weighted networks, please see Boccaletti
et al. (2006) and Rubinov and Sporns (2010).

The cost/sparsity of a network is the ratio of K to the possible
maximum number of edges in the network K max, which equals
N (N − 1)/2. The Cp of node i is the cost/sparsity of the subgraph
Gi consisting of the nodes directly linked with i (the neighbors of
node i). The Cp of a network is the mean Cp across all the nodes.
The distance between node i and j (noted as dij), also known as
the shortest path length, refers to the minimum number of edges
that must be passed from i to j, and Lp is the arithmetic mean or

Table 1 | Network indices.

Index Definition Interpretation Meaning

Cost/sparsity Cost(G) = K /K max G: the network, or the graph to be studied The cost of constructing the network

K : the number of edges in the network

K max: the maximum possible number of edges in the

network

Degree (k ) The number of edges linked to a certain node The accessibility of a certain node

Clustering

coefficient (Cp)

Ci
p = Cost(Gi )

Cp = 1
N

N∑

i=1
Ci

p

Gi: the subgraph comprising of neighbors of node i and

the connections between them

A high Cp of indicates that the nodes tend

to form dense regional cliques, imply-

ing that the efficiency in local information

transfer and processing are high

Ci
p: the clustering coefficient of node i, i.e., the cost of Gi

N : the number of nodes in graph G

Characteristic

path length (Lp)

Lp = N(N − 1)

∑

1≤i �=j≤N

1
dij

dij: the minimal number of edges that must be passed

from node i to node j

A low Lp indicates high transfer speed

through the overall network, implying that

the network has a high global efficiencyLp: the arithmetic or harmonic mean of dij of all the node

pairs. Here the equation presents the harmonic mean

Global efficiency

(Eg)

Eg = 1
Lp

Eg: equals 1/Lp if Lp is the harmonic mean defined as

above

The overall information transfer efficiency

across the whole network

Local efficiency

(E loc)

Eloc = 1
N

N∑

i=1
Eg(Gi ) E loc: the mean of the global efficiencies of Gi across all

the nodes in the network

A higher E loc value reflects higher effi-

ciency of regional information processing

Betweenness

centrality [Bc(i )]

Bc(i) = ∑

j �=m �=i∈G

ejim

ejm
ejim: the number of shortest paths between node j and m

which pass through node i

A node with high betweenness plays a

critical role in the information processing

of the network because its abnormality

would widely affect the shortest paths

and thus influence the whole network

efficiency

ejm: the number of shortest paths between node j and m

Bc(i ): equals the sum of ejim/ejm across all the node pairs

except for those including i
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the harmonic mean of the shortest path lengths between all pairs
of nodes in G. The Cp and Lp of a network reveals the local and
global efficiency of information transfer and processing, respec-
tively. According to Cp and Lp, networks can be assigned to three
different categories: regular networks with high Cp and Lp, ran-
dom networks with low Cp and Lp, and small-world networks

with high Cp (� C rand
p , the mean Cp of a number of matched

random networks) and low Lp (∼ Lrand
p , the mean Lp of a number

of matched random networks; Watts and Strogatz, 1998). Small-
world is a common organizational structure of networks in lots
of fields such as airline networks, social networks, physiological
networks, and neuronal networks and has been proved to support
highly efficient segregated and integrated information processing
with low wiring costs (Watts and Strogatz, 1998). Three secondary
parameters, γ (Cp/C rand

p ), λ (Lp/Lrand
p ), and σ (γ/λ) can reveal the

network’s small-worldness (Watts and Strogatz, 1998; Humphries
et al., 2006). The efficiency of information processing in a graph
can be measured with Eg and E loc (Latora and Marchiori, 2001).
Eg equals the inverse of Lp if Lp is the harmonic mean of distances
over all pairs of nodes and E loc is the average of Eg(Gi) in which i
ranges from 1 to N.

While the metrics mentioned above contain information about
the organizational properties of the comprehensive network, sev-
eral nodal metrics such as k, Enodal, and Bc can be further used
to indicate the different roles of the nodes. The degree, k, refers
to the number of edges linking to a particular node and reveals
the accessibility of the node. Enodal of node i is the inverse of the
harmonic mean distance between i and all other nodes (Achard
and Bullmore, 2007). The definition of Bc is much more complex.
To get the Bc of a certain node i [i.e., Bc(i) in Table 1], we should
first select a pair of nodes, noted as m and n, calculate the num-
ber of shortest paths between them passing through i, divide that
number by the total number of shortest paths between m and n,
and then sum the ratios across all pairs of nodes in the network
(Freeman, 1977). Bc(i) measures the extent to which the node i is a
necessity of the shortest paths between any pair of nodes excluding
i in the network. Nodes with high k, Bc, or with short average path
length to other nodes (and thus with high Enodal) are considered
of high importance to the information processing efficiency of the
network and are called hubs. Because the hubs tend to have lots of
connections to other nodes or on the way of lots of shortest paths,
removal of hubs can cause significant changes in the organization
of the network.

HUMAN CONNECTOMICS
Human connectomics is an emerging scientific concept that is
used to represent the comprehensive descriptions of structural
and functional connectivity patterns of the human brain (Sporns
et al., 2005). The human connectome can be constructed on dif-
ferent scales: the microscale, the mesoscale, and the macroscale.
The main difference between the three scales is the definition of
the network node. A single neuron represents the node when using
the microscale. For the mesoscale the nodes are a group of neurons
and for the macroscale the nodes are anatomically separate brain
regions (Sporns et al., 2005). The edges are then determined by
analyzing multi-modal imaging data, for example by measuring
the properties of white matter tracts derived from diffusion MRI

images, the correlations of time courses from EEG/MEG/fMRI
data and the association of brain morphometry obtained from
sMRI. Currently, it is hard to obtain microscale and mesoscale
network data on the human brain in vivo. To date, existing studies
mainly focused on undirected and unweighted macroscale matri-
ces. All the networks mentioned in this review are undirected
and unweighted brain networks if not noted specifically. Once the
brain networks are constructed using neuroimaging data, a thresh-
old is usually used to transform the initial connectivity matrix into
a binary adjacent matrix. Either the correlation coefficient or the
cost/sparsity can be used to set the threshold. The flowchart of
brain network construction is shown in Figure 1.

On the basis of the connectome analysis, many studies have
demonstrated that healthy human brain networks derived from
different modalities are small-world networks with high Cp and
short Lp (for reviews, see Reijneveld et al., 2007; Stam and Rei-
jneveld, 2007; Bullmore and Sporns, 2009; He and Evans, 2010;
Sporns, 2011). Considering the traits of a small-world network, it
can be inferred that the human brain has evolved into the optimal
architecture that maximizes the local and global information pro-
cessing efficiency in the human brain while lowering the wiring
cost. Existing studies also have demonstrated coincident areas as
hubs in human brain networks such as the precuneus, the posterior
cingulate cortex, the dorsal superior frontal gyrus, the precentral
gyrus, and the middle and superior occipital gyri (Achard et al.,
2006; He et al., 2007; Hagmann et al., 2008; Buckner et al., 2009;
Gong et al., 2009; Tomasi and Volkow, 2010). In addition, signif-
icant genetic effects on the brain connectome of healthy people
have been demonstrated by two recent studies on twins. Using

FIGURE 1 | General process of whole-brain network construction.

1, Extract time course from EEG/MEG records or fMRI images. 2, Calculate
morphological metrics such as cortical thickness (the picture showed in
Figure 1) and gray matter volume. 3, Define white matter fiber bundles
using tractography. 4, Extract regional information from the original voxel- or
vertex-based MRI data according to templates. 5, For EEG/MEG, fMRI, and
sMRI, the connectivity matrix usually refers to the correlation matrix; for
diffusion MRI, it can be a matrix consisting of numbers of fibers regions or
the connectivity strength. 6, Generate the whole-brain network using
further modification of the connectivity matrix, for example by using
thresholds.
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resting-state fMRI, Fornito et al. (2011) illustrated that in func-
tional brain network, 60% of the variation of the cost–efficiency,
which is an index measuring the difference between the net-
work cost and efficiency, was attributed to additive genetic effects.
Using sMRI, Schmitt et al. (2008) demonstrated that genetically
mediated neuroanatomic network derived from cortical thickness
correlations follows a small-world architecture, suggesting that
genetic factors are involved in the correlative patterning of the
human cortex in this manner.

BRAIN CONNECTOMICS IN AD
STRUCTURAL CONNECTOMICS IN AD
Using sMRI and diffusion tensor imaging (DTI), several studies
have demonstrated abnormal topological properties in the struc-
tural brain networks of patients with AD. In this section, we will
review the existing studies of AD structural connectomics.

Gray matter networks
Gray matter morphometric information (gray matter density,
gray matter volume, and cortical thickness) revealed by sMRI
provides a promising way to explore human brain anatomy. Coor-
dinate variations of brain morphometry measurements between
functionally- or anatomically-connected areas have been found in
recent sMRI studies, in the visual areas (Andrews et al., 1997) and
in the frontotemporal (Bullmore et al., 1998; Lerch et al., 2006),
frontoparietal (Wright et al., 1999), and symmetrical interhemi-
spheric regions (Mechelli et al., 2005; He et al., 2007; Zielinski
et al., 2010). Human brain structural networks can be established
from sMRI images based on gray matter volume or cortical thick-
ness correlations between different areas. He et al. (2007) used
graph theoretical network analysis (GRETNA) to examine the
macroscale cortical thickness correlation network of 124 normal
adults and described it as small-world. Networks based on gray
matter volume correlations also revealed a similar topology (Bas-
sett et al., 2008). Gray matter-based network analysis technique
has gained more and more attention in the AD research field.

He et al. (2008) was the first group to use sMRI and graph the-
ory tools to investigate structural brain networks in AD patients.
Their study included 97 healthy older adults and 92 AD patients.
The cortical thickness coordination networks at large-scale were
constructed for both groups. The networks consisted of 54 nodes
each, referring to 54 regions from the automated non-linear image
matching and anatomical labeling (ANIMAL) template. GRETNA,
as used in their previous study (He et al., 2007), was then applied
to the two structural networks. They found that the AD group had
decreased interregional correlations of cortical thickness between
the bilateral postcentral gyri and between the bilateral superior
parietal lobes. Increased correlations were also discovered within
regions such as the medial prefrontal cortex, the cingulate regions,
the supramarginal gyrus, the superior temporal gyrus, and the
inferior temporal gyrus. These regions were mostly located in
the so-called default mode network (DMN), which is a neuronal
network closely related to episodic memory,comprising of the pos-
terior cingulate cortex/precuneus, the lateral temporal and parietal
cortex, the hippocampus, and the medial frontal cortex regions
(Raichle et al., 2001). While the networks derived from both groups
demonstrated small-world characteristics, significant differences

in network parameters were observed over binary networks using
a wide range of sparsity thresholds (Figures 2A,B). The brain net-
works in AD showed increased Cp and Lp compared with those of
healthy adults, indicating a less optimal topological structure. They
also found decreased betweenness centrality in the right superior
temporal gyrus and the bilateral angular gyri. Increases were also
found in the left lingual gyrus, the left lateral occipitotemporal
gyrus, and the right cingulate gyrus in the network of patients
with AD (Figure 2C). All of these regions were identified as hubs
in either the health network or in the AD network by this study.
In addition, they discovered that the AD network was more vul-
nerable to targeted attack, that is, the absence of hub regions had
a greater influence on the AD network.

Another recent study explored changes in the topological prop-
erties of the structural brain network in patients with AD and mild
cognitive impairment (MCI; Yao et al., 2010). MCI is considered
an intermediate stage between normal aging and AD, and peo-
ple with MCI are at high risk developing AD. The dataset for this
study was acquired from the Alzheimer’s Disease Neuroimaging
Initiative2,3 and included 98 normal controls, 113 subjects with
MCI, and 91 AD patients. In this work, Yao and colleagues con-
structed a 90 by 90 gray matter volume correlation network for
each of the three groups using an automated anatomical labeling
(AAL) template with multiple sparsity thresholds ranging from
15 to 30%. Permutation testing revealed a significant increase in
Cp over a wide range of thresholds and a larger Lp on higher
thresholds in the AD networks compared with the healthy net-
works, implying a weakening of small-worldness. This result was
consistent with previous study based on cortical thickness cor-
relation networks (He et al., 2008). The Cp and Lp values of
MCI network were intermediate between AD group and nor-
mal control group but no significant changes were found. They
further identified the middle temporal gyrus, temporal pole, lin-
gual gyrus, orbital frontal gyrus, and superior parietal gyrus as
hub regions in the network of the normal control group, and
the orbital frontal gyrus, inferior frontal gyrus, cingulate, and
medial orbital frontal gyrus in the AD group. The hubs of MCI
network largely overlapped with AD network. The alteration
in hub regions revealed the disturbed large-scale brain connec-
tome integration in AD. Regions including the parahippocam-
pal gyrus, temporal pole, fusiform, cingulate, superior parietal
region, and orbital frontal gyrus showed significant changes in
the interregional correlations between the normal control and AD
groups.

In summary, these sMRI-based studies have consistently
demonstrated that patients with AD had aberrant morphologi-
cal organization in gray matter structural networks. Specifically,
the patients were found to have higher Cp and Lp in the brain
structural networks, suggesting a tendency from the optimal small-
world organization toward a regular-like connectivity pattern
in the AD brain connectome. However, it needs to note that
the biological mechanisms underlying topological alterations of
morphological networks in AD remain largely unclear, although

2http://adni.loni.ucla.edu/
3http://adni-info.org
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FIGURE 2 | Comparison of structural connectome between patients

with AD and healthy controls (He et al., 2008). Significant differences
(p < 0.05) in Cp and Lp between patients with AD and healthy controls
with different sparsity thresholds are shown in (A,B) with arrows. The
gray lines represent mean values and 95% confidence intervals of
between-group differences obtained by permutation tests, while red
dots show the real value of the differences. (C) Shows hub regions with

significantly different betweenness in the AD group compared with the
healthy control group. Red regions have significantly increased
betweenness in the AD group and cyan regions have decreased values
of betweenness. The small letters a through f represented the right
angular gyrus, the left angular gyrus, the right superior temporal gyrus,
the left lateral occipitotemporal gyrus, the right lingual gyrus, and the left
cingulate gyrus, respectively.

several previous studies have suggested that these morphological
correlations among regions might be associated with the mutually
tropic effects, environment-related plasticity, and genetic effects
(Mechelli et al., 2005; He et al., 2007).

White matter networks
Different from sMRI, diffusion MRI captures the movement of
water molecule in brain tissues, revealing the orientation of white
matter fiber bundles by deterministic (Mori et al., 1999) or prob-
abilistic (Behrens et al., 2003) tractography. Studies using the
DTI technique have found faithful white matter fiber bundles
known as real anatomical connections (Catani et al., 2002; Wakana
et al., 2004). Relating to the AD research, DTI-based studies have
reported widespread disruptions of white matter integrity in the
corpus callosum, the superior longitudinal fasciculus, and cingu-
lum (Rose et al., 2000; Bozzali et al., 2002; Naggara et al., 2006; Xie
et al., 2006; Fellgiebel et al., 2008; Ukmar et al., 2008; Kiuchi et al.,
2009).

Studies on the brain’s white matter are extremely important
for the human connectome because white matter tracts connect
functionally related regions and therefore might underlie func-
tional states of the brain. Several recent studies have utilized
DTI to construct human whole-brain white matter networks and

demonstrated small-world topological properties (Hagmann et al.,
2007; Iturria-Medina et al., 2008; Gong et al., 2009). Several hub
regions have also been identified in the white matter structural
networks in healthy adults, including the precuneus, the medial
frontal cortex, the middle occipital gyrus, and the cingulate gyrus
(Hagmann et al., 2008; Gong et al., 2009).

Lo et al. (2010) published the first research on the AD net-
work based on the DTI technique. They used a dataset of 25
AD patients and 30 age- and gender-matched normal controls.
They performed fiber tracking via the fiber assignment by con-
tinuous tracking algorithm (Mori et al., 1999). The fiber number
between two cortical regions multiplied by the mean fractional
anisotropy of the fiber bundles was calculated as the weight of
edge. After constructing an undirected weighted network for each
participant according to the AAL template, they calculated the
Cp, Lp, γ, λ, σ, Eg, E loc, and Enodal to investigate the topolog-
ical differences between the normal control group and the AD
group. It turned out that both normal and AD networks showed
prominent small-worldness. No significant differences were found
for the values of Cp, γ, and σ between the two groups. However
the AD group did have larger Lp and λ values. The increased Lp

was in accordance with previous structural connectomics stud-
ies of AD (He et al., 2008; Yao et al., 2010). As to the efficiency
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measurements, Eg was significantly reduced in AD network, while
E loc was not significantly different. These differences revealed a
less optimal organization of the brain network in patients with
AD. The researchers further identified nodes with high Enodal val-
ues as hubs and compared the Enodal of the hubs in AD with those
of normal controls. They found that AD-related Enodal reduction
was limited to several prefrontal areas including the medial supe-
rior frontal gyrus, the middle frontal gyrus, the orbital part of
the inferior frontal gyrus, and the temporal pole of the middle
temporal gyrus in the temporal lobe (Figure 3). The researchers
correlated the network properties with the cognitive performance
of the patients with AD and found significant correlations between
some of the network metrics and memory test scores.

FUNCTIONAL CONNECTOMICS IN AD
Modern functional neuroimaging (e.g., fMRI) and neurophysio-
logical techniques (e.g., EEG/MEG) can non-invasively measure
human brain activities and provides valuable information about
human brain networks. In this section we will summarize recent
advances in AD functional connectomics.

EEG/MEG networks
EEG/MEG records the electric and magnetic field changes caused
by the neuronal activities during a task or during the resting-
state. These neurophysiological techniques also provide powerful
approaches with high temporal resolution to investigate human
brain function in health and disease. Functional brain connec-
tome analysis based on EEG/MEG data have uncovered small-
world topology in healthy people (Stam, 2004; Bassett et al., 2006;
Micheloyannis et al., 2006; Ferri et al., 2007; Smit et al., 2008).
The techniques have also been applied studies of AD and have
demonstrated abnormal functional connectivity, both in inter-
hemispheric and intrahemispheric connections (Berendse et al.,
2000; Knott et al., 2000; Adler et al., 2003; Pijnenburg et al., 2004;
Koenig et al., 2005; Stam et al., 2006).

Stam et al. (2007a) used EEG to conduct brain network analysis
on 15 patients with AD and 13 control subjects with only subjective
memory complains. They computed synchronization likelihood in
the beta band (13–30 Hz) between any pairs of 21 nodes and con-
structed a binary brain network for each participant. Their study
showed that the AD group had significant increases in Lp both
under synchronization likelihood thresholds and sparsity thresh-
olds, implying impaired large-scale brain functional integration.
However, they barely found significant changes in Cp below either
type of the thresholds. This might imply that the local connectivity
of the brain network in AD was relatively spared. Further analy-
sis revealed significant negative Pearson’s correlations between Lp

and the mini mental state examination (MMSE) score. The results
demonstrated the altered brain functional connectivity pattern
associated with AD.

In a later work, Stam et al. (2009) used resting-state MEG data
to investigate the human brain connectomics in AD. The study
included 18 healthy people and 18 patients with AD. They pro-
duced a 149-node weighted brain network based on the phase
lag index (PLI, see Stam et al., 2007b). The AD group showed
significant mean PLI reduction in the beta band and the lower
alpha band (8–10 Hz). Significant decreases were also observed

in the left frontoparietal, the frontotemporal, the parietooccipital,
and the temporooccipital PLIs in the lower alpha band, and in the
interhemispheric frontal and right frontoparietal PLIs in the beta
band. The findings supported AD as a disconnection syndrome.
Statistical analysis on small-world indices revealed significantly
higher Lp and lower Cp, γ, and λ in the brain networks of the
lower alpha band of patients with AD, leaving no discovery in the
beta band. The alteration of small-world indices showed that the
AD brain network exhibited a random-like pattern. Putting all
the participants together, the MMSE score was positively corre-
lated with mean PLI in the beta band and γ in the lower alpha
band.

De Haan et al. (2009) conducted another EEG study of AD
and frontotemporal dementia. They acquired resting-state EEG
records from 20 patients with AD and 23 healthy people with
only subjective cognitive complaints. Binary synchronization like-
lihood brain networks were constructed with synchronization
likelihood thresholds and sparsity thresholds. In the beta band, σ
was significantly decreased in AD networks while small-worldness
was demonstrated both in healthy and AD networks across all
band frequencies. Cp and γ decreased in the AD group in the
lower alpha and beta bands. The λ value of AD networks also
decreased in the lower alpha and gamma (30–45 Hz) bands. These
results implied a disturbance in the balance of localized and inte-
grated information processing and a random-oriented shift of
the AD brain networks. The degree correlation, which refers to
the mean Pearson correlation coefficient of the degree between
each pair of directly linked nodes, was decreased in AD in the
lower and upper (10–13 Hz) alpha bands. Taken together, all of
these findings supported the conclusion that AD is a disconnec-
tion syndrome. The researchers also found that λ was positively
correlated with MMSE score in AD patients in the lower alpha
band.

More recently, Ahmadlou et al. (2010) studied EEG networks in
AD using a visibility graph method (Lacasa et al., 2008). The basic
idea of visibility graph is to transform time series into a network
whose structure is related to the self-similarity and complexity
of the time series. The complexity in the visibility graph of AD
patients was significantly decreased in the alpha and delta bands
compared with the normal elderly group. They further derived
classifiers based on the discriminative complexity measurements
and yielded an average accuracy of 97.75% at best. This study
demonstrated the possibility of using graph metrics as biomarkers
for the diagnosis of AD.

In summary, the EEG/MEG network analysis demonstrated
abnormal brain connectome from a functional perspective. All
the networks presented a random-like reconstruction in patients
with AD, characterized by lower Cp/γ or shorter Lp. The alpha and
beta bands showed the highest consistency in detecting AD-related
changes in network metrics. A previous study combining EEG and
fMRI (Laufs et al., 2003) indicated that the power of the alpha band
(8–12 Hz) was correlated with spontaneous neuronal activities of
attention-related brain regions, and the power of part of the beta
band (17–23 Hz) was correlated with activities in DMN regions.
Thus, we speculate that the alterations of network indices in the
alpha and beta bands might reflect the underlying mechanism of
functional deficits observed in patients with AD.
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FIGURE 3 | Brain regions with significant differences (p < 0.05,

FDR corrected) in E nodal in the AD networks (Lo et al., 2010). The
regions included the medial part of the superior frontal gyrus
(SFGmed.F and SFGmed.R), the right dorsolateral part of the superior
frontal gyrus (SFGdor.R), the right middle frontal gyrus (MFG.R), the
right orbital part of the inferior frontal gyrus (ORBinf.R), the orbital and

the medial orbital part of the superior frontal gyrus (ORBsup.R and
ORBsupmed.R), the orbital part of the middle frontal gyrus
(ORBmid.R), and the right temporal pole of the middle temporal gyrus
(TPOmid.R). The connection strengths between nodes were
represented by the edge widths, removing the effects of age and
gender.

Functional MRI networks
Functional MRI captures blood–oxygen level dependent signal
and indirectly describe the brain activity. fMRI has a relatively
low temporal resolution (∼2 s) but a high special resolution
(∼2 mm). Using resting-state fMRI (R-fMRI; Biswal et al., 1995),
Salvador et al. (2005) first performed the graph theoretical analy-
sis of the functional networks of the human brain. They con-
structed a 90-node undirected binary network for each partici-
pant. Graph theoretical analysis showed that the healthy human
brain connectome is a small-world network with hierarchical
organization. Later studies found similar topological structure
in the human brain, studied the efficiency of the connectome
(Achard and Bullmore, 2007) and identified several hub regions
such as the precuneus, the middle temporal gyrus, the middle
frontal gyrus, and the medial superior frontal gyrus (Achard
et al., 2006; Buckner et al., 2009; He et al., 2009b; Zuo et al.,
2011; for a review, see Wang et al., 2010). These findings made
the understanding of brain network topology more clear and
detailed.

Studies of AD based on R-fMRI data have found altered brain
functional connectivity in patients with AD (Wang et al., 2006;
Allen et al., 2007). Some task-based fMRI studies also found aber-
rant brain activity in the DMN of patients with AD during simple
motor tasks (Greicius et al., 2004) and tasks of associative mem-
ory (Celone et al., 2006). Buckner et al. (2009) found a correlation
between the locations of hub regions of fMRI brain networks in
healthy adults and the sites of Aβ deposition in the brains of
patients with AD. These regions included the inferior/superior
parietal lobule, the medial superior frontal cortex, the medial pre-
frontal cortex, and the posterior cingulate/precuneus (Figure 4),
implying that the hubs are preferentially affected in the progress
of AD.

Supekar et al. (2008) published the first R-fMRI study of the
functional brain connectome in AD using the topological network
analysis method. The researchers recruited 21 patients with AD
and 18 healthy volunteers matched for age, gender, and education.
R-fMRI brain networks were established using wavelet correlation.
The researchers computed small-world metrics of the 90-node net-
works based on the AAL template and found that both γ and σ of
the functional networks were significantly lower in the AD group,
indicating that the functional network in AD lost small-worldness.
Further investigation showed that using γ as a biomarker to diag-
nose AD would yield 72% sensitivity and 78% specificity at best,
suggesting that the topological network indices could serve as bio-
markers of AD. Nodal Cp values were significantly decreased in
the hippocampus bilaterally, demonstrating that intrinsic brain
functional organization was disrupted. The researchers also found
decreased intratemporal connections and weakened connectivity
strength (i.e., correlation coefficients) between the thalamus and
the frontal, temporal, and occipital lobes. Conversely, the con-
nections within the frontal lobe were enhanced. The analysis was
repeated on a second fMRI dataset acquired from the same sub-
jects and produced similar results, suggesting that this analysis
technique is reproducible.

In a more recent study, Sanz-Arigita et al. (2010) compared
18 patients with mild AD to 21 healthy controls to explore the
loss of small-worldness in AD brain networks. According to the
AAL template, a region-based synchronization likelihood matrix
was established for each subject and then binarized by a series
of thresholds ranged from 0.01 to 0.05 with increments of 0.01.
Cp and Lp, along with γ and λ were calculated as the indices of
small-worldness. The Cp of patients with AD did not show sig-
nificant differences from the healthy control group, but the Lp

was significantly decreased in the AD group across a wide range
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FIGURE 4 |The spatial distribution of functional brain hubs in normal

controls (the two columns on the left) and Aβ deposition in AD (the two

columns on the right; Buckner et al., 2009). The left color bar shows the Z
score of degree. The right color bar reveals the extent of Aβ deposition.

of thresholds, implying a trend toward random networks. They
found significant synchronization differences between the AD and
control groups. Similar to the findings of Supekar et al. (2008),
these changes included increases in the functional connectivity
within the frontal cortices, between the frontal cortices and the
corpus striatum and between the frontal cortices and the thalamus,
as revealed by synchronization likelihood and decreases between
the temporal lobe, the parietal cortex and the occipital cortex. The
long-distance connectivity loss supported the conclusion that AD
is a disconnection syndrome, while the strengthened connections
suggested that a compensatory mechanism might be responsible
for reserving cognitive functions.

Other than the whole-brain network analysis studies, several
graph theoretical DMN studies based on fMRI have been con-
ducted. Ciftci (2011) utilized the minimum spanning tree (the sub-
graph of a network with the minimum cost while connecting all the
nodes) to investigate the alteration of DMN connectivity during
AD. Their study included 14 young subjects, 14 healthy elderly sub-
jects, and 13 subjects with AD. Significantly lower connection den-
sity was observed in the AD and elderly groups compared with the
younger group, although the minimum spanning tree of the three
groups all presented a similar chain-like structure. Cluster analysis
on the three spanning trees revealed much more fragmented func-
tioning organization in AD, which was most notable in the hip-
pocampus/parahippocampus and the precuneus/posterior cingu-
late complex. They also found a decreased correlation coefficient
between the hippocampus/parahippocampus and the inferior
temporal gyrus and between the precuneus/posterior cingulate
gyrus and the angular gyrus. Another study by Miao et al. (2011)
used independent component analysis to identify DMN in 12 nor-
mal young adults, 16 older adult controls, and 15 patients with AD.
The researchers further constructed directed brain networks using
Granger causality modeling and examined the proportion of edges

connected with hubs compared to all edges. They found the pro-
portion to be significantly decreased in patients with AD, implying
impaired directed DMN connectivity in AD. Utilizing this ratio as
a diagnostic tool for AD yielded a specificity of 81.25% and a
sensitivity of 80.00%.

In summary, the AD brain connectome studies based on fMRI
data demonstrated disrupted network connectivity pattern in
patients with AD. The lower Cp, Lp, γ, or λ revealed a random-
toward transition of brain connectome in the disease, which were
consistent with EEG/MEG studies (Stam et al., 2007a, 2009; De
Haan et al., 2009). These less optimized reconfigurations of func-
tional brain network supported the theory that AD is a disconnec-
tion syndrome and might imply the functional basis of cognitive
deficits.

The studies of structural and functional brain connectomics
in AD have illustrated that the brain network configuration in
patients with AD was significantly altered compared with normal
controls. However, it needs to note that the alterations of topologi-
cal metrics in the brain networks such as Cp and Lp showed distinct
patterns in different modalities (see Table 2 for detail informa-
tion). These discrepancies could be attributed to different imaging
modality, network size, and population size applied in these stud-
ies (Table 2). In spite of these differences, we noticed that all of
the studies pointed to a less optimized connectivity pattern in AD
brain networks. Correlation analysis also revealed that cognitive
performances of patients with AD were correlated to topological
network indices. As to the nodal properties, the existing studies
found aberrant changes in Bc and connectivity strength involving
DMN regions. These regions were closely associated with episodic
memory and showed significant gray matter atrophy and abnor-
mal functional activities in AD (Rombouts et al., 2000; Frisoni
et al., 2002; Busatto et al., 2003; Sperling et al., 2003; Buckner et al.,
2005). Although the biological mechanism underlying disrupted

Frontiers in Psychiatry | Neuropsychiatric Imaging and Stimulation January 2012 | Volume 2 | Article 77 | 8

http://www.frontiersin.org/Psychiatry
http://www.frontiersin.org/Neuropsychiatric_Imaging_and_Stimulation
http://www.frontiersin.org/Neuropsychiatric_Imaging_and_Stimulation/archive


Xie and He Brain connectomics in AD

Table 2 | Alzheimer’s disease-related alterations of topological properties.

Study Modality Connectivity method Network type Matrix size Main findings

Cp Lp γ λ E g E loc

He et al. (2008) sMRI Partial correlation of cortical thickness Binary 54 + + / / / /

Yao et al. (2010) sMRI Pearson correlation of gray matter volume Binary 90 + + / / / /

Lo et al. (2010) DTI Deterministic fiber tracking Weighted 78 NS + NS + − NS

Stam et al. (2007a) EEG Synchronization likelihood Binary 21 NS + NS + / /

Stam et al. (2009) MEG Phase lag index Weighted 149 − + − − / /

De Haan et al. (2009) EEG Synchronization likelihood Binary 21 / / − − / /

Supekar et al. (2008) fMRI Wavelet correlation Binary 90 / / − NS / /

Sanz-Arigita et al. (2010) fMRI Synchronization likelihood Binary 116/90 NS − / / / /

This table was modified from Table 5 in Lo et al. (2010).

+, AD > NC; −, AD < NC; NS, none significance.

topological properties in AD brain networks still remains unclear,
we speculate that the disruption could be attributed to the neuron
loss, amyloid deposition, or metabolic abnormalities.

AD CONNECTOME AND GENETICS
Researchers have demonstrated that numerous genes have been
associated with late-onset AD, including amyloid precursor pro-
tein, presenilin 1, presenilin 2, and APOE (for reviews, see
Bookheimer and Burggren, 2009; Bekris et al., 2010). Of these
genes, APOE is one of the major genetic risk factors for develop-
ing AD. Studies on normal people have revealed APOE-4 effects on
the brain structure and function but controversy exists. For exam-
ple, some studies reported smaller gray matter volume or thinner
cortex in APOE-4 carriers in the hippocampus (Tohgi et al., 1997;
Den Heijer et al., 2002; Honea et al., 2009) and the entorhinal
cortex (Shaw et al., 2007; Burggren et al., 2008), yet others found
no such differences (Reiman et al., 1998; Jak et al., 2007; Cher-
buin et al., 2008). As to the studies of brain function, decreased
activities were reported in the APOE-4 carriers in regions such as
the medial prefrontal cortex, the hippocampus, and the posterior
cingulate (Reiman et al., 1996; Small et al., 2000; Persson et al.,
2008; Pihlajamaki and Sperling, 2009; Adamson et al., 2011), but
enhanced activities were also found in these regions (Bookheimer
et al., 2000; Wishart et al., 2006; Han et al., 2007; Filippini et al.,
2009). Notably, APOE was also found to modulate disease phe-
notype. For example, several studies have demonstrated greater
gray matter atrophy in the hippocampus and entorhinal cortex in
APOE-4 carriers with AD as compared to APOE-4 non-carriers
with AD (Lehtovirta et al., 1996; Geroldi et al., 1999; Bigler et al.,
2000; Hashimoto et al., 2001; Wolk and Dickerson, 2010), while
evidences for non-significant volume differences in hippocampus
were also reported (Jack et al., 1998; Drzezga et al., 2009). The
discrepancies of the results could be attributable to the sample size
and the demographic differences of subjects.

There are also evidences indicating that APOE-4 alters the brain
connectivity in normal participants. For example, several stud-
ies magnified abnormal functional connectivity associated with
APOE-4 in DMN (Filippini et al., 2009; Fleisher et al., 2009;
Sheline et al., 2010; Machulda et al., 2011). DTI studies found
aberrant white matter tracts with descended fractional anisotropy

in APOE-4 carriers, including the posterior corpus callosum and
the medial temporal lobe (Persson et al., 2006) and the parahip-
pocampal white matter (Nierenberg et al., 2005; Honea et al.,
2009). So far, there’s only one study using graph theoretical analy-
sis to explore the APOE-4 effects on whole-brain networks. Brown
et al. (2011) utilized DTI tractography methods to investigate the
relationship between the age and the topology of human brain
structural network in normal elderly people. They found that only
in the APOE-4 group the cost, Cp and σ showed significant neg-
ative correlation with age, while only in the APOE-4 non-carriers
group Lp showed significant positive correlation with age. The
nodal Cp of APOE-4 carriers decreased more sharply along with
age in the right precuneus, the left orbitofrontal cortex, the left
supramarginal gyrus, and right inferior temporal gyrus. This study
demonstrated that APOE mediated the topological organization
of human brain structural connectome in aging. Further studies
would be important to combine different imaging modalities to
systematically explore how the APOE-4 and other genetic risk fac-
tors of AD affect the topology of human connectome in health
and AD.

FUTURE PERSPECTIVES
Despite the abundance of findings already obtained from the
method, graph theoretical analysis of the AD network is only in
its infancy and still has some problems. Future studies should take
in account a number of considerations, which will be discussed in
this section.

First, the existing works on AD brain networks are at the
macroscale. The interplay between macroscale network property
alterations associated with AD and the biological and patholog-
ical mechanisms of AD have not been studied thoroughly. AD
could cause neuron loss and white matter aberrance, which may be
account for the gray matter atrophy revealed by volume loss or cor-
tical thinning and the white matter fiber changes found in diffusion
studies. Also, one study demonstrated that Aβ deposition loca-
tions corresponded with hub regions of healthy brain networks
(Buckner et al., 2009). However, the relationship between these
pathological changes and network abnormalities still needs further
exploration. Empirical studies of AD pathology and neuroimaging
would be helpful in clarifying this issue.
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Second, multi-modal analysis represents one potential avenue
for future research on connectomics. Data from sMRI, diffusion
MRI, fMRI, and EEG/MEG all reveal meaningful information
about human brain connectome from different perspectives, the
combination of datasets from various modalities would thus give
us a full view of human connectome in health and disease. For
example, Villain et al. (2008) showed that the hippocampal atro-
phy in patients with AD was specifically related to cingulum bundle
atrophy, which is in turn highly correlated to hypometabolism
of the posterior cingulate cortex, suggesting the hypometabo-
lism might result from hippocampal atrophy via cingulum bundle
disruption.

Third, little is known about the dynamic progress of AD.
Most of the AD network studies focus on comparing indices to
those of normal controls and demonstrating significant differences
between the two groups. We have little knowledge of longitu-
dinal changes in brain connectomics. An R-fMRI study (Zhang
et al., 2010) compared the posterior cingulate cortex connectiv-
ity of healthy controls to those of patients with mild, moderate
ad severe AD. The researchers suggested that the patients with
AD had abnormal posterior cingulate cortex connectivity patterns
and that the disruption intensified with disease progression. This
study demonstrated the dynamic changes in brain connectivity in
AD, but the relationship between the network and the disease pro-
gression remains unclear. Continuous longitudinal observations
of AD development are needed to characterize the developmental
changes.

Fourth, further studies are necessary to determine whether the
abnormalities found in network studies are specific to AD. De
Haan et al. (2009) demonstrated that network property alterations
such as decreases in Cp and Lp were not observed in patients
with frontotemporal lobar degeneration and that degree corre-
lation decreased in AD but increased in frontotemporal lobar
degeneration. Still many more studies are needed to compare the
disruptions of brain connectivity patterns between AD and other
dementia, such as dementia with Lewy bodies.

Fifth, the reliability of network property changes as a biomarker
of AD needs to be examined, given that controversial results were
obtained from different studies mentioned in this review (Table 2).
Several studies on the reliability of network topological metrics

of healthy people have been done in MEG (Deuker et al., 2009),
fMRI (Telesford et al., 2010; Wang et al., 2011), and diffusion
MRI (Vaessen et al., 2010; Bassett et al., 2011), but little is known
about using these indices to diagnose AD. This is an important
issue in establishing a topological biomarker for diagnosing and
monitoring AD.

Finally, some individuals are at high risk of developing AD, such
as those with the APOE-4 genotype and patients with amnesia
MCI. Sorg et al. (2007) demonstrated that patients with amnesia
MCI have reduced connectivity in the DMN and the executive
attention network. In addition, Yao et al. (2010) discovered that
the brain networks of patients with amnesia MCI and the patients
with AD of both group demonstrated similar alterations compared
to healthy controls, while the differences between the network
topologies of the two patient groups were not significant. Some
progress has been made in this field, but further studies are needed
to clarify the AD-like topological alterations in people with AD risk
factors.

CONCLUSION
To summarize, brain connectome analysis of adults with AD has
provided an important methodology for studies of AD. All of the
studies mentioned above demonstrated that AD brain networks
are less optimally constructed and have decreased information
processing efficiency. These alterations in brain connectivity pat-
terns reveal the underlying brain structural and functional disrup-
tions that cause the cognitive deficits of AD. Thus, these studies
provide further support for the description of AD as a disconnec-
tion syndrome. The graph theory analysis methods have proved
to be powerful tools for exploring the structural and functional
architecture of the human brain and have provided new under-
standing of the biological mechanisms of AD and have uncovered
potential biomarkers of early diagnosis and disease progression.
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