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Introduction: Multivariate machine learning methods can be used to classify groups of
schizophrenia patients and controls using structural magnetic resonance imaging (MRI).
However, machine learning methods to date have not been extended beyond classification
and contemporaneously applied in a meaningful way to clinical measures. We hypothe-
sized that brain measures would classify groups, and that increased likelihood of being
classified as a patient using regional brain measures would be positively related to ill-
ness severity, developmental delays, and genetic risk. Methods: Using 74 anatomic brain
MRI sub regions and Random Forest (RF), a machine learning method, we classified 98
childhood onset schizophrenia (COS) patients and 99 age, sex, and ethnicity-matched
healthy controls. We also used RF to estimate the probability of being classified as a
schizophrenia patient based on MRI measures. We then explored relationships between
brain-based probability of illness and symptoms, premorbid development, and presence of
copy number variation (CNV) associated with schizophrenia. Results: Brain regions jointly
classified COS and control groups with 73.7% accuracy. Greater brain-based probability
of illness was associated with worse functioning (p = 0.0004) and fewer developmental
delays (p = 0.02). Presence of CNV was associated with lower probability of being classified
as schizophrenia (p = 0.001). The regions that were most important in classifying groups
included left temporal lobes, bilateral dorsolateral prefrontal regions, and left medial parietal
lobes. Conclusion: Schizophrenia and control groups can be well classified using RF and
anatomic brain measures, and brain-based probability of illness has a positive relationship
with illness severity and a negative relationship with developmental delays/problems and
CNV-based risk.
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INTRODUCTION
Structural brain magnetic resonance imaging (MRI) studies of
schizophrenia indicate widespread neuroanatomic abnormalities
in cortical thickness, hippocampus, subcortical structures, and
total brain measures (Shenton et al., 2001; Narr et al., 2005;
Greenstein et al., 2006; Steen et al., 2006; Nesvag et al., 2008;
Byne et al., 2009; Mattai et al., 2011; van Haren et al., 2011).
Functional MRI and diffusion tensor imaging studies of schizo-
phrenia also support brain dysfunction in schizophrenia involving
multiple brain systems, emphasizing networks, and connectivity
dysfunction rather than brain regions acting in isolation (Meyer-
Lindenberg et al., 2005; Bassett et al., 2008; Lynall et al., 2010;
Repovs et al., 2011).

If schizophrenia is indeed a disorder of connectivity, then the
capacity for identifying reliable neuroanatomic signatures of the
disease may be reduced if regions are not considered jointly.
However, traditional statistical methods (e.g., correlation, t -tests,
ANOVA, logistic regression) explore group differences effectively
but only within a region or voxel at a time (Sun et al., 2009).

Also, traditional model-based methods are limited when explor-
ing how regions/voxels interact as these models quickly become
overburdened when trying to combine predictors and all of their
interactions from high dimensional MRI data sets (e.g., six pre-
dictors have over 60 effects when including all main effects and
interactions). These statistical methods may also miss a signal from
brain measures interacting in non-linear, non-multiplicative ways.

In contrast, multivariate machine learning methods can utilize
available information simultaneously to understand how variables
jointly distinguish between groups. These methods have had pre-
vious success classifying schizophrenia and healthy controls using
structural brain MRI data with classification accuracies ranging
from 81 to 93% (Davatzikos et al., 2005; Kawasaki et al., 2007;
Yoon et al., 2007; Koutsouleris et al., 2009; Sun et al., 2009). How-
ever, no structural MRI study using multivariate machine learning
methods has attempted to link multivariate brain-based classifier
results with clinical measures in samples of patients with schizo-
phrenia. This is important in that behavioral correlates can provide
a clinical context for classifier results.
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Here we use Random Forest (RF; Breiman, 2001) to con-
temporaneously classify groups using anatomic brain measures
and correlate clinical and genetic information with classification
scheme results. We selected RF as it has error rates compara-
ble to other approaches (Malley et al., 2011b) while being able
to determine the probability of illness based on the feature set
of brain regions (Malley et al., 2011a) (henceforth referred to as
brain-based probability of illness). Of note, these probabilities can
be used as a continuous measure containing more information
than dichotomous classification to explore relationships with clin-
ical correlates and risk factors for childhood onset schizophrenia
(COS). Accordingly, we hypothesized that brain-based probability
of illness would be positively associated with clinical measures of
illness severity. To explore the idea that brain-based probability
of illness would covary with other risks, we hypothesized positive
associations between brain-based probability of illness and pres-
ence of copy number variations (CNVs) associated with the risk
of schizophrenia. Additionally, we hypothesized that measures of
developmental delays which are considered risk factors under the
neurodevelopmental model for schizophrenia (Weinberger, 1987;
Rapoport et al., 2005) would also be positively associated with
brain-based probability of illness.

MATERIALS AND METHODS
PARTICIPANTS
All probands were subjects in an ongoing study of COS at the
National Institute of Mental Health and met DSM IIIR/IV cri-
teria for schizophrenia with the onset of psychosis before their
13th birthday. Exclusion criteria were a history of significant
medical problems, substance abuse, or a premorbid IQ below
70. We obtained informed consent from parents of minors and
participants over 18, and informed assent was obtained when pos-
sible. Further details of patient selection are described elsewhere
(McKenna et al., 1994; Kumra et al., 1996).

We obtained MRI scans during each proband’s initial inpatient
stay and at subsequent 2-year follow-up visits. For the purposes of
this study, each patient’s first good quality MRI scan (e.g., absence
of visible motion artifacts) was selected to minimize length of ill-
ness and medication history for a total of 98 scans. The study was
approved by the National Institutes of Health (NIH) institutional
review board. Typically developing control participants were vol-
unteers in a prospective study of normal brain development (see
Giedd et al., 1999 for further details) also approved by the NIH
institutional review board. The current control sample of unre-
lated 99 participants was selected to match the COS group on age,
sex, and ethnicity. Scans with moderate or severe motion artifacts
and scans from participants with dental braces were excluded. See
Table 1 below for demographic information.

CLINICAL MEASURES
We used age-appropriate versions of the Global Assessment of
Functioning Scale (GAS; Shaffer et al., 1983; APA, 1994), the Scale
for the Assessment of Positive Symptoms (SAPS; Andreasen, 1984),
and the Scale for the Assessment of Negative Symptoms (SANS;
Andreasen, 1983) to assess clinical symptoms in COS probands
(intraclass correlation coefficients for all measures >0.80). We
restricted ratings to NIH inpatient medication-free assessments

to approximate comparable rater, treatment, and environmental
effects across participants.

To assess developmental delays and problems, we used the
40-item Autism Screening questionnaire (ASQ; Berument et al.,
1999). We also conducted a chart review of previous medical
records for pre-illness and pre-prodrome academic, language,
motor, and social developmental problems and delays. The chart
review consists of 15 items [academic (2 items); social (3 items);
language (6 items) motor (4 items)] scored 1 or 0 depending on
presence or absence of delay/problem and is included in Table A2
in Appendix. Reliability among three chart reviewers was adequate
(intraclass correlation coefficients >0.70).

COPY NUMBER VARIATION
All subjects in our COS study were genotyped using Illumina 1 M
SNP chip1, and CNV detection was performed by using three
algorithms: (1) PennCNV Revision 220, (2) QuantiSNP v1.1, and
(3) GNOSIS. Analysis and merging of CNV predictions was per-
formed with CNVision2. Twelve subjects in the current sample
have at least one CNV that has been independently associated
with risk of schizophrenia [1q21 (n = 1), 2p16 (NRXN1; n = 1),
2p25(MYT1L; n = 2), 3p25(SRGAP; n = 2), 7q11 (n = 1), 7q35
(CNTNAP2; n = 1), 15q11 (n = 1), 16p13 (n = 2), 22q11 (n = 4;
International Schizophrneia Consortium, 2008; Irmansyah et al.,
2008; Stefansson et al., 2008; Stone et al., 2008; Kirov et al., 2009;
Bassett et al., 2010; Moreno-De-Luca et al., 2010; Ingason et al.,
2011; Levinson et al., 2011; Li et al., 2011]. These data were not
collected for controls.

MRI ACQUISITION AND ANALYSIS
We obtained brain MRIs using a GE Signa 1.5 T MR system (Gen-
eral Electric Medical Systems, Milwaukee, WI, USA). T1-weighted
structural brain images were collected using a 3D spoiled gradient
recall (SPGR) sequence. Brain volumes consisted of 124 1.5 mm
axial slices with a 0.9375-mm in-plane resolution. Scanning
parameters were TR = 24 ms, TE = 5 ms, and a flip angle of 45˚.

The brains were processed using the FreeSurfer recon-all
pipeline with default settings except for the number of non-
uniformity correction iterations that were increased to six. We
also used the default parcelation which uses the Desikan atlas3.
Cortical and subcortical volumes were measured automatically
with FreeSurfer (version 5.1)4. This method has been described
in detail elsewhere (Fischl et al., 2002; Fischl et al., 2004) and
will only be briefly described here. Processing included motion
correction and removal of non-brain tissue using a hybrid water-
shed/surface deformation procedure (Segonne et al., 2004), auto-
mated Talairach transformation, segmentation of the subcortical
white matter and deep gray matter volumetric structures (includ-
ing the hippocampus and ventricles; Fischl et al., 2002; Fischl et al.,
2004), intensity normalization, tessellation of the gray-white mat-
ter boundary, automated topology correction (Fischl et al., 2001;
Segonne et al., 2007), and surface deformation following intensity

1www.illumina.com
2www.CNVision.org
3https://surfer.nmr.mgh.harvard.edu/ftp/articles/desikan06-parcellation.pdf
4http://surfer.nmr.mgh.harvard.edu
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Table 1 | Sample demographics and clinical measures.

COS (n−98) mean

(SD) or count

Controls (n = 99) mean

(SD) or count

Statistic p Value

Age at scan 14.46(3.40) 14.45(4.43) t (df = 195) = 0.02 0.99

Vocabulary 6.37(3.49) 11.97(2.73) t (df = 180) = 12.13 <0.001

Intracranial volume 1474032(166557) 1476771(160495) t (df = 195) = 0.12 0.91

Female|male 43|55 41|58 X 2(df = 1) = 0.12 0.73

RACE

Asian 5 4

African American 29 23

Hispanic 8 8 X 2(df = 4) = 1.4 0.84

Other 7 7

White 49 57

INPATIENT MEDICATION-FREE RATING SCALES

Scale for the assessment of positive symptoms 48.44(22.03)

Scale for the assessment of negative symptoms 61.23(28.39)

Global assessment of functioning 24.57(13.22) – – –

Autism Screening Questionnaire 14.36(9.63)

Developmental chart review (range=0–15) 3.88(2.9)

Years ill at time of scan 4.5 (2.96)

gradients to optimally place the gray-white matter and gray mat-
ter/CSF borders at the location where the greatest shift in intensity
defines the transition to the other tissue class. Anatomic segmen-
tation is based on the probability of the local spatial configuration
of labels given the tissue class. This technique has previously been
shown to be comparable in accuracy to manual labeling (Fischl
et al., 2002) and has been demonstrated to show good test-retest
reliability across scanner manufacturers and field strengths (Han
et al., 2006).

The above procedure generated average cortical thickness for
68 frontal, temporal, parietal, and occipital lobe regions, and bilat-
eral lateral ventricle, thalamus, and hippocampus volumes to yield
the 74 variables we used as features in the machine learning analy-
sis (below). Before the variables were used to classify, they were
each residualized using a general linear model with sex, age, age
squared, and intracranial volume as independent variables.

STATISTICAL ANALYSIS
Classification: random forest
We used RF5 (Breiman, 2001) as our multivariate machine learn-
ing method to predict group membership (COS or controls) with
the 74 residualized brain measures (above) as features. RF’s basic
unit is a classification tree. RF works by selecting a random boot-
strap subset of approximately 66% of the sample per tree and
randomly selecting a subset of all features (or cortical regions) at
each node of the tree. At each node, RF selects the variable that
best splits data into two daughter nodes. This process allows for the
cortical regions to work in concert while predicting the outcome
region. RF determines prediction error using the out of bag sample
(i.e., roughly 33% of participants not randomly selected to build
a given tree) that is sent down a tree after it is grown. It is through

5http://www.stat.berkeley.edu/∼breiman/RandomForests/cc_home.htm

this process of selecting bootstrap samples to build the tree and
then using the out of bag sample to determine error and variable
importance that RF minimizes overfitting and contains an inter-
nal validation step. This internal validation component built into
RF is similar to leave-one-out schemes and other cross-validation
procedures.

Random forest provides three basic outputs: classification error,
importance scores, and proximities. Classification error is the per-
cent of times a participant (when out of bag) is incorrectly classi-
fied; subtracted from one, it is the percent of times a participant
(when out of bag) is correctly classified. An importance score is the
difference between out of bag error when a variable is randomly
permuted and when the variable is not randomly permuted. So,
if a variable’s values are randomly permuted and the error rates
do not go up, it is not a useful predictor, since it is no better
than random noise. Importance scores can be transformed to Z
scores [(score − mean)/standard deviation] to ease interpretabil-
ity. A proximity score is a measure of the frequency at which two
out of bag participants are classified in the same terminal node.
These proximities are used to form an n × n matrix where n is
the number of subjects. This matrix can then be transformed into
a distance matrix that can be visualized with multidimensional
scaling (MDS).

Because the random components in RF (out of bag sampling,
node-level permutation testing) can make the importance scores,
proximity scores, and error rates vary, we ran each of the above
steps 1000 times and took the average values. We used the R pack-
age randomForest (Liaw and Wiener, 2002) for all analyses and set
the number of trees per forest at 300 as the plotted error rate was
observed to stabilize before 300 trees. We set our terminal node
size to 10 and number of variables randomly selected per node
(aka mtry) to 10.

Finally, we utilized recent work (Malley et al., 2011a) which
transforms RF into a probability machine and allows RF to
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determine the probability of belonging to the COS group based
solely on the 74 residualized brain measures. Briefly, we accom-
plish this by running RF in regression mode where we assign a
value of 1 to COS participants and a value of 0 to controls. Exactly
as in coin-tossing problems, the estimated average of these scores
for each subject is the estimated probability for that subject. These
probability estimates are known to be consistent, as opposed to the
standard RF probability estimates (e.g., those available in the stan-
dard output of the RandomForest package) which have no known
optimality (Malley et al., 2011a; Biau, 2012). We ran this analysis
1000 times and took the average probability of being classified as
COS per participant to correlate with clinical measures.

Classification: logistic regression
We computed 74 logistic regressions to determine univariate clas-
sification accuracy for each region. For each regression, we used
regional cortical thickness as the independent measure (after
residualizing regional thickness using age, age squared, sex, and
intracranial volume) and diagnostic group as the dependent mea-
sure. Statistical significance for logistic regression coefficients was
determined after false discovery rate correction (Genovese et al.,
2002) (q = 0.05).

Relationships between brain-based probability of illness, clinical
correlates, and schizophrenia risk factors
We used linear regression to assess the relationship between brain-
based probability of illness and medication-free clinical measures
(GAS, SAPS total, SANS total) and developmental measures. We
used a t -test to assess the group difference in mean probability of
illness between COS participants who have a CNV independently
associated with risk of schizophrenia and those who do not. For

these analyses, we checked assumptions of linearity, normality,
and homoscedasticity, and visually explored data for outliers and
unrealistic data points.

RESULTS
MACHINE LEARNING MULTIVARIATE CLASSIFIER
Classification accuracy
The average classification error of the 1000 RF runs was 26.3%
(SD = 1%), yielding an average classification accuracy of 73.7%.
When we randomly permuted group membership 1000 times and
ran RF for each permutation, the null distribution, and the non-
permuted distribution did not overlap, indicating that the 73.7%
classification accuracy is far better than chance (see Figure 1).

Importance measures
The entire list of 74 importance Z scores is reported in Table A1
in Appendix. The 15 regions with an importance scores at least 0.5
SD above the mean are visually represented in Figure 2. As seen in
Figure 2, bilateral frontal, left precuneus, and left temporal regions
had the highest importance scores.

Multidimensional scaling of proximity matrix and probability
machine results
The MDS plot (Figure 3A) for the proximity matrix is a visual
representation of the accuracy of the classifier; Geometric dis-
tances between people correspond to how often they are classified
in the same group (closer points correspond to being classified in
the same group frequently). The groups appeared well separated,
corresponding to 73.7% classification accuracy. In addition, we
have provided a color overlay which represents each participant’s

FIGURE 1 | Classification error histograms for (A) 1000 Random Forest

runs using 74 cortical and subcortical regions to predict group

membership for COS and control groups; (B) 1000 Random Forest

runs using 74 cortical and subcortical regions to predict group

membership after group membership was randomly permuted

each run.
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FIGURE 2 | Fifteen cortical regions with importance Z scores at least 0.5 standard deviations above the mean. Colors go from red (high Z scores) to light
yellow (lower Z scores)*.

FIGURE 3 | Proximity values averaged over 1000 Random

Forest runs for all participants (represented by the dots)

visualized with two dimensional multidimensional scaling

(MDS). (A) MDS plot of Random Forest proximity matrix (COS

participants are red dots and control participants are blue dots). (B)

Graph A with color corresponding to probability of being classified
as COS (red = high to blue = low). (C) Graph B with COS
participants only.
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probability of being classified as COS based on RF run as a
probability machine (Figures 3B,C).

UNIVARIATE LOGISTIC REGRESSIONS
Seventy-four univariate logistic regressions yielded 55 signifi-
cant odds ratios (p ≤ 0.03), all of which survived false discovery
correction. Of these, only right caudal middle frontal thickness
(p ≤ 0.001, classification accuracy = 73.6%) was able to classify as
well as RF, although five regions individually classified subjects
with at least 70% accuracy (left caudal middle frontal, left ros-
tral middle frontal, left pars triangularis, left precuneus). These
regions were also among the 15 regions with the top RF impor-
tance scores, revealing overlap between univariate and multivariate
classification.

Figure 4 illustrates the curvilinear relationship between uni-
variate results and RF important scores (also see Table A1 in
Appendix for all regions, their importance scores, and univariate
classification accuracies).

Of note were the regions with relatively weaker univariate
effects (e.g., not among the top 20 univariate classifiers) and
importance scores greater than 0.50 SDs above the mean. Such
predictors included right pars opercularis, left bank of the superior
temporal sulcus, left fusiform gyrus (importance Z scores = 1.34,
0.56, 0.94, respectively; univariate accuracy rate = 65, 65, 64.5%,
respectively).

CLINICAL CORRELATES
Inpatient medication-free ratings
Greater brain-based probability of being classified as COS was
significantly associated with worse overall functioning during

FIGURE 4 |The relationship between univariate logistic regression

coefficients and Random Forest importance Z scores (importance

score-mean importance score/ SD importance scores; loess line in

blue with 95% confidence interval).

inpatient medication-free baseline (GAS score = 0.0004; see
Figure 5). Positive relationships between probability of being clas-
sified as COS and negative and positive symptoms during inpatient
medication-free baseline (greater probability associated with more
symptoms) were statistical trends (SAPS p = 0.07, SANS = 0.09,
respectively).

Schizophrenia risk factors
Developmental measures. Greater brain-based probability of
being classified as COS was significantly associated with fewer
documented pre-illness academic, language, motor, and social
difficulties and delays (p = 0.02; see Figure 5). There was no
relationship between probability of being classified as COS and
scores on the ASQ (p = 0.22).

Copy number variations. The 12 COS subjects who have a CNV
that has been independently associated with risk of schizophre-
nia had a lower mean probability of illness [0.44(SD = 0.23)] than
patients who did not [n = 86, mean = 0.64 (SD = 0.18); t = 3.398
(df = 96) p = 0.001].

DISCUSSION
Using a multivariate machine learning approach and measures of
regional cortical thickness, bilateral hippocampus, thalamus, and
lateral ventricle volumes, we achieved good classification between
COS patients and controls. We were also able to use all brain mea-
sures jointly to predict group membership,which is consistent with
a current emphasis on brain systems and networks rather than
regions in isolation. The regions that were most important in our
multivariate classifier included temporal, dorsolateral prefrontal
regions, and medial parietal lobe: this is consistent with current
univariate results and previous reports of gray matter reductions
and brain network abnormalities in these regions (Shenton et
al., 2001; Ellison-Wright and Bullmore, 2009; Meyer-Lindenberg,
2010; van den Heuvel and Hulshoff Pol, in press).

To our knowledge, we provide initial evidence that multivariate
machine learning approaches can link probability of illness with
clinical measures in a meaningful way. Specifically, here we link
medication-free illness severity ratings, CNVs, and developmental
risk factors with nuanced, continuous information generated by
machine learning at an individual level: i.e., what is the probability
a person is affected given the features, rather than dichotomous
affected/not affected output. For example, 52 and 85% chance of
an event or diagnosis both declare for the event but clearly, there
is more information available in the continuous percentage.

Consistent with our hypothesis we found a positive relation-
ship between probability of illness base solely on brain measures
and illness severity. Counter to our hypothesis, however, fewer
premorbid academic, language, motor, and social developmental
problems and having a CNV associated with schizophrenia were
associated with a lower brain-based probability of being classified
as schizophrenic. This suggests that there may be a relationship
between schizophrenia patients who sustained a large genetic
mutation on a pathway of unusual strength, reflected in more fre-
quent early difficulties but with less neuroanatomic disturbance.
However, caution is warranted when while interpreting the CNV
group difference in probability of illness, as the group of CNVs is
diverse and may not represent a single homogenous population.
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FIGURE 5 | Scatter plots for probability of being classified as COS using

structural MRl-based Random Forest classifier (X axis) and (A)

medication-free inpatient Global Assessment of Functioning Scale score

(GAS; p = 0.0004); (B) number of premorbid academic, language, social,

and motor difficulties (p = 0.02) with fitted regression line and 95%

confidence interval.

We hypothesized that linear and/or non-linear relationships
among brain regions would make the multivariate classifier supe-
rior to univariate classifiers. However, the current multivariate
approach did not out-perform several univariate logistic regres-
sions on a pure classification task, and our hypothesis was thus not
confirmed. Specifically, right caudal middle frontal thickness alone
performed as well as the multivariate classifier, and several other
frontal and temporal regions had classification accuracies greater
than 70%. At the same time, the strong curvilinear relationship
between RF importance scores and univariate classification accu-
racy indicates that both approaches detect strong effects, and
RF does so without incurring costs for correcting for multiple
tests with unknown joint correlation structure or assumptions
of normality and homoscedasticity. Also, some univariate effects
that are not particularly accurate classifiers have relatively strong
importance scores. This outcome suggests that the combination of
univariate and multivariate methods can be used detect regions of
relative importance when interacting with other regions but that
do not classify particularly well when acting alone (e.g., right pars
opercularis, left bank of the superior temporal sulcus, left fusiform
gyrus). This is particularly important in an illness like schizophre-
nia, which is can be considered a disorder of dysconnectivity, as
individual brain regions are unlikely to be affected in an isolated
manner.

Our multivariate classification error rate of 73.7%, although
good, is not high enough to warrant the use of MRI measures as
a stand-alone diagnostic tool. While previous multivariate classi-
fication studies report upward of 80% accuracy (Davatzikos et al.,
2005; Kawasaki et al., 2007; Yoon et al., 2007; Koutsouleris et al.,
2009; Sun et al., 2009), clinical interview conducted by a skilled

clinician still remains the most efficient, cost-effective diagnostic
tool between healthy and psychotic patients. However, structural
brain-based classifiers do appear to be relevant when the goal
is to understand the most important neuroanatomic factors dis-
tinguishing diagnostic groups without encumbrances inherent in
multiple tests and parametric test assumptions. Also, we recom-
mend future studies using features from MEG, DTI, and fMRI
scans, as MEG, DTI, and fMRI data is collected specifically to
detect active brain networks and connectivity. We believe this kind
of study may be better suited than structural MRI to fully harness
the power of multivariate methods’ ability to capitalize on linear
and non-linear interactions. Also, when brain imaging features can
classify cases and controls, researches can use methods like the ones
currently employed to detect relationships between phenotypes
and continuous probabilities from machines with brain-based (or
fMRI, DTI, EEG, etc. . .) features. These relationships might other-
wise be missed if the machine output is restricted to dichotomous
classification.

Limitations of the current study include the lack of a validation
sample, although COS is a very rare disorder and the current sam-
ple required several decades to acquire. Also, our assessment of
developmental issues has two drawbacks: (1) retrospective chart
reviews may miss relevant information that was never documented
and (2) the ASQ assesses current functioning as well as premor-
bid development. Also, here we have chosen to use regional brain
measures that provide less noise albeit lower resolution compared
to the higher resolution voxel-wise measures. Despite these limita-
tions, RF appears to provide a means of distinguishing groups that
has the advantage of linking clinical information and risk factors
and classification using multiple brain regions jointly.
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APPENDIX

Table A1 | All 74 regions sorted by univariate logistic regression percent accuracy and Random Forest importance score (top 15 importance

scores with greater than Z > 0.05 in bold).

Region Logistic regression results Random forest results

Coefficient p values Logistic regression:

percent accuracy (%)

Importance score (Z

score-mean = 0, SD = 1)

Right caudal middle frontal gyrus 0.000000004 73.6 6.30

Left caudal middle frontal gyrus 0.000000002 71.1 2.53

Left rostral middle frontal gyrus 0.00000003 70.6 1.18

Left pars triangularis 0.00000003 70.1 1.67

Left precuneus 0.00000004 70.1 0.70

Right rostral middle frontal gyrus 0.00000006 69.5 1.28

Left supramarginal gyrus 0.00000002 69.0 0.74

Left superior frontal gyrus 0.00000003 69.0 0.56

Right superior frontal gyrus 0.00000004 69.0 0.45

Left pars opercularis 0.00000003 68.5 0.82

Left inferior temporal gyrus 0.00000006 68.5 0.81

Left superior temporal gyrus 0.000002 68.0 1.16

Right inferior parietal gyrus 0.000001 68.0 0.15

Right precuneus 0.0000003 68.0 −0.13

Left inferior parietal gyrus 0.00000002 67.5 0.69

Right precentral gyrus 0.000002 67.0 −0.45

Right supramarginal 0.000002 66.5 −0.08

Right lateral orbito frontal gyrus 0.0004 66.5 −0.55

Right fusiform gyrus 0.000002 66.0 0.16

Left pars orbitalis 0.000001 66.0 0.07

Right pars opercularis 0.0000002 65.0 1.34

Left bank of the sup. temp. sulc 0.0000006 65.0 0.56

Left middle temporal gyrus 0.000002 65.0 −0.07

Right superior temporal gyrus 0.00009 65.0 −0.63

Left fusiform gyrus 0.0000004 64.5 0.94

Left transverse temporal gyrus 0.00006 64.5 −0.19

Left superior parietal gyrus 0.00004 64.5 −0.25

Left precentral gyrus 0.000003 64.5 −0.36

Right superior parietal gyrus 0.00005 64.0 −0.36

Left isthmus cingulate 0.0003 63.5 0.31

Right pars triangularis 0.000001 63.5 0.05

Left postcentral gyrus 0.000006 63.5 −0.39

Right lateral occipital gyrus 0.007 63.5 −0.61

Left lateral orbito frontal gyrus 0.00001 62.9 0.07

Left paracentral gyrus 0.00002 62.9 −0.01

Left lingual gyrus 0.0004 62.4 −0.22

Right lateral ventricle 0.001 61.9 0.05

Left hippocampus 0.001 61.9 −0.01

Left lateral ventricle 0.0002 61.4 −0.08

Right postcentral gyrus 0.0007 61.4 −0.32

Right inferior temporal gyrus 0.0008 60.9 −0.50

Right isthmus cingulate 0.00006 60.4 0.24

Right bank of the sup. temp. sulc 0.00005 60.4 −0.38

Right paracentral gyrus 0.0004 60.4 −0.69

Right rostral anterior cingulate 0.03 59.9 0.10

Left insula 0.007 59.9 −0.64

(Continued)
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Table A1 | Continued

Region Logistic regression results Random forest results

Coefficient p values Logistic regression:

percent accuracy (%)

Importance score (Z

score-mean = 0, SD = 1)

Right hippocampus 0.002 58.9 0.05

Right middle temporal gyrus 0.001 58.9 −0.68

Left thalamus 0.01 58.4 −0.24

Right pars orbitalis 0.0003 57.9 −0.52

Right transverse temporal gyrus 0.006 57.9 −0.68

Right thalamus 0.02 57.4 −0.41

Left caudal anterior cingulate 0.19 56.9 −0.54

Right posterior cingulate 0.005 56.9 −0.79

Left pericalcarine 0.11 56.3 −0.65

Left lateral occipital gyrus 0.06 56.3 −0.69

Right lingual gyrus 0.007 55.8 −0.44

Left entorhinal cortex 0.14 55.8 −0.47

Right caudal anterior cingulate 0.13 55.8 −0.61

Left posterior cingulate 0.06 55.8 −0.76

Left cuneus 0.02 55.3 −0.38

Left medial orbito frontal gyrus 0.09 54.3 −0.63

Left frontal pole 0.26 54.3 −0.64

Left temporal pole 0.39 53.8 −0.68

Left parahippocampal gyrus 0.23 53.8 −0.68

Left rostral anterior cingulate 0.85 53.3 −0.66

Right parahippocampal gyrus 0.56 52.8 −0.38

Right insula 0.07 52.3 −0.79

Right entorhinal cortex 0.41 51.8 −0.61

Right cuneus 0.16 51.8 −0.67

Right medial orbito frontal gyrus 0.10 51.8 −0.67

Right frontal pole 0.25 51.3 −0.63

Right temporal pole 0.40 50.3 −0.52

Right pericalcarine 0.59 50.3 −0.60
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Table A2 | Fifteen item chart review for developmental issues with inclusion examples.

Inclusion examples

ACADEMIC

Delay Skills ≥ 1 grade level behind; repeating a grade; learning disabilities

Special education Special needs school; resource room help

SOCIAL

Abnormal peer relations Difficulty making or keeping friends; difficulty with reciprocal interaction

Withdrawal Keeps to self; loner

Disinhibition Aggression (physical and verbal); impulsivity

SPEECH/LANGUAGE

Rhythm Speech/language evaluation results ≤ 1 standard deviation below the mean

Articulation Difficulties pronouncing “R’s” at age 7

Comprehension Speech/language evaluation results ≤ 1 standard deviation below the mean

Production Speech/language evaluation results ≤ 1 standard deviation below the mean

Mutism Total or selective

Delay First words spoken after 18 months

MOTOR

Tics Vocal and motor tics

Repetition Rocking; flapping

Clumsiness Poor coordination; difficulties skipping

Delay Not crawling by 10 months

Each item is scored 1 or 0.
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