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INTRODUCTION

In this paper we view alcohol dependence and the response to treatment as a recurrent
bio-behavioral process developing in time and propose formal models of this process com-
bining behavior and biology in silico. The behavioral components of alcohol dependence and
treatment are formally described by a stochastic process of human behavior, which serves
as an event generator challenging the metabolic system. The biological component is driven
by the biochemistry of alcohol intoxication described by deterministic models of ethanol
pharmacodynamics and pharmacokinetics to enable simulation of drinking addiction in
humans. Derived from the known physiology of ethanol and the literature of both ethanol
intoxication and ethanol absorption, the different models are distilled into a minimal model
(as simple as the complexity of the data allows) that can represent any specific patient.
We use these modeling and simulation techniques to explain responses to placebo and
ondansetron treatment observed in clinical studies. Specifically, the response to placebo
was explained by a reduction of the probability of environmental reinforcement, while the
effect of ondansetron was explained by a gradual decline in the degree of ethanol-induced
neuromodulation. Further, we use in silico experiments to study critical transitions in blood
alcohol levels after specific average number of drinks per day, and propose the existence of
two critical thresholds in the human — one at 5 and another at 11 drinks/day — at which the
system shifts from stable to critical and to super critical state indicating a state of alcohol
addiction. The advantages of such a model-based investigation are that (1) the process of
instigation of alcohol dependence and its treatment can be deconstructed into meaningful
steps, which allow for individualized treatment tailoring, and (2) physiology and behavior can
be quantified in different (animal or human) studies and then the results can be integrated
in silico.
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2009). These in silico models are typically based on mathematical

In the past two decades, computer simulation and computer-aided
design have made dramatic progress in all areas of development
of complex engineering systems. There is an enormous body of
literature on computer simulation methods applicable to physics,
engineering, economics, biology, metabolism, aerospace, meteo-
rology and climatology, warfare, and just about any other subject of
investigation that can be approximately described by a mathemat-
ical model. The review of this literature is beyond the scope of this
paper; here we will only mention a few biomedical modeling and
simulation projects that are relevant to the topic at hand — in silico
modeling of the effects of alcohol intoxication and alcohol depen-
dence treatment. For example, accurate prediction of the outcome
of clinical trials has been achieved using the Archimedes diabetes
model (Eddy and Schlessinger, 2003a,b). Entelos, Inc., special-
izes in predictive biosimulation, introducing in its Physiolab suite
in silico models for various physiological systems: cardiovascu-
lar, metabolic (diabetes), and others (Michelson, 2006). I diabetes,
a recently developed simulator of the human metabolic system
became the first tool accepted by the US Food and Drug Admin-
istration as a substitute to animal trials in the preclinical testing
of control strategies in artificial pancreas studies (Kovatchev et al.,

models of the studied physiological system, which are developed
from extensive data collection examining underlying physiology
in sufficient detail to allow for formal modeling. The models are
then used to develop algorithms and software that power up sim-
ulation experiments. According to Winsberg (2002), simulation
experiments are typically classified with respect to the type of
algorithm that they employ: “Discretization” techniques trans-
form continuous differential equations into step-by-step algebraic
expressions. “Monte Carlo” methods use random sampling algo-
rithms even when there is no underlying indeterminism in the
system. “Cellular automata” assign a discrete state to each node
of a network of elements, and assign rules of evolution for each
node based on its local environment in the network. The field
of alcohol addiction is of particular interest for such applica-
tions: it is both very developed (e.g., in modeling the dynamics
of ethanol in blood or the diffusion from blood to brain tis-
sues) and in its infancy, with only three simulation studies in
the past 20years (Duffy and Alanko, 1992; Derr, 1993; Breton,
2010). It also requires modeling of behavioral system and med-
ication effects that are not yet mainstream (Kovatchev, 2010). In
this paper, we review several models of ethanol blood distribution,
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leading to simulation studies linking system-level characteristics
to clinical outcomes (Breton, 2010). Further, we utilize both dis-
cretization and Monte Carlo (or generally stochastic) methods
to describe human behaviors related to the instigation and treat-
ment of alcohol dependence (Kovatchev, 2010). However, we first
discuss three types of mathematical models of biosystems, clas-
sified according to the purpose of modeling: models to measure,
to simulate, or to control the biosystem under consideration — a
classification proposed by Cobelli et al. (2009) in the context of
diabetes.

MODELS TO MEASURE

The models to measure are generally simpler, allowing hidden
relationships to be evaluated by estimating underlying parame-
ters. Most of these models are compartmental; e.g., they repre-
sent the human body as a set of homogeneous compartments of
specific concentrations and volumes linked by diffusion or rate-
limited pathways. Classic examples include the Widmark Model of
Ethanol Pharmacokinetics Assuming, which offers a straightfor-
ward interpretation with a constant ethanol clearance rate and the
human body modeled as one compartment (Widmark, 1932), and
the more complex Minimal Model of Glucose Kinetics suggested
by Bergman et al. (1979) almost 30 years ago to measure insulin
resistance in health and diabetes. More recently, with the advent of
the digital biology paradigm, various models to measure have been
developed addressing pharmacokinetics, physiology, and human
behavior. Deeper understanding of the processes involved and
the development of novel measuring tools have allowed for more
precise measurement of ethanol pharmacokinetics and the devel-
opment of more complex non-linear models (Mumenthaler et al.,
2000; Norberg et al., 2000, 2003; Umulis et al., 2005). The study
of ethanol kinetics in vivo has led to a better representation of
the ethanol-aldehyde—acetate process via the Michaelis—Menten
rate of alcohol clearance introduced by Norberg et al. (2000).
It is now widely accepted that alcohol clearance is a Michaelis—
Menten controlled reaction — i.e., an enzyme-enhanced chemical
reaction with limited supply (Umulis et al., 2005). These and
other pharmacokinetic models are discussed in detail in (Breton,
2010).

MODELS TO SIMULATE

The models to simulate are maximal multi-parameter models
describing the complexity of the system as comprehensively as
possible (Dalla Man et al., 2007a,b; Cobelli et al., 2009). For
example, the recently published meal model of glucose-insulin
dynamics is a descendant of the Minimal Model, which encom-
passes several metabolic subsystems including the gastrointesti-
nal tract, renal function, hepatic glucose production, and others
(Dalla Man et al., 2007a,b). When a maximal model is built,
the computer simulation of the observed biosystem becomes
possible, leading to in silico trials involving virtual “subjects”
rather than real people (Kovatchev et al., 2009). Such in sil-
ico trials can serve as precursors guiding expensive and time-
consuming clinical investigations by outruling ineffective treat-
ment approaches. Therefore, realistic computer simulation is capa-
ble of providing valuable information about the effectiveness,
safety, and limits of various treatments. Computer simulation

allows experiments with extreme situations and testing of extreme
failure modes that are unrealistic in animals and clinically impos-
sible in humans. Besides extreme experiments, various treat-
ment scenarios can be efficiently tested and either rejected or
accepted for inclusion in future clinical experiments, which allows
for rapid, comprehensive, and cost—effective clinical trial design
(Kovatchev et al., 2009). We need to emphasize, however, that
good in silico performance of a treatment does not guarantee
in vivo performance. Computer simulation should only be used to
reject inefficient treatments; it cannot confirm the efficacy of an
intervention.

MODELS TO CONTROL

External control of a complex technical or living system is gener-
ally achieved by control algorithms that are based on a certain
mathematical representation of the system — a model to con-
trol — combined with the ability to observe the system in real
time and make immediate decisions for correction of the system
state. The models to control are typically simplified (frequently
linearized) models that allow for rapid observation and computa-
tion of the corrective action. A prime example of medical devices
that use adaptive control algorithms is the cardiac pacemaker,
which in the past two decades has been incorporating automated
control functions such as automatic capture and sensing control,
self-adjusting rate response settings, sinus rhythm and atrioven-
tricular conduction preference, and others (Saoudi et al., 1999;
Wood, 2000; Khasnis and Tepper, 2003; Haddad et al., 2005). In
diabetes, successful attempts at external closed-loop control have
been made using various systems and algorithms, from cumber-
some intravenous systems and implantable devices (Albisser et al.,
1974; Santiago et al., 1979; Renard, 2002) to external subcutaneous
control (Steil et al., 2006; Weinzimer et al., 2008; El-Khatib et al.,
2010; Hovorka et al., 2010; Kovatchev et al., 2010). Relating control
to simulation, comprehensive in silico testing of control algorithms
is an efficient strategy if a model to control is tested against a much
more complex model to simulate. In other words, the effectiveness
of a controller can be judged if it is tested in realistic in silico
conditions, which can be achieved by a comprehensive simulation
model.

METHODS

RECURRENT BI0-BEHAVIORAL PROCESS OF ALCOHOL DEPENDENCE
AND TREATMENT

Figure 1 presents the general concept of the self-reinforcing recur-
rent bio-behavioral process describing the progression of alco-
hol dependence, its remission through medication or behavioral
treatment, and potential relapse.

As presented in Figure 1, the system (person) is represented
by several blocks (components) linked via a circular pattern
of sequential steps. First, a behavioral event generator actu-
ates system disturbances (e.g., drinks), which cause metabolic
disturbances that can be different for each person, depending
on his or her individual parameters of alcohol pharmacokinet-
ics. Further, when the metabolic network is subjected to recur-
rent stress, the intensity of stress determines whether or not a
phase transition to a hyperexcited metabolic state would occur
(Breton, 2010). A chronic hyperexcited metabolic state would

Frontiers in Psychiatry | Systems Biology

February 2012 | Volume 3 | Article 4 | 2


http://www.frontiersin.org/Psychiatry
http://www.frontiersin.org/Systems_Biology
http://www.frontiersin.org/Systems_Biology/archive

Kovatchev et al.

In silico models of alcoholism

Drinking Behavior:
Stochastic
Event Generator

Internal

Ethanol

Reinforg\ing ,\/

{harmaco-

Kinetics Behavioral \
Treatment
Medication

Metabolic Network: Treatment Neurotransmission

Ethanol Clearance

\

Normal vs. Hyperexcited
Metabolic State

FIGURE 1 | Recurrent bio-behavioral process of alcohol dependence and treatment.

Network

influence the neurotransmission network, potentially leading to
alcohol dependence. This in turn would result in a high degree
of internal reinforcing (craving), which accelerates the behav-
ioral event generator by triggering excessive drinking. Medica-
tion treatment would typically target the neurotransmission or
the metabolic component of this recurrent process, while behav-
ioral treatment would attempt to reduce the frequency of fir-
ing of the behavioral event generator. With this formal under-
standing, we shall now proceed to a mathematical description
of the general components of the alcohol dependence process
that would be used for its in silico representation and treat-
ment evaluation: (1) a stochastic model of behavioral and social
conditioning; (2) a mathematical model of the human meta-
bolic system specifically targeting ethanol kinetics; and (3) a
comprehensive population of in silico “subjects” spanning the
observed in vivo inter-individual metabolic and behavioral dif-
ferences.

FORMAL DESCRIPTION OF HUMAN BEHAVIOR AND SOCIAL
CONDITIONING

In order to built comprehensive in silico models of alcohol depen-
dence and treatment, a formal mathematical description of human
behavior and environmental conditioning is needed. However, the
behavioral and social modeling field is still quite limited. Whilst
several theoretical models based on internal somatic perception
have been proposed (Baumann et al., 1989; Leventhal and Diefen-
bach, 1991; Leventhal et al., 1992), their heuristic approach has not
permitted their development in sufficient mathematical detail to
guide data analysis. For example, the stages of change described by
the Transtheoretical Model of DiClemente and Prochaska (1998)
refer to a stochastic sequence — of readiness to change, stage of
change status, temptation, and confidence — that has consistently
shown predictive and explanatory ability for clinical outcome in
alcohol dependence treatment studies. However, this sequence has

not been identified as stochastic and has not been formalized
to the extent that would permit computerized assessment and
simulation. Another example can be provided in the context of
non-specific treatment effects, such as the Hawthorne effect, which
describes the tendency of an individual to change his or her behav-
ior as a consequence of being observed or studied (Mayo, 1933;
Roethlisberger et al., 1939). While this effect provides evidence for
the importance of environmental conditioning and external rein-
forcement for all stages of the progression of alcohol dependence —
from acquisition of alcohol dependence, through treatment, to
potential relapse — there is no formal description of environmen-
tal conditioning that would allow its inclusion in an integrated
in silico model encompassing physiology, behavior, and social con-
ditioning. Therefore, to advance the field, we have proposed a
formal stochastic bio-behavioral model of the sequence leading
to self-regulation decision, in which the first three steps of the
process were described by continuous variables while the decisions
at Step 4 were binary (Kovatchev, 2010). The general concept is
that decisions concerning self-regulation behaviors are often based
on perception and appraisal of the body’s internal state. Thus, the
sequence preceding a certain action includes at least four sequen-
tial steps: internal condition — perception — environmental con-
ditioning — self-regulation decision. We have applied this general
framework to evaluate the relationship between self-treatment
behavior and the development of hypoglycemia in diabetics
(Gonder-Frederick et al., 1997; Kovatchev et al., 1998; Clarke et al.,
1999), as well as the psycho-physiological factors associated with
the attention impairment experienced by those with attention
deficit hyperactivity disorder (Robeva et al., 2004; Kovatchev et al.,
2005; Penberthy et al., 2005).

Figure 2 presents the four steps of the alcohol intake
self-regulation sequence introduced above: internal condi-

tion — perception — environmental conditioning — self-regulation

decision.

www.frontiersin.org

February 2012 | Volume 3 | Article 4 | 3


http://www.frontiersin.org
http://www.frontiersin.org/Systems_Biology/archive

Kovatchev et al.

In silico models of alcoholism

1: Internal
condition: degree
of ethanol-induced
neuromodulation;

High

Probability of
craving, given
internal condition

)

2: Perception:
internal g
reinforcement; Influence of

environmental
conditioning,
given perception

JUBWIBDIOUIB] YOBQPeS

3: Environmental
conditioning:
external
reinforcement;

3}JOM}BU UOISSIWSUB0INBU
pue solweuAp aljogejow ybnosyy

YES

Probability of a
decision to drink,
given environmental
conditioning

=

4: Decision to
drink.

FIGURE 2 | Stochastic model of behavioral and social conditioning.

The basic idea behind the model of Figure 2 is that its steps
are linked by a continuum of possible pathways: i.e., there are a
variety of possible perceptions of internal alcohol-induced neuro-
modulation (Step 1 to Step 2); there is no single environment
corresponding to a perception (Step 2 to Step 3); and there
is no uniquely predetermined decision arising from a specific
environment (Step 3 to Step 4). We, therefore, proposed a formal
mathematical model in which the first three steps of this sequence
are described by continuous variables, while the decisions at Step
4 are binary. The transition probabilities between the first three
steps are modeled as conditional probabilities of a continuous
outcome, given a continuous condition. The transition probabil-
ities at Step 4 are conditional probabilities of a binary outcome,
given a continuous condition. This reflects the clinical reality: the
level of alcohol dependence, its perception, and environmental
reinforcement are, by nature, continuous factors while the final
decision to have or not to have another drink is binary — Yes/No.
This model serves as a stochastic behavioral generator of events, each
event being a drink that is supplied as an input to the recurrent
process of Figure 2. In other words, the in silico preclinical experi-
ments use behavioral and social parameters that serve as generators
of metabolic disturbances to the system (person), which are then
processed through the metabolic model, thereby allowing the for-
mal reconstruction of the patterns of drinking behavior and their
modulation by placebo or medication treatment. To be able to
conduct in silico experiments, we need to describe our stochastic
bio-behavioral model in algorithmic terms. We use a discrete-
time stochastic process £ that goes through sequential steps. The
basic building block of such a process is the stochastic transition
from one step to the next, which is described by the following
scheme: suppose that at its Step n (n=1, 2, 3, 4), the process &(n)
is described by a univariate or multivariate random variable xp,,

having its values in some set X;. Let S be a subset of X, (we
write S C X;). A structure S, of all subsets of X, that satisfies
certain conditions is called o-algebra on X,,. A stochastic transi-
tion of the process & from X, to its next stage Xy, 1 is defined
by the conditional probabilities P[E(n+ 1) = xn+1 1 &E(n) € S] for
any xp 41 € Xp+1and S € Sy. The introduction of the structure Sy,
is a necessary mathematical complication, which makes the model
capable of incorporating continuous as well as binary variables at
each step.

IN SILICO MODELS OF ETHANOL METABOLISM

When we consume alcohol, the majority of it is absorbed from the
small intestine (approximately 80%) and the stomach (approxi-
mately 20%). Generally, drinking more alcohol within a certain
period of time will result in increased blood alcohol concentra-
tions due to more alcohol being available for absorption into
the bloodstream. More than 90% of the alcohol that enters the
body is completely metabolized in the liver. The remaining 10%
is not metabolized and is excreted in the sweat, urine, and breath.
There are several routes of metabolism of alcohol in the body. The
major pathways involve the liver and, in particular, the oxidation
of alcohol by alcohol dehydrogenase to produce acetaldehyde, a
highly toxic substance. The second step is catalyzed by acetalde-
hyde dehydrogenase. This enzyme converts acetaldehyde to acetic
acid, a non-toxic metabolite. Acetic acid is eventually metabo-
lized to carbon dioxide and water. The rate of alcohol metabolism
depends, in part, on the amount of metabolizing enzymes in the
liver, which varies among individuals and appears to have some
genetic determinants (Fraser etal., 1995; Norberg et al., 2000,2003;
Matsumoto and Fukui, 2002; Ward and Coutelle, 2003). After the
consumption of one standard drink!, the amount of alcohol in
the drinker’s blood usually peaks within 30—45 min. The concen-
tration of alcohol in the entire body, including the brain, is always
less than that in the blood; human tissues contain a much lower
percentage of water compared with the blood. However, organs
having a rich blood supply, such as the brain, will quickly reach
alcohol diffusion equilibrium with arterial blood. This explains
why most people experience intoxication quickly after drinks and
then sober up rapidly, while other bodily tissues with less blood
supply, such as the muscle, are still absorbing alcohol from the
bloodstream.

As presented in the Introduction, several models of ethanol
metabolism exist (Widmark, 1932; Mumenthaler et al., 2000; Nor-
berg et al., 2000, 2003). In these models, ethanol elimination has
been assumed to exhibit a zero-order metabolism, which means
that constant amount of alcohol is eliminated per unit of time
regardless of blood levels. However, a number of studies have iden-
tified that elimination of ethanol follows different clearance mod-
els including first-order kinetic and a combination of zero- and
first-order kinetics. Historically, the modeling of alcohol kinetics
begins with the Widmark zero-order model (Widmark, 1932) pre-
sented in Figure 3, which assumes a constant clearance rate ¢ and
models the human body as one compartment with concentration

Tn the US a standard drink is defined as 12 ounces (360 ml) of beer, 5 ounces
(150 ml) of wine, or 1.5 ounces (45ml) of 80-proof distilled spirits, all of which
contain approximately the same amount of alcohol.
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FIGURE 3 | Widmark’s zero-order model of ethanol kinetics.

equal to blood alcohol level, BAL(f) and constant volume V. If
D(t) is the dose of ethanol received, the Widmark model is given
by:

OBAL _ o pap 4 DO W
ar 0 Vv

This zero-order model is still commonly used in forensic sci-
ences for its ease of use and the relative simplicity of its structure
(very few parameters, easily identifiable).

However, this oversimplification of the ethanol clearing process
precludes description of inter-individual variability that is ade-
quate for simulation purposes. A deeper understanding of the
processes involved and novel measuring tools have allowed more
precise measurement and understanding of ethanol pharmacoki-
netics and the development of more complex non-linear multi-
compartment models (Oneta et al., 1998; Norberg et al., 2000,
2003; Umulis et al., 2005). Most of these models are compart-
mental — e.g., they represent the human body as a set of homo-
geneous compartments with constant ethanol concentration and
volume linked by diffusion or rate-limited pathways. The study of
ethanol kinetics in vivo has led to a better representation of the
ethanol-aldehyde—acetate process, leading to Norberg’s model of
alcohol dynamics (Norberg et al., 2000; Figure 4), which intro-
duces a Michaelis—Menten rate of alcohol clearance — a com-
mon enzyme-catalyzed, rate-limited clearance model presented
by Eq. 2:

4% = — (CLr + CLg) Cp — g @)
i = —CLa (Cr — Cp)

IV Alcohol
Intake

Central

compartment CLq

(blood+liver)

CLy

K, +C
Michaelis-Menten dynamics

FIGURE 4 | Norberg's alcohol clearance model featuring
Michaelis—-Menten dynamics. Suitable for description of intravenous (IV)
ethanol injection.

where Cpg stands for blood ethanol concentration, Cr is the tissue
concentration, CLg is the renal clearance, and CLg is the diffusion
constant.

While this model describes ethanol kinetics reasonably well,
one limitation is that the model relies strictly on intravenous
ethanol infusion. The dynamics of orally ingested alcohol pre-
sented in Figure 5 has not been well quantified. The compart-
mental model in Figure 4 cannot reproduce well the dynamics
of blood alcohol level of Figure 5, particularly the rate of blood
alcohol level increase after alcohol ingestion. This is partly due
to the slow diffusion of ethanol from the gastrointestinal tract
to blood; whereas with intravenous injection the total dose of
ethanol is immediately present in blood and its concentration is
at equilibrium after a couple of minutes, orally ingested ethanol
can take much longer to percolate fully from the digestive sys-
tem to blood, therefore allowing for clearance even before the
full dose has transferred to the blood. Modeling this process is
difficult as ethanol diffuses to the blood from both the stom-
ach and the intestines and at different rates; the speed of gastric
emptying (and, therefore, the content and amount of what is
ingested with alcohol) also plays a critical role in the dynamics
of absorption.

To advance the field, we have proposed the Minimal Model
of Ethanol Dynamics (Breton, 2010). To properly represent oral
alcohol intake, the model includes two previously unexplored
compartments of the gastrointestinal tract — the stomach and
gut (Figure 6). Following the classic minimal model approach
(Bergman et al., 1979), we determined that we did not need to
add more compartments. Further, the processes linking these
compartments include one-way diffusions from the stomach
and gut into the bloodstream (ethanol in the blood cannot
diffuse back to the gastrointestinal tract). The assumptions of
the model include gastric emptying following an exponential
decay with a certain half-life (rate constants ks and kg) and the
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FIGURE 5 | Blood alcohol level following oral alcohol ingestion.
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proportion of gastric diffusion from the stomach, Wy, vs. diffu-
sion from the gut, Wy (e.g., W5 =20vs. W =80%; Norberg et al,,
2003).

The alcohol clearance is represented by a Michaelis—Menten
controlled reaction, e.g., an enzyme-enhanced chemical reaction
with limited supply (Matsumoto and Fukui, 2002; Umulis et al.,

2005), which has individual parameters (rate constant C;) for
each person. The differential equations governing the processes
depicted in Figure 6 are as follows:

1. Ethanol is transported from the stomach to the gut with
a rate constant kg and diffuses from the stomach into the
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bloodstream with a rate constant kg.

dCs 1
= —— (I(t) — ksCs — ks C 3
o7 VSW(() sCs — ksg Cs) (3)

2. Ethanol diffuses from the gut into the bloodstream with a rate
constant kg.

dCg 1
— = —— (kg C ks C: 4
” VGW( kg Cg + ks Cs) (4)

3. The total ethanol diffusion into the bloodstream is then given
by the combination of diffusions from the stomach and the gut.

D (t) = kgCg + ksCs (5)

4. Michaelis—Menten clearance of ethanol from the bloodstream
occurs.

Vin BAL (t) (6)

€O = TBAL()

5. Two-way diffusion of ethanol between the bloodstream and
tissues/liver occurs, including ethanol transport to the brain.

9BAL )
5 = 7w (D) + CLy(TAL(1) — BAL(1))
—CLBAL(t) — C(1)) (7)
dTAL CLy
= T (BAL (t) — TAL (1))

Population average values for the parameters of the models
described above can be derived from the literature. For example,
parameters common to Norberg’s two-compartment model can
be found in Norberg et al. (2003). Tuning of the gastric model is
somewhat more complex, but can be adjusted to reflect the gener-
ally admitted equilibrium between the stomach and gut of 20 vs.
80% and the 50-min half-life of gastric emptying. The Parameters
given in Table 1 below were used in the analysis and represent an
average “subject.”

However, while population averages are sufficient to simulate
average ethanol dynamics and to extract general characteristics
of the addiction process, they do not reflect the inter-person
variability observed in vivo and, therefore, do not allow in sil-
ico experiments at an individual level (Kovatchev et al., 2009).
To future studies aiming in silico description of individual alcohol
kinetics, we suggest a clinical data collection based on the 20-point
sampling protocol presented in Figure 7.

This protocol is similar to the standard profile used for deter-
mination of insulin resistance (Welch et al., 1990) and is modified
to account for the specifics of ethanol dynamics. Under this pro-

(t)=-30, 0, 5, 10, 15, 20, 30, 40, 50, 60, 75, 90, 120, 150, 180,
210, 240, 300, 360, and 420 min. Time 0 is the time of initiation
of oral alcohol intake. The total amount of ingested alcohol is
equivalent to three standard drinks (45 ml of ethanol). The blood
alcohol level measurement prior to initiation of alcohol intake
provides a baseline used for calibration; denser sampling is antici-
pated during the expected increase in blood alcohol level, and less
frequent sampling is anticipated during blood alcohol level decay.
A gradient search, simplex, or other non-linear optimization tech-
nique is used to minimize the distance between the predicted blood
ethanol concentration course of the model and the data collected
as described above. At convergence, the optimal parameters for
this specific subject are fixed, and the model can be used to study
the reaction of this subject to different scenarios, including some
not easily reproducible in vivo (e.g., extreme/dangerous drinking).

POPULATION OF /N SILICO “"SUBJECTS”

Given the theoretical basis established in the previous two sections,
we can identify each in silico subject by two vectors: behav-
ioral = (p1, p2, ...) and metabolic= (ks, kg, Cr, ...). In other
words, each in silico “subject” is uniquely identified by a set of
specific parameters that include transition probabilities (p1, p2,
...) between the sequential steps of the model of Figure 2 and
metabolic rate constants (k;, kg, Cy, . ..). The limits of the space
occupied by these parameters can be identified from literature
and study data. The in silico “population” can then be derived by
estimating the across-subject variance of these parameters and
generating a number of parameter sets to span the metabolic
diversity observed in vivo. When established, this population can
be used for in silico experiments (Kovatchev et al., 2009). When
established, such an approach would ensure unified numerical rep-
resentation of physiological, behavioral, and social interactions,
and would enable the two-stage simulation procedure illustrated
below.

Stage 1— behavior

Computer-simulated idiosyncratic drinking patterns using the
behavioral/social span of the set of vectors {(p1, p2, ...)\, (p1,
D2 D3 (P1>p25- - )N} Each of these patterns would result in
a decision to drink or not to drink for each i# silico subject. These
decisions serve as behavioral event generators, and the generated
events (i.e., drinks) are supplied to initialize the metabolic simu-
lation model. In other words, the Stochastic Model of Behavioral
and Social Conditioning creates the basic building block for in sil-
ico evaluation of treatment effect — the probability of a subject
having a drink at any given point in time.

Stage 2 — metabolism
Computer-simulated idiosyncratic alcohol intoxication patterns
using the span of the set of metabolic vectors {(ks, kg, Cr, . . I (ks,

tocol, plasma blood alcohol level samples are collected at times kg, Cr, .. D2 (ks kg, Cr, ... )N}, This is done as follows: at each
Table 1 | Average patient kinetic parameters of the average “subject.”

Vm Km CLy4 CL, kg ks ksg Vs Vg Vr Ve
0.094 0.024 0.05 0.00365 0.1 0.0006 0.1 0.01 2.4 34.18 2.84
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sampling can be done directly through blood samples, or using a breath analyzer.

simulated drink for each in silico subject, this subject’s metabolic
model produces a specific trace in time of alcohol intoxication.
The next simulated drink will come somewhere in this trace and,
depending on this “individual’s” specific metabolic and drinking
behavior, will hit at different stages of alcohol clearance. If the
simulated drinks are sufficiently infrequent so that this “individ-
ual” can fully metabolize the ingested alcohol, the system (subject)
will remain in a subcritical drinking pattern; conversely, if the
drinks are too frequent, the system (subject) will transit to a super
critical pattern (Breton, 2010). This simulation procedure was
programmed in MATLAB®, a high-level programming language
widely adopted for engineering computing.

ILLUSTRATIVE RESULTS

STAGE 1 - BEHAVIOR

To illustrate the methods presented in this paper we use data
derived from the database of a large clinical trial of ondansetron
conducted at the University of Texas — Houston Health Science
Center. This study had three clearly differentiated phases: (1) a
7-day baseline period, (2) a 7-day placebo treatment, and (3) sev-
eral weeks of active ondansetron treatment. This sequential design
made the collected data very suitable for interpretation via the
sequential stochastic model of behavioral and social conditioning
that is conceptualized here.

Subjects

Subjects were 321 DSM-III-R (American Psychiatric Association,
1987) — diagnosed alcohol-dependent individuals, who had: a
mean age of 41.50 £ 1.34 years; a gender distribution of 73.81%
male and 26.19% female; an ethnic distribution of 76.05% White,

22.10% Black, and 1.85% Hispanic and other; a social class
(Hollingshead and Redlich, 1958) distribution of 39.25% I-III,
49.05% IV-VI, and 11.70% VII-IX, and a mean drinking level of
8.04 £ 5.80 drinks/day in the past 90 days prior to enrollment.

Procedure

This study received ethics approval from the Committee for the
Protection of Human Subjects at the University of Texas — Hous-
ton Health Science Center. Subjects were recruited by newspaper
or radio advertisement in the Houston area. Following recruit-
ment, subjects were scheduled to return to the clinic to commence
1 week of placebo treatment with an inert pill to be taken twice per
day for 7 days. After a study calendar week (7-10 days), subjects
returned to the clinic to obtain their randomized double-blind
medication (ondansetron) in doses of 1, 4, or 16 pg/kg twice daily
or matching placebo for a further period of 11 weeks. For the pur-
poses of this reanalysis, we selected the homogeneous subgroup
of 87 subjects who were randomized to the 4-pg/kg twice daily
ondansetron condition, and concentrated on their initial placebo
period and 6 weeks of ondansetron treatment data.

Empirical data

The average number of drinks per day during the baseline period
for the selected subgroup of 87 subjects was 8.01 (SD =5.28).
Thus, the selected subgroup was representative of the entire
study cohort, which reported an average of 8.04 (SD=5.80)
drinks/day for the 90-days prior to recruitment. At baseline, 54
subjects (62%) in the illustrative subgroup were classified as
heavy drinkers, consuming >5 and >4 drinks/day for men and
women, respectively. During the placebo treatment period, the
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alcohol consumption in the selected subgroup was reduced to 5.03
(SD =4.64) drinks/day, followed by a further gradual reduction
to 1.88 (SD = 2.21) drinks/day after 6 weeks of active ondansetron
treatment (F =56.1, p < 0.0001) using repeated-measures analy-
sis of variance. The number of drinks per day in heavy drinkers
changed from 10.70 (SD =5.02) at baseline to 6.06 (SD =5.31)
at the end of the placebo period; in non-heavy drinkers, there
was no change: 3.61 (SD =1.06) drinks/day at baseline vs. 3.65
(SD =2.94) drinks/day at the end of the placebo period, F = 20.1,
p < 0.0001. The difference between heavy and non-heavy drinkers
became negligible during the first week of active ondansetron
treatment and remained negligible throughout the rest of the
observation period. The complete results from this clinical trial
have been published elsewhere (Johnson et al., 2000).

To evaluate the closeness of in silico prediction to observed
clinical outcome, we compared the computer-simulated and clin-
ically observed patterns of treatment response. Throughout the
simulation, we kept the metabolic parameters of the simulated
“subjects” constant and used the stochastic model of Figure 2
to deconstruct the observed drinking patterns into two sections
explained by different model steps related to passive and active
reduction in drinking: first, the response to initial placebo treat-
ment was attributed to the influence of study enrollment, which
was modeled as a reduction of the probability for environmental
conditioning (Step 3 in Figure 2) from its baseline value of 0.58—
0.10. Because this effect occurs relatively quickly (within a week)
and no active medication was provided, no other system changes
were anticipated, such as feedback down-regulation through mod-
ulation of the neurotransmission system. Second, the response to

ondansetron was attributed to neurotransmission changes influ-
enced by the degree of ethanol-induced neuromodulation. This
was modeled via reduction of the probability of Step 1 from its
baseline value of 0.62-0.35.

Figure 8 compares the results of this in silico treatment exper-
iment to the clinically observed treatment effects. Black squares
represent the empirical pattern of baseline drinking (Days —7 to
0) and the pattern of drinking reduction due to placebo (Days 1-7)
and ondansetron treatment (Days 8—42). The in silico-generated
pattern (black line) follows closely these empirical observations,
confirming that in silico experiments could provide realistic rep-
resentation of treatment effect. The lower panel of the Figure
includes the change in environmental reinforcement probability,
which is responsible for the “placebo” effect, and the reduction in
the degree of ethanol-induced modulation describing the effect of
ondansetron.

Further, the empirical results from the study (Johnson et al.,
2000) suggest highly significant differences between heavy and
non-heavy drinkers in their responses to placebo treatment, fol-
lowed by a regression into a common pattern of response to
ondansetron. Figure 9 focuses on the first 3 weeks of observation,
where these idiosyncratic differences were most evident (Pen-
berthy et al., 2007). Following the assumption that the placebo
effect is primarily due to reduced environmental reinforcement,
we model the difference between these two groups of subjects via
different probabilities at Step 3.

Indeed, environmental reinforcement probabilities of 0.87 and
0.10 for heavy and non-heavy drinkers allow for excellent simu-
lated approximation of the observed empirical patterns of placebo

12 . :
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FIGURE 8 | Model-predicted and observed effect of placebo and ondansetron treatment.
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response. (Note that the overall baseline probability of environ-
mental reinforcement, 0.58, is the weighted sum of the probabil-
ities in the two subject subpopulations.) As is empirically estab-
lished and evident from Figure 9, non-heavy drinkers (gray circles)
were non-responsive to the effect of study enrollment. In con-
trast, heavy drinkers (black squares) appeared to be vulnerable to
environmental conditioning effects, and, therefore, their response
to placebo treatment was highly significant. Further, these two
subject subpopulations were approximately equally responsive to
the effect of medication, which explains the similarities in their
patterns during the period of active ondansetron treatment. The
environmental probabilities used for simulation are included in
the bar graph in the lower section of Figure 9.

STAGE 2 - METABOLISM

The behavioral event generator described formally in the pre-
vious section challenges the metabolic system as presented in
Figure 1. In silico, these challenges are absorbed following the
Minimal Model of Ethanol Dynamics presented in Figure 6. Ini-
tial model parameter values were adopted from the literature:
Crmax =0.1614 g/L, tpax =47 min, and AUC=0.23 g x h/L (area
under the curve; Fraser et al., 1995; Oneta et al., 1998; Norberg
et al., 2003). Then, the model was applied to study the behav-
ior of the system (person) during simulated drinking patterns
of 1 through >10 standard drinks similar to those observed
empirically. The computer reproduced the system behavior over
72 drinking days. For example with 4 drinks/day, the computer
generated a 72-day sequence of drinking days with any num-
ber of drinks dispersed throughout the day, amounting to 4

drinks/day on average. To approximate empirical drinking pat-
terns we also limited the drinks to be between 7 AM and 11
PM - i.e., what we considered a standard daytime. Each drink
was standardized and the time course of blood alcohol level was
recorded for each 72-day run. Two outcome measures were ana-
lyzed: the minimum of blood ethanol concentration over daytime
and over 24 h. Each measure was calculated for days 10 and 72,
avoiding the initiation period of 9days to allow the system to
become stationary; the mean blood alcohol level was computed
as well.

Figure 10 presents the minimum blood alcohol level during
daytime as a function of the average number of drinks per day.
The line represents whether or not the blood alcohol level would
ever go down to zero during the day. The computer simulation
shows that with up to 5 drinks/day on average, the minimum
blood alcohol level during daytime is zero, indicating that the sys-
tem reaches its steady (sober) state at least for a while during the
day. Between 5 and 11 drinks/day, there is a linear increase of the
minimum blood alcohol level (slope = 0.0235, R?2=0.99). After 11
drinks/day, the slope of the linear relationship increases sharply to
1.71 (R?>0.99). Thus, the computer simulation indicates that
there are two well-defined threshold points defining abrupt sys-
tem changes: 5 and 11 drinks/day on average. The first threshold
at 5 drinks/day indicates the transition of zero vs. non-zero daily
(7 AM-11 PM) blood alcohol level minimum, meaning that with
4 drinks/day or less, the system is still capable of metabolizing fully
the ingested alcohol, whereas at five or more drinks per day, there
is always a certain residual amount. From a system biology point
of view, this first critical point indicates a phase transition from
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FIGURE 10 | Minimum blood alcohol level during daytime (7 AM-11 PM) as a function of average number of drinks per day.
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stable to unstable system dynamics, which is well visualized by the
Poincaré plots in Figure 11.

As seen in Figure 11, five or more drinks per day would cause
metabolic perturbations, never allowing the system to come to rest:
the left panel represents a sustainable system dynamics, while the
right panel represents a system that is out of control. This com-
puter simulation result is consistent with — and to some degree
explains at a system biology level — the generally accepted under-
standing of heavy drinking defined as five or more drinks per day.

It appears that this critical value is not only an empirically estab-
lished threshold but also an indication of an abrupt metabolic

phase transition.

Further, as presented in Figure 12, the minimum blood alco-
hol level during the night (11 PM-7 AM, which was simulated
as free of drinking) reaches zero for up to 11 drinks consumed
during the day (7 AM-11 PM). When the number of drinks
per day exceeds 11, the system cannot metabolize the amount
of consumed alcohol even during the nighttime hours, which
are free of drinking. Thus, 11 or more standard drinks per
day results in a transition of the system dynamics to a higher
blood ethanol value, which never goes down to zero. Because
every morning there is still residual ethanol in the bloodstream,
there is a very steep rise of blood alcohol level. This explains
the abrupt change in the slope of the dependence of blood
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alcohol level on average number of drinks per day depicted in
Figure 12.

CONCLUSION

The basic premise of in silico modeling of alcohol dependence is
that alcohol dependence and the outcome of its treatment result
from the action of a stochastic self-reinforcing bio-behavioral
process developing in time. In other words, the interplay between
biology and behavior, which develops in a certain time frame,
would trigger (with a certain probability) metabolic and neuro-
biological changes that in turn would reinforce uncontrolled or
poorly controlled drinking behavior. Treatment would, therefore,
be expected to modulate, attenuate, or reverse these changes with a
certain level of probability. Such an approach captures the dynam-
ics of sequential changes occurring during acquisition of alcohol
dependence, successful treatment, or relapse. We provide a rigid
mathematical framework describing formally these processes. To
do so, we first introduce a stochastic model of behavioral and
social conditioning describing the frequently random effects of
human behavior and social reinforcement (Kovatchev, 2010). We
then merge this stochastic model with the deterministic Mini-
mal Model of Ethanol Dynamics (Breton, 2010). In combination,
these two models provide the background for in silico interpre-
tation of behavior and biology in their relationship to treatment
effect. To represent formally behavioral and social conditioning,
we identify several sequential steps. Each step is represented by a
probability distribution, and the set of these distributions across
all steps regulates the feed-forward relationships of the process
from internal condition to self-regulation decision. Each person
is represented by an individual treatment effect profile, defined as
the set of transition probabilities between the sequential steps of
the model specific to that person. This model serves as a stochastic

behavioral generator of events, each event being a drink, which
is supplied as an input to an individualized model of alcohol
metabolism. In other words, the in silico experiments with alco-
hol dependence treatment use behavioral and social parameters
that serve as generators of metabolic disturbances to the sys-
tem (person), which are then processed through an individualized
metabolic model, thereby allowing the formal decomposition and
reconstruction of the patterns of drinking behavior and their mod-
ulation by placebo or medication treatment. We illustrate our pro-
posed approach by re-analyzing data from a study of ondansetron
for the treatment of alcohol dependence (Johnson et al., 2000)
and include in the model the non-specific placebo effects that
occurred before the active treatment phase of the study (Penberthy
et al., 2007), with a special emphasis on the highly significant
differences between heavy and non-heavy drinkers observed dur-
ing the study. Such a quantitative approach has several potential
advantages.

First, models allow the measurement of latent factors that can-
not be observed directly but that frequently predetermine the
behavior of a biosystem. A classical example is the Minimal Model
of Glucose Kinetics suggested by Bergman et al. (1979) almost
30 years ago to measure insulin resistance in health and diabetes.
In the case of alcohol addiction, the Minimal Model of Ethanol
Kinetics was capable of reproducing — and to some degree explain-
ing — the well-known empirical definition of heavy drinking, i.e.,
five or more standard drinks per day for men. The model also sug-
gested other extreme situations, such as those that would occur
with more than 11 drinks/day, may result in cognitive impairment
due to continuous alcohol intoxication.

Second, models allow for computer simulation and in sil-
ico studies involving virtual “subjects” rather than real people.
Such in silico trials can serve as cost—effective precursors, guiding
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expensive and time-consuming in vivo investigations by ruling
out ineffective treatment approaches (Kovatchev et al., 2009).
In our illustrative results, the overall treatment effect observed
in a study of placebo vs. ondansetron was deconstructed into
meaningful steps, with each step serving as a target for a spe-
cific treatment: Step 1 (internal condition) reflected pharma-
cological treatment, while Step 3 (environmental conditioning)
reflected the placebo effect of study enrollment, or any type of
socio-behavioral intervention. Such a deconstruction of the treat-
ment effect allows for better understanding of the time course
of treatment and the relationships among the various treatment
components, as well as for individualized treatment tailoring.
For example, it appears that in heavy drinkers, environmental
conditioning is a significant predictor of treatment response,
while in non-heavy drinkers the effect of the environment is
minimal.

Third, when a system (person) is adequately modeled, its con-
trol via engineering means becomes possible. Examples include
cardiac pacemakers and, more recently, the artificial pancreas
emerging as a means for control of blood glucose levels in diabetes
(Cobellietal.,2009). At the level of control, the i silico models pre-

sented here are less developed than the metabolic models adopted
in cardiology or diabetes. Nevertheless, this text represents an
initial step to introduce the concept of in silico analysis to the
area of alcohol dependence research.

Because the first results appear promising and explanatory for
observed phenomena, we think that with the accumulation of data
(both existing and from future clinical studies), in silico analy-
sis would find its place in the arsenal of tools to help decipher
the mechanisms that govern treatment response among alcohol-
dependent individuals. A critical step in this development will be
the accumulation of an in silico population spanning the large
observed variability in ethanol absorption and clearance, and in
alcohol-related behaviors. This step has been done in other settings
using extensive metabolic data collection (Kovatchev et al., 2009)
and is therefore feasible in the field of alcohol dependence. As
explained elsewhere (Cobelli et al., 2009), extensive kinetic para-
meter sensitivity analysis and analysis of outliers will be needed
to finalize this modeling effort. With this final step, it will become
possible to run preclinical testing of varied treatment strategies,
bypassing long-term animal studies and greatly accelerating the
transition from medication development to human testing.
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