
PSYCHIATRY
REVIEW ARTICLE

published: 28 December 2012
doi: 10.3389/fpsyt.2012.00110

Neurobiological effects of transcranial direct current
stimulation: a review

Liciane Fernandes Medeiros1,2,3†, Izabel Cristina Custodio de Souza3,4†, Liliane Pinto Vidor 2,3,4,
Andressa de Souza2,3,4, Alícia Deitos2,3,4, Magdalena Sarah Volz 5, Felipe Fregni 6,Wolnei Caumo2,3,4* and
Iraci L. S.Torres1,2,3,4

1 Post-Graduate Program in Biological Sciences, Department of Physiology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
2 Pharmacology Department, Institute of Basic Health Science, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
3 Laboratory of Pain and Neuromodulation, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
4 Post-Graduate Program in Medical Sciences, School of Medicine, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
5 Charité – Universitätsmedizin Berlin, Berlin, Germany
6 Laboratory of Neuromodulation, Department of Physical Medicine and Rehabilitation, Harvard Medical School, Spaulding Rehabilitation Hospital and

Massachusetts General Hospital, Boston, MA, USA

Edited by:
Paulo Sérgio Boggio, Mackenzie
Presbyterian University, Brazil

Reviewed by:
John Hart, University of Texas at
Dallas, USA
Kate Hoy, Monash University,
Australia

*Correspondence:
Wolnei Caumo, Laboratory of Pain
and Neuromodulation, Hospital de
Clínicas de Porto Alegre, Rua Ramiro
Barcelos, 2350–CEP 90035-003
Bairro Rio Branco, Porto Alegre, Rio
Grande do Sul, Brazil.
e-mail: caumo@cpovo.net
†Liciane Fernandes Medeiros and
Izabel Cristina Custodio de Souza
have contributed equally to this work.

Transcranial Direct Current Stimulation (tDCS) is a non-invasive brain stimulation technique
that is affordable and easy to operate compared to other neuromodulation techniques.
Anodal stimulation increases cortical excitability, while the cathodal stimulation decreases
it. Although tDCS is a promising treatment approach for chronic pain as well as for neu-
ropsychiatric diseases and other neurological disorders, several complex neurobiological
mechanisms that are not well understood are involved in its effect. The purpose of this
systematic review is to summarize the current knowledge regarding the neurobiological
mechanisms involved in the effects of tDCS.The initial search resulted in 171 articles. After
applying inclusion and exclusion criteria, we screened 32 full-text articles to extract find-
ings about the neurobiology of tDCS effects including investigation of cortical excitability
parameters. Overall, these findings show that tDCS involves a cascade of events at the
cellular and molecular levels. Moreover, tDCS is associated with glutamatergic, GABAergic,
dopaminergic, serotonergic, and cholinergic activity modulation.Though these studies pro-
vide important advancements toward the understanding of mechanisms underlying tDCS
effects, further studies are needed to integrate these mechanisms as to optimize clinical
development of tDCS.

Keywords: tDCS, neurobiology, neuromodulation, functional effects, long-term depression, long-term potentiation

INTRODUCTION
Transcranial Direct Current Stimulation (tDCS) has been utilized
for the modulation of cortical excitability (Nitsche and Paulus,
2000; Fregni et al., 2005; Dieckhöfer et al., 2006; Nitsche et al.,
2007; Wagner et al., 2007b) in various diseases, such as depression,
chronic pain, stroke, and Parkinson’s disease (Hansen et al., 2010;
Lindenberg et al., 2010; Antal and Paulus, 2011; Borckardt et al.,
2011, 2012; Riberto et al., 2011; DaSilva et al., 2012; Knotkova
et al., 2012; Kumru et al., 2012). tDCS consists of applying direct
current (DC) over the scalp using electrodes that are enclosed in
perforated sponge pockets soaked with a saline solution or a rub-
ber electrode with conductive gel (Vanneste et al., 2010; DaSilva
et al., 2011). It effects depend on the following factors: the size,
polarity and position of the electrodes, the applied current inten-
sity, the density and duration of stimulation, and the properties of
the tissue in the stimulated area.

This technique can induce long-lasting and polarity-specific
changes in the excitability of the motor cortex in humans (Nitsche
and Paulus, 2001; Lang et al., 2004). Depending on the current
flow, it can increase or decrease neuronal excitability. The mech-
anisms are electrode-dependent and involve either (1) membrane

depolarization (increased spontaneous firing and excitability of
the cortical neurons for anodal stimulation) or (2) membrane
hyperpolarization (decreased neuronal firing and excitability for
cathodal stimulation; Nitsche and Paulus, 2000, 2001; Nitsche
et al., 2003a). In the most commonly used procedure, one electrode
is placed over a specific site while the other reference electrode
is placed over another location to complete the circuit of cur-
rent flow. The electrode positioning is critical for determining
the direction and spatial distribution of the current flow and,
ultimately, the effectiveness of the treatment (Utz et al., 2010).

The exact pathways involved in the effects of tDCS are not
fully understood (Wagner et al., 2007a; Utz et al., 2010; Stagg and
Nitsche, 2011). Thus, more studies to support its clinical appli-
cation are needed. It is known that weak fields are the basis of
the biological effects of tDCS. It is thought that the application
of an electric field with sufficient strength and duration can cause
a rapid increase in the electrical conductance of biological mem-
branes. This is associated with an increased permeability for ions
and small and large molecules. However, the knowledge about
the effects on neurotransmission, neurochemical markers, neural
pathways, neural tracts, or neural interfaces is incomplete.
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Few tDCS studies have been published that assess its underlying
neurobiological mechanism. Thus, there is need for further stud-
ies to broaden our understanding of the possible neurochemical
and neurobiological mechanisms involved. In addition, a better
understanding of its possible mechanisms is essential to advance
the research and to support its application in a clinical setting. Cur-
rently, there are only 123 clinical trials published in English using
tDCS. We found 32 studies that assessed the some neurobiological
mechanisms.

Neurophysiologists have shown great interest in investigating
the effects of low-intensity electrical stimulation, in which the
currents used are typically equal to or less than 2 mA, applied to
humans (Zaghi et al., 2009). However, studies in human are some-
times insufficient to understand the underlying mechanisms. To
address this, we use the translational approach of animal research.
The purpose of this review is to summarize the current knowledge
and to improve the understanding of the neurobiological mecha-
nisms that may be involved in the effects of tDCS. Moreover, we
aim to reveal novel insights into the mechanism of action of the
observed clinical responses.

METHODS
This systematic review is based on a literature search using
PubMed, Web of Science, OVID MEDLINE, and the Cochrane
Library. The keyword “tDCS” was used in combination with other
keywords such as “pain,” “chronic pain,” “depression,” “Parkin-
son,” “stroke,” “cell mechanisms,” “neurobiological mechanisms,”
“functional effects,” “intracellular effects,” “receptor,” “long-term
depression (LTD),” and “long-term potentiation (LTP).” The term
“AND/OR” was used in each combination. The reference sections
of the studies that met our inclusion criteria were also manually
screened for relevant publications.

INCLUSION CRITERIA
Studies had to meet the following criteria: (1) published in Eng-
lish between 2002 and 2012, (2) report original research, (3)
tDCS, (4) the main factors of interest were neurotransmitters,
peptides, neurochemical markers, neural pathways, neural tracts,
or neural interfaces, and (5) had outcome measures regarding
changes in symptoms or electrophysiological or biochemical para-
meters. Full-text records of each retrieved article were reviewed to
determine which studies would be included. We collected informa-
tion regarding neurobiological mechanisms from human, animal,
and cell-culture studies. Moreover, we extracted information on
cortical parameters. We systematically screened all articles for the
following information: experimental design, sample size, stimu-
lation details (stimulation paradigm and parameters), and main
results regarding neurobiological mechanisms. As this review is
mainly focused on the neurobiology of tDCS effects, we did not
conduct statistical analyses, but instead summarize the results in
a narrative format. The exclusion criterion was a lack of original
data, such as review articles.

RESULTS
The final search identified 171 studies. After applying the inclu-
sion and exclusion criteria, we included 32 studies for full-text
analysis. We screened the articles according to neurobiological

mechanisms, and summarized the results separately for in vivo
(humans and animals) and in vitro studies. Tables 1–4 show the
main findings.

NEUROBIOLOGICAL MECHANISMS
One of the most common ways that we can improve our under-
standing of neurobiological mechanisms is through pharmacolog-
ical intervention. Numerous studies have attempted to understand
the mechanism of action related to the tDCS neuromodulation
technique (Liebetanz et al., 2002; Nitsche et al., 2006; Monte-Silva
et al., 2009). It is important to note that these investigations include
healthy volunteers as well as patients. In addition, in vitro studies
and experimental research in animal models can help elucidate the
possible mechanisms involved in tDCS.

In vivo – humans
A total of 20 articles reported tDCS experiments in humans. The
results are presented in Table 1. Most of the articles used pharma-
cological interventions to characterize the after-effects of tDCS,
some of them analyzing the short and long-lasting effects after
tDCS. The use of drugs that interact in diverse systems, such as
GABAergic, serotoninergic, and cholinergic, can contribute to clar-
ify the some of the neurobiological mechanisms of action related
to after-effects of tDCS. The results from these studies demon-
strate that a variety of systems can be involved in the mechanisms
of action of tDCS. All these articles investigated healthy subjects,
except for one case report (Antal and Paulus, 2011).

In vitro
A total of six articles reported basic DC experiment. The results
are given in Table 2. Studies in vitro can bring us the membrane
and intracellular mechanisms involved in the effects of DC stimu-
lation. The studies described that the intracellular calcium can be
related to one pathway mechanism of tDCS. The BDNF-secretion
may be other pathway that can explain the after-effects of DC
stimulation.

In vivo – animals
A total of three articles reported DC stimulation experiments in
animals. The results are summarized in Table 3. These results
demonstrate that DC stimulation can promote neuroprotective
or neuroplasticity effects in rat animal models. In addition, it was
demonstrated modulation in the learning process after stimulation
using rabbits.

CORTICAL EXCITABILITY
We included four articles that associated cortical excitability
parameters with neurobiological mechanisms. The parameters
of cortical excitability can contribute to a better understand-
ing of the effects of neuromodulatory techniques, such as tDCS.
Transcranial magnetic stimulation (TMS) is a tool that can be
used for evaluating the parameters of cortical excitability in
response to neurostimulatory interventions. The results demon-
strated the polarity-specific response of tDCS, anodal stimula-
tion increases MEPs and cathodal decreases it. Most of studies
were performed in healthy subjects. The results are given in
Table 4.
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Table 2 | Neurobiological mechanisms: in vitro studies (N =6).

Author (year) Title Experiment N Model Results/insights

Khatib et al.

(2004)

Physiologic electrical

stimulation provokes

intracellular calcium

increase mediated by

phospholipase C

activation in human

osteoblasts

Electrical stimulation,

2V/cm

Cells at 60–70%

confluence

Osteoblasts cell

culture

Electrical stimulation promoted an

increase in [Ca2+]i that showed a

partial inhibition after blocking cation

channels or chelating [Ca2+]i. A

phospholipase C inhibitor

completely abolished the [Ca2+]i
increase

Radman et al.

(2009)

Role of cortical cell type

and morphology in

subthreshold and

suprathreshold uniform

electric field stimulation

in vitro

DC stimulation, anodal

∼5 mV/mm up to

∼±30 mV/mm

Coronal slices

(300 µm) of

primary motor

cortex (M1) −51

neurons

(Pyramidal cells)

Tissue model The cells responded to DC in a

subthreshold and suprathreshold

uniform electric field. The

importance of the morphology and

type of cell in mediating the

response to the stimulus was

discussed

Fritsch et al.

(2010)

Direct stimulation

promotes

BDNF-dependent

synaptic plasticity:

potential implication for

motor learning

DC stimulation 10 µA Not described Coronal mouse

slices

They proposed that DCS could

induce synaptic plasticity in vitro in

brain regions that do not respond to

conventional protocols. This was

dependent on enhanced

BDNF-secretion and TrkB-activation

Dubé et al.

(2012)

Human keratinocytes

respond to direct

stimulation by

increasing intracellular

calcium: preferential

response of poorly

differentiated cells

Electrical field of

200 mV/mm

The cells were

plated into six

wells culture

dishes) cells/cm2

and cultured until

80% confluence

was reached

Keratinocytes cell

culture

Stimulation induced an increase in

intracellular [Ca2+]. The extracellular

calcium was responsible for this

increase, and it was mediated in

part by L-type voltage-gated calcium

channels. The increase was only

detected in involucrin-negative

keratinocytes

Ruohonen and

Karhu (2012)

tDCS possibly

stimulates glial cells

DC stimulation in

E-field – 2-mA current

for tDCS – 20 mV

(2 mA/50 mA)=0.8 mV

Theoretical

analysis

Glial cells They considered the possibility of

glial mechanisms could be

modulated by tDCS

Ranieri et al.

(2012)

Modulation of LTP at rat

hippocampal CA3–CA1

synapses by direct

current stimulation

DCS anodal or cathodal,

50 stimuli at 100 Hz

(500 ms each) repeated

every 20 s

Not described Hippocampal slices

from male Wistar

rats

They suggested that tDCS can

modulate LTP in intact human brain

DC, direct current stimulation; [Ca2+]i, calcium intracellular; BDNF, brain-derived neurotrophic factor; TrkB, tyrosine kinase B; LTP, long-term potentiation.

DISCUSSION
Overall, we reviewed 32 articles in full-text extracting the main
findings of tDCS on neurobiological mechanisms. TDCS effects
appear to be multifactorial and capable to induce changes in
different systems. Thus, the effects underlying tDCS cannot be
simplified to only one mechanism. tDCS induces physiological
changes that result in local and distant plastic changes. Some of
the tDCS effects seem to be associated with homeostatic effects in
a facilitatory and/or inhibitory way.

The studies reviewed in this article demonstrate that the plastic
changes induced by tDCS involve regulation of a broad vari-
ety of neurotransmitters including dopamine, acetylcholine, and

serotonin (Kuo et al., 2007; Monte-Silva et al., 2009; Nitsche et al.,
2009b), and also affect a variety of different neuronal membrane
channels, such as sodium and calcium. Furthermore the induc-
tion of tDCS after-effects is associated with synaptic modulation.
The after-effects of anodal and cathodal tDCS are influenced
by the potentiation of synaptic glutamatergic receptors (Nitsche
et al., 2003b). Furthermore, anodal tDCS is also influenced by
GABAergic neurotransmission via interneurons (Nitsche et al.,
2004a).

We showed several consistent pharmacological approaches
to understand the mechanisms of tDCS (Table 1). The DMO
(a NMDA-receptor antagonist) induces suppression of the
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Table 3 | Neurobiological mechanisms: in vivo animals (N =3).

Author (year) Title Experiment N Results/insights

Kim et al.

(2010)

Functional and histological changes

after repeated transcranial direct

current stimulation in a stroke model

Anodal or cathodal tDCS,

0.1 mA for 30 min for 2 weeks

41 Sprague-

Dawley

rats

Anodal stimulation showed a neuroprotective

effect (functional improvement and

well-preserved white matter axons)

Márquez-Ruiz

et al. (2012)

Transcranial direct current stimulation

modulates synaptic mechanisms

involved in associative learning in

behaving rabbits

Anodal or cathodal tDCS from

0.5 to 2 mA (immediate

effects) and 1 mA for 20 min

(after-effects) over

somatosensory (S1) cortex

13 rabbits Associative learning is modulated by tDCS.

Changes were observed in the amplitude and

area of the S1 components following anodal or

cathodal stimulation. tDCS modulates

paired-pulse responses. LTD evoked in the

somatosensory cortex after cathodal tDCS is

prevented by blocking adenosine A1 receptors

Yoon et al.

(2012)

Functional improvement and

neuroplastic effects of anodal

transcranial direct current stimulation

(tDCS) delivered 1 day vs. 1 week after

cerebral ischemia in rats

Anodal or sham tDCS, 0.2 mA

for 20 min for 5 days

30 male

Sprague-

Dawley

rats

Anodal tDCS modulated neural plasticity

around the ischemic penumbra and even in

the contralesional area without aggravating the

infarction volume or causing metabolic

alterations

LTD, long-term depression.

Table 4 | Cortical parameters (N =4).

Author (year) Title Experiment N Results/insights

Lang et al.

(2004)

Effects of tDCS stimulation

over the human motor cortex

on corticospinal and

transcallosal excitability

tDCS 1 mA anodal or

cathodal (10 min)

over left M1

8 right-handed healthy

subjects (5 male)

Increased or decreased MEPs according to the

specific polarity in the left hemisphere. The duration

of TC evoked from the right M1 was shortened or

prolonged according to the specific polarity

Hasan et al.

(2011)

Dysfunctional long-term

potentiation-like plasticity in

schizophrenia revealed by

tDCS

tDCS 1 mA (3 min)

anodal over left M1

44 individuals (22

paranoid schizophrenia

were compared with 22

matched healthy

subjects)

Anodal tDCS resulted in a reduction in LTP-like

plasticity in multi-episode schizophrenia patients

compared to recent-onset schizophrenia patients

and healthy controls. All schizophrenia patients

demonstrated reduced cortical inhibition

Polanía et al.

(2011)

Introducing graph theory to

track for neuroplastic

alterations in the resting

human brain: a tDCS study

tDCS 1 mA (10 min)

anodal or sham over

left M1

13 healthy volunteers (6

male)

Anodal tDCS increased the nodal minimum path

lengths in the left somatomotor (SM1) cortex, i.e.,

the number of direct functional connections from

the left SM1 to the topologically distant gray matter

voxels was significantly decreased. The functional

coupling between the premotor and superior parietal

areas with the left SM1 was significantly increased.

The nodal connectivity degree in the left posterior

cingulated cortex area and in the right DLPFC was

significantly increased

Scelzo et al.

(2011)

Increased short latency

afferent inhibition after anodal

tDCS

tDCS 1 mA (13 min)

anodal over primary

motor cortex

12 subjects (4 male) Anodal tDCS promoted increased short latency

afferent inhibition (SAI), which can be related to

central cholinergic interneuronal circuits

M1, primary motor cortex; MEPSs, motor evoked potentials; TC, transcallosal inhibition; LTP, long-term potentiation; DLPFC, dorsolateral prefrontal cortex.

after-effects of both anodal and cathodal stimulation (Liebetanz
et al., 2002), while the CBZ (a sodium use-dependent channel
blocker) eliminates only the anodal effects (Liebetanz et al., 2002).
Similar effect was observed using flunarizine (a calcium chan-
nel blocker) in the study of Nitsche et al. (2003c); however with

smaller magnitude of effects as compared with carbamazepine.
Lorazepam (a GABAergic agonist) and d-cycloserine (d-CYC, a
partial NMDA agonist) selectively potentiate the effects of anodal
DC with increased excitability (Nitsche et al., 2004a,b). Pro-
pranolol (a non-selective β-adrenergic antagonist) decreases the
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duration of the after-effects of anodal and cathodal stimulation
(Nitsche et al., 2006). These data demonstrate the involvement of
multiple neurotransmitter functions in the mechanisms of action
of tDCS.

Therefore one important concept when understanding the
effects of tDCS is to understand that its initial effect on inducing
neuronal depolarization or hyperpolarization(Creutzfeldt et al.,
1962; Bindman et al., 1964) results also in lasting effects charac-
terized by LTP and LTD like effects (Hattori et al., 1990; Moriwaki,
1991; Islam et al., 1995; Paulus, 2004). These mechanisms are sup-
ported by clinical findings, such as enhanced in the learning and
antidepressant effects using tDCS over several weeks (Fregni et al.,
2006; Boggio et al., 2008; Loo et al., 2010; Brunoni et al., 2011).
Overall, these studies provide valuable insights into the mecha-
nisms of action that tDCS exerts on neuronal tissue (for a review,
see Nitsche, 2005).

This systematic review also highlights that the anodal effects are
associated with modulation of GABAergic interneurons (Nitsche
et al., 2004a; Stagg et al., 2009; Stagg and Nitsche, 2011). This effect
is evidenced by the effects of tDCS on short-interval intracorti-
cal inhibition and intracortical facilitation (Nitsche et al., 2005;
Stagg et al., 2009; Stagg and Nitsche, 2011). Given that GABAergic
cortical inhibitory interneurons play a role in the early stage of
Alzheimer’s disease (Koliatsos et al., 2006), modulation of these
interneurons by tDCS is a potential disease-modifying mecha-
nism. Also, a previous magnetic resonance spectroscopy (MRS)
study found that tDCS reduces GABA cortical concentrations
and this effect is correlated with impaired glutamatergic neu-
ronal activity (Stagg et al., 2009). These tDCS effects reduce the
imbalance between these excitatory and inhibitory neurotrans-
mitter systems. In contrast, carbamazepine selectively eliminated
the anodal effects, suggesting that the anodal tDCS require ini-
tially depolarization of neuronal membrane potentials (Liebetanz
et al., 2002). Liebetanz et al. (2002) provided pharmacological evi-
dence that the induction of the after-effects of tDCS requires a
combination of glutamatergic and membrane mechanisms, sim-
ilar to the induction of established types of short or long-term
neuroplasticity.

An important concept when considering the mechanism of
TDCS is its association with other interventions such as behavioral
and/or pharmacological interventions. The combined application
of cathodal/anodal tDCS and d-CYC (a partial agonist of NMDA
receptors) during a motor learning task showed that the excitabil-
ity diminution induced by cathodal tDCS prior to motor learning,
or an excitability enhancement induced by anodal tDCS combined
with d-CYC, impairs learning performance. Neurophysiologically,
a decrease in MEP amplitude was observed (Chaieb et al., 2012).
In studies combining tDCS with pharmacological interventions,
authors found that application of nicotine patch reduces both
inhibitory plasticity after cathodal tDCS and the facilitatory plas-
ticity induced by anodal tDCS (Thirugnanasambandam et al.,
2011), while acetylcholine enhances the synapse-specific corti-
cal excitability after anodal tDCS (Kuo et al., 2007). In addition,
the inhibitory effect of rivastigmine (a cholinesterase inhibitor)
on neuroplasticity induced by anodal tDCS seems contradictory
to the results obtained from animal studies in which LTP was
facilitated by cholinergic stimulation (Brocher et al., 1992; Abe

et al., 1994; Hasselmo and Barkai, 1995; Patil et al., 1998; Kuo
et al., 2007). However, these different results might be due to
methodological difference between these studies. It is possible that
synapses that are globally modified by tDCS are more suscep-
tible to cholinergic suppression of synaptic transmission during
plasticity induction.

Other neuropsychotropic drugs showed similar modulation
of tDCS-induced plasticity. In fact, TDCS effects are short-
ened by propranolol following 13 min of anodal and 9 min of
cathodal tDCS but does not eliminate those (Nitsche et al.,
2004c). Moreover, β-adrenergic receptor stimulation may have
an important role for the effects of amphetaminil (a precur-
sor of amphetamine) to increase the consolidation of externally
induced excitability enhancements. Similar to results obtained
for the β-adrenergic receptor in the hippocampus, it has been
also shown that dopamine via the D1-receptor facilitates NMDA-
dependent excitability and facilitates NMDA-dependent LTP
through Cyclic-adenosine-monophosphate-dependent (cAMP)
mechanisms (Otmakhova and Lisman, 1996, 1998; Bailey et al.,
2000). Furthermore, it was shown that a single administration
of amphetaminil induces prominent and long-term enhance-
ments of cortical dopamine signaling (Vanderschuren et al.,
1999). In this way, prolonged dopaminergic activation could sta-
bilize the tDCS-induced NMDA-receptor-dependent excitability
enhancements.

Additionally, tDCS promotes changes in brain-derived neu-
rotrophic factor (BDNF; Fritsch et al., 2010). The BDNF promotes
the survival of neurons (Lefaucheur, 2008a,b) and is important
for cell proliferation (Tessarollo, 1998). Given the results from
the study of Cheeran et al. (2008) demonstrating that a com-
mon polymorphism in the BDNF gene modulates human cor-
tical plasticity, BDNF could be a marker (and potentially also
a pathway) for assessing the effects of tDCS on the nervous
system.

Also, new approaches, such as BOLD fMRI, can provide critical
information on the mechanisms of tDCS. Furthermore, assess-
ments during the execution of tasks or tDCS stimulation both
alone and in combination with other interventions can provide
new insights into tDCS effects. Overall, there are many neurophar-
macological and neurophysiological methods that can improve
our understanding in the neurobiological mechanisms involved
in the therapeutic effects of tDCS intervention.

LIMITATIONS IN THE CURRENT KNOWLEDGE
Although tDCS is one of the most investigated techniques of
non-invasive brain stimulation, there are relatively few studies
investigating the neurobiological mechanisms associated with the
tDCS (Tables 1–4). This article provides information regarding
mechanisms of action of tDCS, however most of the mechanistic
literature investigated tDCS-related neuroplasticity in the motor
cortex. Although motor cortex related data may be of some rele-
vance for treatment of disorders such as chronic pain and motor
rehabilitation after stroke where the targeted area is M1, results
from experiments in this area are less relevant for other critical
targets such as dorsolateral prefrontal cortex. Further research is
needed to determine if mechanisms found in studies investigating
M1 are also relevant to brain target regions.
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Another important issue that has not been adequately
addressed is whether the neurophysiological findings can be
translated into clinical effects. For instance, whether an increase
in excitability induced by anodal tDCS translates into increased
motor consolidation. Further larger studies need to address this
important question. Finally, it is also important the impact of
parameters of stimulation in neuroplasticity – i.e., whether longer
periods of stimulation lead to beneficial or harmful effects and
also to understand the interaction of tDCS with pharmacological
treatment in real clinical practice where patients are taking several
medications simultaneously.

CONCLUSION AND PERSPECTIVES
In this review, we discuss the mechanisms of the action of tDCS
as to understand neurobiology and cell-signaling pathways asso-
ciated with tDCS effects. Although initial tDCS studies, showed
that its effects are related to the intensity, polarity, and dura-
tion of stimulation and the brain region stimulated, it is still not
clear the optimal parameters of stimulation especially given the
dynamic changes of brain excitability. Recent studies in animal
and cell models have suggested that tDCS induces plasticity, neu-
ronal viability, neuronal morphology, modulates synaptic trans-
mission, and biosynthesis of molecules. TDCS induces a cascade

of events associated with glutamatergic, GABAergic, dopaminer-
gic, serotonergic, and cholinergic activity modulation. In addi-
tion, we also show the importance of conducting both exper-
imental and clinical studies to understand tDCS-induced neu-
roplasticity. Overall, compelling evidence from studies reviewed
in this article emphasizes possible approaches to understand
the neurobiology of tDCS mechanisms. Additionally, it opens
new possibilities for future tDCS research in basic and clinical
neuroscience.

ACKNOWLEDGMENTS
This research was supported by grants from following Brazilian
agencies: Committee for the Development of Higher Education
Personnel – CAPES – PNPD/CAPES (for Wolnei Caumo and
Izabel Cristina Custodio de Souza), CAPES International Cooper-
ation 023/11 (for Liciane Fernandes Medeiros and Izabel Cristina
Custodio de Souza); National Council for Scientific and Tech-
nological Development – CNPq (Iraci L. S. Torres and Wolnei
Caumo); Research Support Foundation of the State of Rio Grande
do Sul (FAPERGS) – International Cooperation Program (Mag-
dalena Sarah Volz); Postgraduate Program in Medical Sciences at
the School of Medicine of the Federal University of Rio Grande
do Sul.

REFERENCES
Abe, K., Nakata, A., Mizutani, A., and

Saito, H. (1994). Facilitatory but
nonessential role of the muscarinic
cholinergic system in the genera-
tion of long-term potentiation of
population spikes in the dentate
gyrus in vivo. Neuropharmacology
33, 847–852.

Antal, A., and Paulus, W. (2011). A case
of refractory orofacial pain treated
by transcranial direct current stimu-
lation applied overhand motor area
in combination with NMDA ago-
nist drug intake. Brain Stimul. 4,
117–121.

Bailey, C. H., Giustetto, M., Huang, Y.
Y., Hawkins, R. D., and Kandel, E.
R. (2000). Is heterosynaptic modu-
lation essential for stabilizing Heb-
bian plasticity and memory? Nat.
Rev. Neurosci. 1, 11–20.

Bindman, L. J., Lippold, O. C., and Red-
fearn, J. W. (1964). The action of
brief polarizing currents on the cere-
bral cortex of the rat (1) during
current flow and (2) in the produc-
tion of long-lasting after-effects. J.
Physiol. 172, 369–382.

Boggio, P. S., Rigonatti, S. P., Ribeiro, R.
B., Myczkowski, M. L., Nitsche, M.
A., Pascual-Leone, A., et al. (2008).
A randomized, double-blind clini-
cal trial on the efficacy of corti-
cal direct current stimulation for
the treatment of major depression.
Int. J. Neuropsychopharmacol. 11,
249–254.

Borckardt, J. J., Bikson, M., Frohman,
H., Reeves, S. T., Datta, A., Bansal,

V., et al. (2012). A pilot study of
the tolerability and effects of high-
definition transcranial direct current
stimulation (HD-tDCS) on pain
perception. J. Pain 13, 112–120.

Borckardt, J. J., Romagnuolo, J., Reeves,
S. T., Madan, A., Frohman, H.,
Beam, W., et al. (2011). Feasibility,
safety, and effectiveness of tran-
scranial direct current stimulation
for decreasing post-ERCP pain:
a randomized, sham-controlled,
pilot study. Gastrointest. Endosc. 73,
1158–1164.

Brocher, S., Artola, A., and Singer,
W. (1992). Agonists of cholinergic
and noradrenergic receptors facili-
tate synergistically the induction of
long-term potentiation in slices of
rat visual cortex. Brain Res. 573,
27–36.

Brunoni, A. R., Ferrucci, R., Bor-
tolomasi, M., Vergari, M., Tadini,
L., Boggio, P. S., et al. (2011).
Transcranial direct current stimula-
tion (tDCS) in unipolar vs. bipolar
depressive disorder. Prog. Neuropsy-
chopharmacol. Biol. Psychiatry 35,
96–101.

Chaieb, L., Antal, A., Terney, D.,
and Paulus, W. (2012). Pharmaco-
logical modulation of the short-
lasting effects of antagonistic direct
current-stimulation over the human
motor cortex. Front. Psychiatry 3:67.
doi:10.3389/fpsyt.2012.00067

Cheeran, B., Talelli, P., Mori, F., Koch, G.,
Suppa, A., Edwards, M., et al. (2008).
A common polymorphism in the
brain-derived neurotrophic factor

gene (BDNF) modulates human cor-
tical plasticity and the response to
rTMS. J. Physiol. 586, 5717–5725.

Creutzfeldt, O. D., Fromm, G. H.,
and Kapp, H. (1962). Influence of
transcortical d–c currents on corti-
cal neuronal activity. Exp. Neurol. 5,
436–452.

DaSilva, A. F., Mendonca, M. E.,
Zaghi, S., Lopes, M., DosSan-
tos, M. F., Spierings, E. L., et
al. (2012). tDCS-induced analge-
sia and electrical fields in pain-
related neural networks in chronic
migraine headache. Headache 52,
1283–1295.

DaSilva, A. F., Volz, M. S., Bikson, M.,
and Fregni, F. (2011). Electrode posi-
tioning and montage in transcranial
direct current stimulation. JOVE 51,
1–11.

Dieckhöfer, A., Waberski, T. D., Nitsche,
M., Paulus, W., Buchner, H., and
Gobbelé, R. (2006). Transcranial
direct current stimulation applied
over the somatosensory cortex: dif-
ferential effect on low and high
frequency SEPs. Clin. Neurophysiol.
117, 2221–2227.

Dubé, J., Rochette-Drouin, O.,
Lévesque, P., Gauvin, R., Roberge,
C. J., Auger, F. A., et al. (2012).
Human keratinocytes respond
to direct current stimulation by
increasing intracellular calcium:
preferential response of poorly dif-
ferentiated cells. J. Cell Physiol. 227,
2660–2667.

Fregni, F., Boggio, P. S., Nitsche, M.,
Bermpohl, F., Antal, A., Feredoes,

E., et al. (2005). Anodal transcra-
nial direct current stimulation of
prefrontal cortex enhances working
memory. Exp. Brain Res. 166, 23–30.

Fregni, F., Boggio, P. S., Nitsche,
M. A., Marcolin, M. A., Rigo-
natti, S. P., and Pascual-Leone, A.
(2006). Treatment of major depres-
sion with transcranial direct cur-
rent stimulation. Bipolar Disord. 8,
203–204.

Fritsch, B., Reis, J., Martinowich, K.,
Schambra, H. M., Ji, Y., Cohen, L.
G., et al. (2010). Direct current stim-
ulation promotes BDNF-dependent
synaptic plasticity: potential impli-
cations for motor learning. Neuron
66, 198–204.

Hansen, N., Obermann, M., Poitz, F.,
Holle, D., Diener, H. C., Antal,
A., et al. (2010). Modulation of
human trigeminal and extracranial
nociceptive processing by transcra-
nial direct current stimulation of
the motor cortex. Cephalalgia 31,
661–670.

Hasan, A., Nitsche, M. A., Rein, B.,
Schneider-Axmann, T., Guse, B.,
Gruber, O., et al. (2011). Dysfunc-
tional long-term potentiation-like
plasticity in schizophrenia revealed
by transcranial direct current stimu-
lation. Behav. Brain Res. 224, 15–22.

Hasselmo, M. E., and Barkai, E. (1995).
Cholinergic modulation of activ-
ity dependent synaptic plasticity in
the piriform cortex and associative
memory function in a network bio-
physical simulation. J. Neurosci. 15,
6592–6604.

www.frontiersin.org December 2012 | Volume 3 | Article 110 | 9

http://dx.doi.org/10.3389/fpsyt.2012.00067
http://www.frontiersin.org
http://www.frontiersin.org/Neuropsychiatric_Imaging_and_Stimulation/archive


Medeiros et al. Neurobiology of tDCS

Hattori, Y., Moriwaki, A., and Hori, Y.
(1990). Biphasic effects of polarizing
current on adenosine sensitive gen-
eration of cyclic AMP in rat cerebral
cortex. Neurosci. Lett. 116, 320–324.

Islam, N., Aftabuddin, M., Moriwaki,
A., Hattori, Y., and Hori, Y. (1995).
Increase in the calcium level follow-
ing anodal polarization in the rat
brain. Brain Res. 684, 206–208.

Khatib, L., Golan, D. E., and Cho, M.
(2004). Physiologic electrical stimu-
lation provokes intracellular calcium
increase mediated by phospholipase
C activation in human osteoblasts.
FASEB J. 18, 1903–1905.

Kim, S. J., Kim, B. K., Ko, Y. J., Bang,
M. S., Kim, M. H., and Han, T.
R. (2010). Functional and histo-
logic changes after repeated tran-
scranial direct current stimulation in
rat stroke model. J. Korean Med. Sci.
25, 1499–1505.

Knotkova, H., Rosedale, M., Strauss, S.
M., Horne, J., Soto, E., Cruciani,
R. A., et al. (2012). Using tran-
scranial direct current stimulation
to treat depression in HIV-infected
persons: the outcomes of a feasi-
bility study. Front. Psychiatry 3:59.
doi:10.3389/fpsyt.2012.00059

Koliatsos, V. E., Kecojevic, A., Tron-
coso, J. C., Gastard, M. C., Ben-
nett, D. A., and Schneider, J.
A. (2006). Early involvement of
small inhibitory cortical interneu-
rons in Alzheimer’s disease. Acta
Neuropathol. 112, 147–162.

Kumru, H., Soler, D., Vidal, J., Navarro,
X., Tormos, J. M., Pascual-Leone1,
A., et al. (2012). The effects of tran-
scranial direct current stimulation
with visual illusion in neuropathic
pain due to spinal cord injury: an
evoked potentials and quantitative
thermal testing study. Eur. J. Pain.
PMID:22610590. [Epub ahead of
print].

Kuo, M. F., Grosch, J., Fregni, F., Paulus,
W., and Nitsche, M. A. (2007).
Focusing effect of acetylcholine on
neuroplasticity in the human motor
cortex. J. Neurosci. 27, 14442–14447.

Kuo, M. F., Paulus, W., and Nitsche, M.
A. (2008). Boosting focally-induced
brain plasticity by dopamine. Cereb.
Cortex 18, 648–651.

Lang, N., Nitsche, M. A., Paulus, W.,
Rothwell, J. C., and Lemon, R. N.
(2004). Effects of transcranial direct
current stimulation over the human
motor cortex on corticospinal and
transcallosal excitability. Exp. Brain
Res. 156, 439–443.

Lefaucheur, J. P. (2008a). “TMS and
pain,” in The Oxford Handbook
of Transcranial Stimulation, eds
Wasserman, E. A., Epstein, C. M.,

Ziemann, U., Walsh, V., Paus, T.,
and Lisanby, S (New York: Oxford
University), 717–736.

Lefaucheur, J. P. (2008b). Use of repet-
itive transcranial magnetic stimula-
tion in pain relief. Expert Rev. Neu-
rother. 8, 799–808

Liebetanz, D., Nitsche, M. A., Ter-
gau, F., and Paulus, W. (2002).
Pharmacological approach to the
mechanisms of transcranial DC-
stimulation-induced after effects of
human motor cortex excitability.
Brain 125, 2238–2247.

Lindenberg, R., Renga, V., Zhu, L.
L., Nair, D., and Schlaug, G.
(2010). Bihemispheric brain stimu-
lation facilitates motor recovery in
chronic stroke patients. Neurology
75, 2176–2184.

Loo, C. K., Sachdev, P., Martin, D.,
Pigot, M., Alonzo, A., Malhi, G. S.,
et al. (2010). A double blind, sham-
controlled trial of transcranial direct
current stimulation for the treat-
ment of depression. Int. J. Neuropsy-
chopharmacol. 13, 61–69.

Márquez-Ruiz, J., Leal-Campanario, R.,
Sánchez-Campusano, R., Molaee-
Ardekani, B., Wendling, F., Miranda,
P. C., et al. (2012). Transcranial
direct current stimulation modu-
lates synaptic mechanisms involved
in associative learning in behaving
rabbits. Proc. Natl. Acad. Sci. U.S.A.
109, 6710–6715.

Monte-Silva, K., Kuo, M. F., Thirug-
nanasambandam, N., Liebetanz, D.,
Paulus, W., and Nitsche, M. A.
(2009). Dose-dependent inverted U-
shaped effect of dopamine (D2-
like) receptor activation on focal
and nonfocal plasticity in humans.
J. Neurosci. 29, 6124–6131.

Monte-Silva, K., Liebetanz, D., Grundey,
J., Paulus, W., and Nitsche, M.
A. (2010). Dosage-dependent non-
linear effect of L-dopa on human
motor cortex plasticity. J. Physiol.
(Lond.) 588, 3415–3424.

Moriwaki, A. (1991). Polarizing cur-
rents increase noradrenaline-elicited
accumulation of cyclic AMP in
rat cerebral cortex. Brain Res. 544,
248–252.

Nitsche, M. (2005). Pharmacological
characterisation and modulation of
neuroplasticity in humans. Curr.
Neuropharmacol. 3, 217–229.

Nitsche, M. A., Doemkes, S., Karaköse,
T., Antal, A., Liebetanz, D., Lang, N.,
et al. (2007). Shaping the effects of
transcranial direct current stimula-
tion of the human motor cortex. J.
Neurophysiol. 97, 3109–3117.

Nitsche, M. A., Kuo, M. F., Grosch, J.,
Bergner, C., Monte-Silva, K., and
Paulus, W. (2009a). D1-receptor

impact on neuroplasticity in
humans. J. Neurosci. 29, 2648–2653.

Nitsche, M. A., Kuo, M. F., Karrasch,
R., Wächter, B., Liebetanz, D., and
Paulus,W. (2009b). Serotonin affects
transcranial direct current-induced
neuroplasticity in humans. Biol. Psy-
chiatry 66, 503–508.

Nitsche, M. A., Lampe, C., Antal, A.,
Liebetanz, D., Lang, N., Tergau, F.,
et al. (2006). Dopaminergic modu-
lation of long-lasting direct current
induced cortical excitability changes
in the human motor cortex. Eur. J.
Neurosci. 23, 1651–1657.

Nitsche, M. A., Liebetanz, D., Schlit-
terlau, A., Henschke, U., Fricke,
K., Frommann, K., et al. (2004a).
GABAergic modulation of DC
stimulation-induced motor cortex
excitability shifts in humans. Eur. J.
Neurosci. 19, 2720–2726.

Nitsche, M. A., Jaussi, W., Liebe-
tanz, D., Lang, N., Tergau, F., and
Paulus, W. (2004b). Consolidation
of human cortical neuroplasticity by
D-cycloserine. Neuropsychopharma-
cology 29, 1573–1578.

Nitsche, M. A., Grundey, J., Liebetanz,
D., Lang, N., Tergau, F., and Paulus,
W. (2004c). Catecholaminergic con-
solidation of motor cortical neuro-
plasticity in humans. Cereb. Cortex
14, 1240–1245.

Nitsche, M. A., Nitsche, M. S., Klein,
C. C., Tergau, F., Rothwell, J. C.,
and Paulus, W. (2003a). Level of
action of cathodal DC polarisation
induced inhibition of the human
motor cortex. Clin. Neurophysiol.
114, 600–604.

Nitsche, M. A., Fricke, K., Henschke, U.,
Schlitterlau, A., Liebetanz, D., Lang,
N., et al. (2003b). Pharmacological
modulation of cortical excitability
shifts induced by transcranial direct
current stimulation in humans. J.
Physiol. 553, 293–301.

Nitsche, M., Liebetanz, D., Lang, N.,
Antal, A., Tergau, F., and Paulus,
W. (2003c). Safety criteria for tran-
scranial direct current stimulation
(tDCS) in humans. Clin. Neurophys-
iol. 114, 2220–2222.

Nitsche, M. A., and Paulus, W. (2000).
Excitability changes induced in the
human motor cortex by weak tran-
scranial direct current stimulation. J.
Physiol. (Lond.) 527, 633–639.

Nitsche, M. A., and Paulus, W.
(2001). Sustained excitability ele-
vations induced by transcranial
DC motor cortex stimulation in
humans. Neurology 57, 1899–1901.

Nitsche, M. A., Seeber, A., Frommann,
K., Klein, C. C., Rochford, C.,
Nitsche, M. S., et al. (2005). Mod-
ulating parameters of excitability

during and after transcranial direct
current stimulation of the human
motor cortex. J. Physiol. (Lond.) 568,
291–303.

Otmakhova, N. A., and Lisman, J. E.
(1996). D1/D5 dopamine receptor
activation increases the magnitude
of early long-term potentiation at
CA1 hippocampal synapses. J. Neu-
rosci. 16, 7478–7486.

Otmakhova, N. A., and Lisman, J. E.
(1998). D1/D5 dopamine receptors
inhibit depotentiation at CA1
synapses via cAMP-dependent
mechanism. J. Neurosci. 18,
1270–1279.

Patil, M. M., Linster, C., Lubenov, E., and
Hasselmo, M. E. (1998). Cholinergic
agonist carbachol enables associa-
tive long-term potentiation in pir-
iform cortex slices. J. Neurophysiol.
80, 2467–2474.

Paulus, W. (2004). Outlasting excitabil-
ity shifts induced by direct cur-
rent stimulation of the human
brain. Suppl. Clin. Neurophysiol. 57,
708–714.

Polanía, R., Paulus, W., Antal, A., and
Nitsche, M. A. (2011). Introducing
graph theory to track for neuroplas-
tic alterations in the resting human
brain: a transcranial direct current
stimulation study. Neuroimage 54,
2287–2296.

Radman, T., Ramos, R. L., Brumberg,
J. C., and Bikson, M. (2009). Role
of cortical cell type and morphology
in subthreshold and suprathreshold
uniform electric field stimulation
in vitro. Brain Stimul. 2, 215–228,
228.e1-3.

Rango, M., Cogiamanian, F., Marceglia,
S., Barberis, B., Arighi, A., Biondetti,
P., et al. (2008). Myoinositol content
in the human brain is modified by
transcranial direct current stimula-
tion in a matter of minutes: a 1H-
MRS study. Magn. Reson. Med. 60,
782–789.

Ranieri, F., Podda, M. V., Riccardi, E.,
Frisullo, G., Dileone, M., Profice,
P., et al. (2012). Modulation of
LTP at rat hippocampal CA3-
CA1 synapses by direct current
stimulation. J. Neurophysiol. 107,
1868–1880.

Riberto, M., Alfieri, F. M., Pacheco,
K. M. B., Leite, V. D., Kai-
hami, H. N., Fregni, F., et al.
(2011). Efficacy of transcranial
direct current stimulation coupled
with a multidisciplinary rehabilita-
tion program for the treatment of
fibromyalgia. Open Rheumatol. J. 5,
45–50.

Ruohonen, J., and Karhu, J. (2012).
tDCS possibly stimulates glial cells.
Clin. Neurophysiol. 123, 2006–2009.

Frontiers in Psychiatry | Neuropsychiatric Imaging and Stimulation December 2012 | Volume 3 | Article 110 | 10

http://dx.doi.org/10.3389/fpsyt.2012.00059
http://www.frontiersin.org/Neuropsychiatric_Imaging_and_Stimulation
http://www.frontiersin.org/Neuropsychiatric_Imaging_and_Stimulation/archive


Medeiros et al. Neurobiology of tDCS

Scelzo, E., Giannicola, G., Rosa, M.,
Ciocca, M., Ardolino, G., Cogia-
manian, F., et al. (2011). Increased
short latency afferent inhibition
after anodal transcranial direct cur-
rent stimulation. Neurosci. Lett. 498,
167–170.

Stagg, C. J., Bachtiar, V., and Johansen-
Berg, H. (2011). The role of GABA
in human motor learning. Curr. Biol.
21, 480–484.

Stagg, C. J., Best, J. G., Stephenson, M.
C., O’Shea, J., Wylezinska, M., Kinc-
ses, Z. T., et al. (2009). Polarity sen-
sitive modulation of cortical neuro-
transmitters by transcranial stimula-
tion. J. Neurosci. 29, 5202–5206.

Stagg, C. J., and Nitsche, M. A. (2011).
Physiological basis of transcranial
direct current stimulation. Neurosci-
entist 17, 37–53.

Terney, D., Bergmann, I., Poreisz, C.,
Chaieb, L., Boros, K., Nitsche, M.
A., et al. (2008). Pergolide increases
the efficacy of cathodal direct cur-
rent stimulation to reduce the ampli-
tude of laser-evoked potentials in
humans. J. Pain Symptom Manage.
36, 79–91.

Tessarollo, L. (1998). Pleiotropic
functions of neurotrophins in

development. Cytokine Growth
Factor Rev. 9, 125–137.

Thirugnanasambandam, N., Grundey,
J., Adam, K., Drees, A., Skwirba, A.
C., Lang, N., et al. (2011). Nicotin-
ergic impact on focal and non-focal
neuroplasticity induced by non-
invasive brain stimulation in non-
smoking humans. Neuropsychophar-
macology 36, 879–886.

Utz, K. S., Dimova, V., Oppenlander,
K., and Kerkhoff, G. (2010). Electri-
fied minds: transcranial direct cur-
rent stimulation (tDCS) and gal-
vanic vestibular stimulation (GVS)
as methods of non-invasive brain
stimulation in neuropsychology – a
review of current data and future
implications. Neuropsychologia 48,
2789–2810.

Vanderschuren, L. J., Schoffelmeer, A.
N., Mulder, A. H., and De Vries, T. J.
(1999). Dopaminergic mechanisms
mediating the long-term expression
of locomotor sensitization follow-
ing pre-exposure to morphine or
amphetamine. Psychopharmacology
(Berl). 143, 244–253.

Vanneste, S., Plazier, M., Ost, J., van
der Loo, E., Heyning, P. V., and Rid-
der, D. (2010). Bilateral dorsolateral

prefrontal cortex modulation for
tinnitus by transcranial direct cur-
rent stimulation: a preliminary clin-
ical study. Exp. Brain Res. 202,
779–785.

Wagner, T., Fregni, F., Fecteau, S.,
Grodzinsky, A., Zahn, M., and
Pascual-Leone, A. (2007a). Tran-
scranial direct current stimulation:
a computer-based human model
study. Neuroimage 35, 1113–1124.

Wagner, T., Valero-Cabre, A., and
Pascual-Leone, A. (2007b). Non-
invasive human brain stimulation.
Annu. Rev. Biomed. Eng. 9, 527.

Yoon, K. J., Oh, B. M., and Kim,
D. Y. (2012). Functional improve-
ment and neuroplastic effects of
anodal transcranial direct cur-
rent stimulation (tDCS) delivered
1 day vs. 1 week after cerebral
ischemia in rats. Brain Res. 1452,
61–72.

Zaghi, S., Heine, N., and Fregni, F.
(2009). Brain stimulation for the
treatment of pain: a review of
costs, clinical effects, and mech-
anisms of treatment for three
different central neuromodulatory
approaches. J. Pain Manag. 2,
339–352.

Conflict of Interest Statement: The
authors declare that the research was
conducted in the absence of any com-
mercial or financial relationships that
could be construed as a potential con-
flict of interest.

Received: 05 July 2012; accepted: 04
December 2012; published online: 28
December 2012.
Citation: Medeiros LF, custodio de Souza
IC, Vidor LP, de Souza A, Deitos A,
Volz MS, Fregni F, Caumo W and Tor-
res ILS (2012) Neurobiological effects of
transcranial direct current stimulation:
a review. Front. Psychiatry 3:110. doi:
10.3389/fpsyt.2012.00110
This article was submitted to Frontiers in
Neuropsychiatric Imaging and Stimula-
tion, a specialty of Frontiers in Psychiatry.
Copyright © 2012 Medeiros, de Souza,
Vidor, de Souza, Deitos, Volz, Fregni,
Caumo and Torres. This is an open-
access article distributed under the terms
of the Creative Commons Attribution
License, which permits use, distribution
and reproduction in other forums, pro-
vided the original authors and source
are credited and subject to any copy-
right notices concerning any third-party
graphics etc.

www.frontiersin.org December 2012 | Volume 3 | Article 110 | 11

http://dx.doi.org/10.3389/fpsyt.2012.00110
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.frontiersin.org
http://www.frontiersin.org/Neuropsychiatric_Imaging_and_Stimulation/archive

	Neurobiological effects of transcranial direct current stimulation: a review
	Introduction
	Methods
	Inclusion criteria

	Results
	Neurobiological mechanisms
	In vivo – humans
	In vitro
	In vivo – animals

	Cortical excitability

	Discussion
	Limitations in the current knowledge

	Conclusion and perspectives
	Acknowledgments
	References


