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Theories of drug addiction that incorporate various concepts from the fields of learning
and memory have led to the idea that classical and operant conditioning principles under
lie the compulsiveness of addictive behaviors. Relapse often results from exposure to
drug-associated cues, and the ability to extinguish these conditioned behaviors through
inhibitory learning could serve as a potential therapeutic approach for those who suffer from
addiction. This review will examine the evidence that extinction learning alters neuronal
plasticity in specific brain regions and pathways. In particular, subregions of the prefrontal
cortex (PFC) and their projections to other brain regions have been shown to differentially
modulate drug-seeking and extinction behavior. Additionally, there is a growing body of
research demonstrating that manipulation of neuronal plasticity can alter extinction learn-
ing. Therefore, the ability to alter plasticity within areas of the PFC through pharmacological
manipulation could facilitate the acquisition of extinction and provide a novel intervention

to aid in the extinction of drug-related memories.
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Once believed to result from an immoral personality or lack of
will power, it is now clear that drug addiction is a disease of the
nervous system that involves uncontrollable drug intake and com-
pulsive drug-seeking behavior. As such, addiction is characterized
by periods of repeated drug use followed by unsuccessful attempts
to maintain abstinence. As a chronic relapsing disorder, addiction
is associated with numerous brain changes that include signaling
pathways, neurotransmitters, and cell mechanisms that overlap
with those that mediate normal learning and memory processes.
Thus, there have been numerous theories that incorporate mech-
anisms of learning and memory as a basis for drug addiction
(O’Brien et al., 1992; Di Chiara, 1999; Volkow et al., 2002; Kel-
ley, 2004; Wise, 2004; Hyman, 2005; Weiss, 2005). These theories
suggest that through basic conditioning principles, certain behav-
iors and drug-environment associations become “overlearned”
and thus contribute to the compulsive behavior of addicts.

In classical Pavlovian conditioning, also referred to as stimulus-
outcome conditioning, the presentation of a conditioned stimulus
(CS) paired with presentation of an unconditioned stimulus (US)
after repeated pairings comes to elicit a conditional response (CR).
In a drug context, the repeated pairing of the CS (e.g., envi-
ronmental cues) with the reinforcing properties of a drug (US)
results in the ability of the CS alone to elicit drug-seeking behav-
iors. Conversely, instrumental conditioning, also referred to as
response-outcome conditioning, involves learning through con-
sequences (either positive or negative) that are contingent upon
a particular behavior. In a drug context, behaviors that lead to
the reinforcing effects of a drug are more likely to be repeated in
the future. It is believed that drug-taking behaviors become com-
pulsive and automatic (instrumental conditioning) with repeated
drug exposure, and the associations between drugs and specific

environmental cues and context become overly salient (classi-
cal conditioning). Conditioning processes also play a role in the
influence of environments that predict drug availability to induce
craving and promote relapse (Childress et al., 1988, 1999; Kalivas
and Volkow, 2005).

The ability to suppress drug-seeking behaviors that are heavily
influenced by drug memories is a logical therapeutic approach in
the prevention of relapse. Extinction is the gradual reduction of a
CR when the CS is no longer paired with the US. Functionally, it is
observed as a decrease in responding from higher levels observed
prior to extinction to lower levels following extinction training.
Theoretically, this type of inhibitory training could reduce the
occurrence of behaviors that are trademarks of addiction includ-
ing drug-seeking and relapse. However, current implementations
of extinction-based techniques, such as exposure therapy, have a
poor record of efficacy (Childress et al., 1993; Conklin and Tiffany,
2002a,b). Therefore, there is a need to better understand the neural
mechanisms that underlie extinction learning and develop thera-
peutic interventions that increase the success rates of cue exposure
therapies. This could lead to treatments involving a combination
of behavioral training and pharmacological interventions that cre-
ate a more robust and persistent decrease in cue-induced affective
responses to drug memories (Davis et al., 2006). A substantial
amount of research has focused on the neurobiological processes
that underlie the extinction of conditioned fear and non-drug
reinforcers (e.g., food). While the majority of previous work has
focused on understanding the mechanisms involved in fear/non-
drug extinction, there is an increasing interest in understanding
how these principles apply to addiction related behaviors. Results
from the fear and non-drug extinction field have greatly informed
and helped guide studies in addiction. Therefore, while the focus of
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this review is on the extinction of drug-seeking behavior, observa-
tions from the fear/non-drug extinction field will be incorporated
where appropriate.

WHAT IS EXTINCTION LEARNING?

At first glance, the phenomenon of extinction may appear to sim-
ply represent a process that involves the unlearning, forgetting,
and/or erasure of a previously formed memory (Rescorla and Wag-
ner, 1972). However, a large body of evidence gained over the past
several decades provides strong support for the idea originally
suggested by Pavlov (1927) that extinction is “new” and “active”
learning and is not simply the “unlearning” or erasure of previously
formed associations. Many of these studies have been carried out
in rodents and involve the extinction of responding for a natural
reinforcer such as food. In contrast, studies of extinction learning
in addiction typically involve extinction of self-administration of
a drug of abuse such as cocaine. These experimental procedures
incorporate aspects of both instrumental and classical condition-
ing to train animals to perform a behavior (e.g., lever pressing)
to receive access to a drug and associate discrete cues (e.g., audi-
tory and/or visual) with the drug’s reinforcing effects. Regardless
of the type of reinforcer used (e.g., food or drug), extinction is
defined in this review as the omission of a previously delivered
unconditioned stimuli/reinforcers or the absence of a contingency
between a response and reinforcer (Lattal and Lattal, 2012). In
addition, while extinction behavior can be observed in both clas-
sical and instrumental conditioning paradigms, this review will
not attempt to define the neural mechanisms associated with each
form of learning.

The idea that extinction involves new learning has great impli-
cations for not only understanding how drug memories can have
a lasting influence on relapse but also for the development of
pharmacological treatments for addiction. The following lines of
evidence from studies examining the extinction of drug-related
behaviors support the idea that extinction is indeed newlearning:

(1) After extinction training, drug-seeking behavior can be reac-
tivated with a single stimulus without the need for additional
behavioral training (Sinha et al., 2000; Stewart, 2000, 2003;
Sinha, 2001; Shalev et al., 2002; See, 2005; Epstein et al., 2006;
Kalivas et al., 2006; Olmstead, 2006).

(2) Drug-seeking can resume after lengthy periods of absti-
nence or extinction training indicating that the original drug-
memory remains and has not simply been deleted (Hammers-
ley, 1992; Tobena et al., 1993; Corty and Coon, 1995; Di Ciano
and Everitt, 2004).

(3) Extinction is context-specific (Bouton, 2000, 2002, 2004;
Chaudhri et al., 2008; Wells et al., 2011), which suggests that
original memory of drug reinforcement is still present even
after extinction training.

(4) The retraining of self-administration after extinction is con-
siderably less compared to original training (Carroll, 1998;
Grasing et al., 2005).

(5) Extinction learning has been shown to involve classic cellular
hallmarks of learning and memory (Crombag and Shaham,
2002; Sutton et al., 2003; Self and Choi, 2004; Self et al., 2004;
Knackstedt et al., 2010).

Thus, findings from the literature on addiction support the
idea that extinction training is not the removal of a previously
formed association but instead involves the generation of a new
memory that competes with the initial memory for control of
behavior. As such, the original associative and instrumental con-
ditioning that occurs during the early stages of addiction remains
intact. Based on similar findings from the fear extinction litera-
ture, Quirk et al. (2006) presented a schematic model to illustrate
the idea that even though fear behavior decreases, the original
fear memory remains. As depicted in Figure 1 the same con-
cept can be mapped onto the processes of addiction such that
drug-seeking behavior declines during extinction training, but
the drug-memory remains and competes with the newly formed
extinction memory for the control of behavior. The formation
of new memories during extinction training likely utilizes neural
circuitry involved in basic learning and memory process. In
the following sections we review studies that have highlighted
specific brain regions and mechanisms involved in extinction
learning.

NEUROCIRCUITRY OF THE EXTINCTION LEARNING

While the neurocircuitry of extinction is likely diffuse and involves
a distributed network, there is evidence for the involvement of sev-
eral key brain regions in drug-seeking, fear expression, and extinc-
tion behavior that could constitute differential circuits associated
with each of these behaviors.

THE PREFRONTAL CORTEX
Increasing evidence has implicated the prefrontal cortex (PFC) in
the extinction of both fear and drug-seeking behaviors. Anatomi-
cally, the rodent PFC is located in the anterior pole of the frontal
cortex and is loosely defined as the anterior cingulate (ACC),
medial PFC (mPFC), and orbital frontal cortex (OFC). As illus-
trated in Figure 2, the rodent mPFC can be further subdivided
into a dorsal region called the prelimbic (PrL) cortex and a ventral
region called the infralimbic (IfL) cortex. These subregions do not
have well demarcated structural boundaries that can often make
it difficult to clearly delineate these subregions, especially given
the small size of the rodent brain. For this reason, investigators
often simply divide this area into a dorsomedial PFC that includes
the dorsal region of the PrL cortex and much of the overlying
ACC, and a ventromedial PFC that includes the IfL cortex and the
ventral portions of the PrL cortex (Figure 2). Defining analogous
subregions of the PFC of rodents and human brain is also difficult
due to the evolutionary expansion of the PFC. Therefore defini-
tions are based not only upon common anatomical circuitry but
also upon function. Based upon similarities in thalamic inputs,
the rodent PrL region is considered to be equivalent to Brod-
mann area 32 (pregenual anterior cortex) and the IfL cortex is
equivalent to Brodmann area 25 (subgenual anterior cortex) in
the human (Figure 2). It should also be noted that the dorsolat-
eral PFC of humans (conservatively defined as areas 9 and 46) is
also considered to be equivalent to the rodent mPFC using a func-
tional definition as both regions are involved in working-memory
processes.

While complex behaviors such as working memory, impulsiv-
ity, motivation, and decision-making have often been linked to
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Associative Inhibitory
Learning Learning

Drug-seeking behavior during the transition to addiction
followed by cue exposure treatment

The formation of drug memories through pairings with environmental
stimuli that persists even through extinction training (expsosure therapy)

The formation of an extinction memory that ultimately competes with
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the original drug memory for control of conditioned behavior

FIGURE 1 | Depiction of the temporal relationship of associative learning  trace remains long after discontinuation of drug-taking. The extinction of

of drug-seeking behavior with inhibitory learning during subsequent drug-seeking by pairing unreinforced exposure of drug-related cues, does not
extinction of the drug-seeking behavior. The initial phase of addiction result in the deletion of the original drug memory, but instead involves the
involves associative learning processes in which drug-taking becomes linked formation of a new inhibitory “extinction memory.” While this new memory
through classic Pavlovian conditioning with drug-related cues (e.g., drug provides inhibitory drive over drug-seeking behavior in the short term, the
paraphernalia or drug-taking environment). With repeated pairing, this original drug-memory remains, which may explain the high rate of relapse

association results in formation of a persistent “drug memory.” This memory following behavioral extinction therapies.
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dorsomedial o
¢ Area 32

f
/ | T Prelimbic —»
J

\ .,&—"A—rga o — Infrallmblc—fk v

ventromedial
FIGURE 2 | Anatomical depiction showing the location of the investigators simply divide the rodent medial PFC into a dorsomedial
prelimbic (PrL) and infralimbic (IfL) subregions of the medial PFC and ventromedial region as illustrated in the diagram. The original
of the rat and their equivalent regions of the human brain. Based image of the human brain shown on the left was modified from an
upon commonality of thalamic inputs, the rodent PrL region is roughly image downloaded from Wikipedia (http://en.wikipedia.org/wiki/
analogous to Brodmann area 32 while the IfL is roughly analogous to File:Brodmann_area_32_medial.jpg). The original rat brain image
Brodmann area 25. Because of the small size of the rodent brain and shown on the right was modified from Paxinos and Watson
the lack of defined borders for the PrL and IfL regions, some (6th Edition).

the cognitive function of the PFC, a number of recent studies the expression of conditioned fear while the IfL cortex is critical
have implicated PFC subregions in extinction behavior. In partic-  for the expression of extinction behavior (for reviews, see Quirk
ular, lesion studies have shown that the PrL cortex is necessary for et al., 2010; Sierra-Mercado et al., 2011; Milad and Quirk, 2012).

www.frontiersin.org May 2013 | Volume 4 | Article 46 | 3


http://en.wikipedia.org/wiki/File:Brodmann_area_32_medial.jpg
http://en.wikipedia.org/wiki/File:Brodmann_area_32_medial.jpg
http://www.frontiersin.org
http://www.frontiersin.org/Addictive_Disorders_and_Behavioral_Dyscontrol/archive

Gass and Chandler

Extinction learning and the prefrontal cortex in addiction

Drug-seeking behavior has been studied extensively in humans
where it has been shown that presentation of drug stimuli sig-
nificantly increase activation in specific regions of the PFC (for
a review, see Goldstein and Volkow, 2011). Several inactivation
studies have also implicated the PrL cortex of the rat as a critical
component in the circuitry for drug-seeking behavior includ-
ing cocaine (McFarland and Kalivas, 2001; Capriles et al., 2003;
McLaughlin and See, 2003; McFarland et al., 2004; See, 2005;
Di Pietro et al., 2006) and heroin (LaLumiere and Kalivas, 2008;
Rogers et al., 2008). Additionally, the IfL cortex, which has been
studied extensively in fear extinction, has also been implicated in
the extinction of drug-seeking behavior (Ovari and Leri, 2008;
Peters et al., 2008a,b). As depicted in Figure 3, converging lines of
evidence from both the fear- and drug-conditioning fields suggest
that the PrL cortex serves as an “on-switch” for conditioned fear
expression and drug-seeking, while the IfL cortex functions as an
“off-switch” for the expression of extinction behavior (LaLumiere
and Kalivas, 2008; Peters et al., 2008a; Quirk and Mueller, 2008;
LaLumiere et al., 2010). These subregions of the PFC could thus
serve as candidate regions for plasticity-related changes associated
with extinction behavior.

DORSAL AND VENTRAL STRIATUM
Different subregions of the striatum are important for mediat-
ing components of reward. The rodent striatum is divided into
the dorsal and ventral striatum, and each of these regions can be
further subdivided. Due to its involvement in habit learning, the
dorsal striatum has been implicated in various aspects of the tran-
sition from voluntary behavior to uncontrolled habitual behavior
that characterizes drug abuse (Robbins and Everitt, 2002; Weiss,
2005; Izquierdo et al., 2006). In particular, the dorsomedial sub-
region has been shown to modulate goal-direction actions that
transitions to the dorsolateral striatum as these actions become
habitual. The ventral striatum or nucleus accumbens (NAc) can be
further divided into a lateral “core” and medial “shell” subregion.
Through its connections with the PFC, amygdala, hippocampus,
and motor regions, the NAc plays a role in guiding emotionally
relevant behavioral responses related to the reinforcing properties
of drugs and drug-related stimuli (Bonci et al., 2003; Di Chiara
and Bassareo, 2007).

Recent studies have also implicated the NAc in extinction
of drug-seeking behavior. Cocaine self-administration causes a
decrease in tyrosine hydroxylase in the NAc shell which is reversed
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“Drug-seeking
behavior”
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“Extinction
behavior”

Hippocampus

* Changes in glutamate receptor expression
after extinction training

* Modulation of BLA activity alters extinction
and drug-seeking behavior

* Pathway promotes the expression of drug-
seeking behavior

* Pathway that exerts inhibitory control of
the PrL to attenuate drug-seeking behavior
(extinction)

—————————————————— -
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* Changes in glutamate receptor expression
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FIGURE 3 | Schematic of the proposed circuitry involved in the
drug-seeking and extinction behavior. Projections from the PrL cortex to
the NAc core regulates the expression of cocaine-seeking behavior (indicated
by green arrows) while projections from the IfL cortex to the NAc shell

regulates the expression of extinction behavior (indicated by red arrows).
Recent studies have also implicated the involvement of other brain regions
such as the hippocampus, MDH, and BLA in the neurocircuitry of extinction
of drug-seeking behavior.
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with extinction training during withdrawal from cocaine (Schmidt
et al.,, 2001). Extinction training also induces an upregulation
in the expression of AMPA receptor subunits within the NAc
shell (Sutton et al., 2003; Self et al., 2004). More recently, it was
shown that inactivation for the NAc shell resulted in the expres-
sion of cocaine-seeking behavior, possibly through an interaction
with the IfL cortex (Peters et al., 2008a). Similarly, activation
of IfL glutamatergic projections with an AMPA receptor posi-
tive allosteric modulator reduced cocaine-seeking behavior, and
blockade of AMPA activity in the NAc shell attenuated this effect
(LaLumiere et al., 2012). Similar findings have been observed
with the extinction of ethanol-seeking behavior. For instance,
the NAc shell, possibly through interactions with the hypothal-
amus or the amygdala, helps mediate the expression of extinc-
tion behavior (Millan et al., 2010; Millan and McNally, 2011).
With regards to the NAc core, extinction training also normal-
izes cocaine-induced deficits in levels of the GluN1 subunit of the
NMDA receptor (Self et al., 2004). Consistent with its role in goal-
directed and habitual actions, the dorsal striatum has also been
implicated in the extinction of habitual cocaine-seeking behavior
(Fuchs et al., 2006). These lines of evidence suggest that there is a
significant amount of plasticity that occurs within the dorsal stria-
tum and NAc during extinction learning, and that these regions
are central in the neurocircuitry of extinction of drug-seeking
behavior.

AMYGDALA

As is the case with the PFC and the striatum, the amygdala
is made up of a complex of different substructures that dif-
ferentially contribute to extinction of fear- and drug-seeking
behavior. The amydaloid complex includes the basal and lat-
eral subregions (collectively known as the basolateral amygdala,
BLA), medial amygdala (MeA), central amygdala (CeA), and cor-
tical amygdala (CoA). The amygdala is involved with various
learning and memory processes including formation and con-
solidation of emotional memories (Cahill et al., 2001; LaBar,
2003). The BLA also has an established role in synaptic plas-
ticity associated with emotion-related behaviors, the processing
of emotionally relevant stimuli (Cahill et al., 1995; McGaugh,
2004; Phelps et al., 2004; Maren, 2005; LaBar and Cabeza, 2006),
and in stimulus-reward associations (Hatfield et al., 1996; Blun-
dell et al., 2001; Baxter and Murray, 2002; Everitt et al., 2003;
See, 2005; Balleine and Killcross, 2006). The BLA also plays an
integral role in the formation of associations between drugs and
environmental cues (Hiroi and White, 1991; Brown and Fibiger,
1993; Whitelaw et al., 1996; Rizos et al., 2005). While there has
been a substantial amount of research implicating the BLA in
the extinction of fear conditioning (Myers and Davis, 2002, 2007;
Quirk et al., 20105 Sierra-Mercado et al., 2011), studies have also
implicated this region in the extinction of drug-seeking behav-
ior. For example, enhancement of glutamatergic transmission
within the BLA facilities the extinction of a drug-paired con-
ditioned place preference (CPP) (Shidara and Richmond, 2002;
Schroeder and Packard, 2004), and given the essential role of the
BLA in drug-seeking (See et al., 2003), it is logical to assume
that plasticity within this structure may also influence extinction
learning.

HIPPOCAMPUS

The hippocampus is known to play an important role in various
forms of learning and spatial/contextual memory and in memory
consolidation/retrieval (Neves et al., 2008). The hippocampus is
also involved in extinction behavior as evidenced by impairments
in context-dependent extinction of fear conditioning that results
from inactivation of this brain region (Corcoran and Maren, 2001;
Corcoran et al., 2005; Ji and Maren, 2005) and cellular substrate
inhibition (Szapiro et al., 2003; Vianna et al., 2003; Power et al.,
2006). Similarly, studies have also implicated the hippocampus
in the extinction of drug-related behaviors. Electrical stimulation
of the ventral subiculum of the hippocampus reinstates cocaine-
seeking (Vorel etal.,2001), and inactivation of this region abolishes
cocaine drug-seeking (Sun et al., 2005). Neuronal activity within
the CA1 and dentate gyrus (DG) has also been shown to change
with extinction training of cocaine-associated cues providing fur-
ther evidence that plasticity within this structure is associated with
extinction behavior (Neisewander et al., 2000).

HYPOTHALAMUS

A less investigated structure that has recently been implicated in
extinction behavior is the hypothalamus. This structure has tra-
ditionally been shown to be involved in reward and feeding but
its influence on drug-seeking behavior is becoming better under-
stood (for reviews, see Millan et al., 2011; Marchant et al., 2012).
The medial dorsal hypothalamus (MDH) is associated with the
termination of motivated behaviors and, therefore, is a logical
candidate for involvement in extinction learning. In rats trained
to self-administer alcohol and then exposed to extinction train-
ing, infusion of the inhibitory neuropeptide known as cocaine
and amphetamine-regulated transcript (CART) into the MDH
prevented the expression of extinction (Marchant et al., 2010).
It is important to note that a similar effect was found with the
extinction of sucrose-seeking behavior suggesting the mechanisms
within the LDH that help regulate extinction may not be unique
to drug reinforcers (Millan et al., 2011). To add further support for
the role of the MDH in extinction behavior, this region receives
extensive projections from the IfL cortex (Thompson and Swan-
son, 1998; Heidbreder and Groenewegen, 2003). In rats exposed
to extinction training after a history of alcohol administration,
the expression of extinction is associated with induction of c-Fos
expression in retrograde labeled IfL cortical neurons projecting to
the MDH (Marchant et al., 2010; Millan et al., 2011). Together,
these findings suggest plasticity-related changes in the MDH, and
through its connections with the IfL cortex, can mediate the extinc-
tion of reward-seeking behavior. These results also identify a brain
region to investigate as a novel candidate for the facilitation of
extinction behavior.

Based on findings detailed in the preceding sections, there are
several key brain regions involved in extinction behavior. The exact
details of how these structures interact to form a neurocircuitry
that mediates extinction behavior have yet to be fully established.
However, converging lines of evidence indicate that subregions
of the PFC (and their corresponding projections to subcortical
structures) play a major role in the extinction of drug and fear
behaviors. Peters et al. (2009) proposed that extinction of drug
memories comprises overlapping neural circuitry with that of fear
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memories. According to the model of the neurocircuitry of fear
conditioning, the PrL cortex sends excitatory projections to the
BLA that, in turn, promote the expression of conditioned fear via
excitation of the CeA. In contrast, the IfL cortex sends excitatory
projections to GABAergic inhibitory neurons in the intercalated
(ITC) cell masses in the amygdala. This leads to inhibition of the
CeA and attenuation of the expression of conditioned fear, and
promotes the expression of extinction behavior. In the neurocir-
cuitry of the extinction of drug memories, the PrL cortex also
sends excitatory projections to the core region of the NAc where
it has been shown to regulate the expression of cocaine-seeking
behavior. In contrast, excitatory projections from the IfL cortex
to the shell region of the NAc promote the extinction of cocaine-
seeking behavior. This proposed circuitry for the extinction of
drug behaviors is depicted in Figure 3. What is currently unknown
is how structures such as the BLA, hippocampus, and MDH con-
tribute to the established role of the PFC subregions in extinction
behavior.

GLUTAMATERGIC MECHANISMS IN EXTINCTION

In recent years, a number of studies have provided a more detailed
analysis of the plasticity-related mechanisms that may medi-
ate extinction behavior. Pathways connecting the various brain
regions involved in extinction may differentially modulate the
expression of drug-seeking and extinction of drug-seeking behav-
ior. For instance, it was observed that there is increased activity of
ventromedial PFC neurons in response to presentation of cocaine-
related cues during extinction training. Interestingly, when activity
in this region was inhibited, there was a corresponding decrease in
extinction responding (Koya et al., 2009). Additionally, it has been
shown that prefrontal regions have the ability to influence activity
in other extinction-related brain structures. For instance, stimu-
lation of IfL cortical output results in an inhibition of pyramidal
neurons in the PrL cortex through a feed-forward mechanism
(Ferrante et al., 2009). Similar results were found in a study that
utilized optogenetic procedures to activate or inhibit specific cell
types in isolated brain regions in combination with single-unit
recordings of neuronal activity. It was revealed that optogenetic
stimulation of viral vector encoding channel rhodopsin 2 (ChR2)
excitatory neurons in the IfL cortex produced excitation of IfL
cortical pyramidal neurons and also increased their responsive-
ness to excitatory input from multisensory brain regions (Ji and
Neugebauer, 2012). It was further observed that activation of the
IfL cortex inhibits PrL output, supporting the suggestion that
IfL cortex mediated extinction mechanisms may involve inhi-
bition of PrL cortex output that would ultimately mediate fear
expression and possibly drug-seeking. Previous research has also
shown that stimulation of the PrL region results in excitation
of BLA neurons (Likhtik et al., 2005) and stimulation of the
IfL region reduced the responsiveness of CeA neurons to inputs
from the insula and BLA (Quirk et al., 2003). While these studies
did not directly address extinction of fear expression or drug-
seeking behavior, they provide support for how the IfL region
of the PFC-through its direct projections to subcortical regions
(e.g., amygdala, NAc, and hippocampus)-can mediate extinction
behavior. Additionally, the ability of IfL cortical activation to exert
inhibitory control over output from pyramidal neurons in the PrL

cortex may also impact the expression of fear and drug-seeking
behaviors.

The highly persistent nature of drug- and fear-related cues to
induce relapse and the ineffectiveness of behavioral therapies to
reduce the impact of these cues has led to a focus on understand-
ing the neural mechanisms involved in relapse with the goal that
they may be targeted as a means to enhance extinction learning.
Studies have pharmacologically manipulated cellular process and
substrates in specific brain regions in an attempt to “strengthen”
inhibitory learning formed during extinction training. Using var-
ious behavioral paradigms such as fear-conditioning procedures
and drug-self administration, investigators have begun to uncover
plasticity-related mechanisms that facilitate extinction learning.
Given the importance of glutamatergic transmission in learning
and memory processes, a strong focus has been placed on target-
ing glutamate-related processes in extinction learning. Manipula-
tion of both ionotropic and metabotropic receptors facilitates the
extinction of fear-conditioning and drug-seeking behavior (for
reviews, see Cleva et al., 2010; Myers et al., 2011). While block-
ade of NMDA receptors impairs extinction learning, enhancement
of these receptors with the NMDA partial agonist p-cycloserine
(DCS) facilitates the acquisition of extinction of conditioned fear
and drug-seeking behavior (Myers and Carlezon, 2012). Simi-
larly, modulation of AMPA receptor activity, which like NMDA
receptors is also critically involved in synaptic plasticity, can also
facilitate extinction learning (Kaplan and Moore, 2011; Myers
etal., 2011).

In addition to targeting ionotropic glutamate receptors, activa-
tion of mGIuR5 have been shown to facilitate extinction learning
through a process that may involve enhanced NMDA recep-
tor function. Systemic administration of the mGluR5 positive
allosteric modulator CDPPB facilitates extinction of cocaine-
seeking behavior in CPP (Gass and Olive, 2009) and self-
administration (Cleva et al., 2011) paradigms, but does not alter
the extinction of methamphetamine self-administration (Wid-
holm et al., 2011). Further implicating mGluR5 in extinction,
studies in mGluR5 knockout mice revealed marked deficits in
both contextual and auditory fear extinction (Xu et al., 2009).
Additionally, inhibition of mGluR5 prior to extinction learning
prevented the recall of extinction learning while localized infu-
sion of a mGluR5 antagonist in the IfL cortex produced a similar
effect (Fontanez-Nuin et al., 2011). A recent study also highlighted
the importance of group 1 mGluRs in the ventromedial PFC in
the extinction of cocaine-seeking behavior. In rats trained to self-
administer cocaine, infusion of a mGIuR1/5 antagonist into the
dorsomedial PFC failed to alter the rate of extinction. In contrast,
infusion of a mGluR1/5 agonist had a facilitating effect on extinc-
tion of cocaine-seeking behavior (Ben-Shahar et al., 2013). This
study also revealed that animals displaying deficits in extinction
learning also had a significant reduction in group 1 mGluR func-
tion in the ventromedial PFC. Together these intriguing findings
provide further support for glutamate-related plasticity in the IfL
cortex in extinction learning.

Studies of conditioned fear have shown that inactivation of the
rostral BLA (rBLA) slows cocaine cue extinction learning, and it
has been suggested that simultaneous activity in the rBLA and
hippocampus might be required for the acquisition of cocaine
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cue extinction learning (Szalay et al., 2011). Another study has
shown that inactivation of the BLA not only resulted in a delay
in extinction recall of an opiate reward memory, but also caused
an increase in the spontaneous firing of neurons in the PrL cor-
tex (Sun and Laviolette, 2012). This suggests that a functional
link between the PrL cortex and BLA might modulate the pro-
cessing of an opiate-related memory. An influence of AMPA
receptor activity in the BLA during the extinction of cocaine-
seeking behavior has also been reported. It was observed that
expression of AMPA receptor subunit GluA1 decreased in the BLA
but increased in the ventromedial PFC in response to extinction
training (Nic Dhonnchadha et al., 2013), adding further support
for a functional connection between the mPFC and amygdala
in the extinction of drug-seeking behavior. In the hippocam-
pus, extinction of a morphine-conditioned context was associated
with changes in the phosphorylation of AMPA receptors at hip-
pocampal synapses while no changes were observed in animals that
were not exposed to extinction training (Billa et al., 2009). Fur-
thermore, suppression of neurogenesis in the adult hippocampus
after the acquisition of cocaine self-administration significantly
enhanced resistance to extinction (Noonan et al., 2010). Simi-
lar to the effects observed in the rBLA, inactivation of the dorsal
hippocampus slowed the rate of extinction of a cocaine mem-
ory (Szalay et al., 2011). Furthermore, cocaine self-administration
training reduces neurogenesis in the DG, an effect that was nor-
malized by extinction training (Deschaux et al., 2012). It was also
observed that low frequency stimulation of the hippocampus pre-
vented this extinction-induced normalization of DG neurogenesis.
Together, these studies indicate a critical role of plasticity-related
changes within the amygdala and hippocampus in the extinction of
drug-seeking behavior. Although it has yet to be explored, it is pos-
sible that pharmacological manipulation of plasticity within these
brain regions could serve to facilitate extinction of conditioned
drug-seeking behavior.

NORADRENERGIC MECHANISMS IN EXTINCTION
While glutamate-related neurochemical processes have received
the most attention in extinction behavior, an emerging area of
interest is the role that noradrenergic mechanisms play in extinc-
tion learning (for an extensive review, see Mueller and Cahill,
2010). Norepinephrine has been shown to be involved in various
aspects of memory, most notably the strengthening of memory
formation (McGaugh, 2004). While there has been a renewed
interest in the ability of noradrenergic mechanisms to mediate fear
extinction, the results have been inconsistent. For example, it has
been shown that systemic administration of the beta-adrenergic
antagonist propranolol prior to extinction training impaired
subsequent retrieval of contextual fear extinction (Ouyang and
Thomas, 2005). However, direct infusions of norepinephrine into
the amygdala after extinction training facilitated the extinction
of contextual fear (Berlau and McGaugh, 2006), suggesting that
noradrenergic mechanisms may help mediate the consolidation
of extinction learning. It has also been shown that arousal-related
norepinephrine release in the IfL cortex is important for the
formation of fear extinction memory (Mueller et al., 2008).
There have been several interesting observations regarding
the influence of noradrenergic mechanisms on the extinction of

drug-seeking behavior. Yohimbine, an alpha2-receptor antagonist
that promotes the release of norepinephrine, impairs the extinc-
tion of cocaine CPP (Davis et al., 2008) and slows the rate of
extinction of cocaine self-administration (Kupferschmidt et al.,
2009). Furthermore, infusion of the beta-receptor agonist clen-
buterol into the IfL cortex facilitates extinction of cocaine-seeking
behavior (LaLumiere et al., 2010). These studies add support to
the growing body of evidence that areas of the PFC are heav-
ily involved in extinction behavior, and one possible mechanism
could be noradrenergic-related changes in this region. Norepi-
nephrine release alters the cellular properties of target neurons
that may enhance excitability and synaptic plasticity and thus pro-
mote the formation of an extinction memory (Mueller and Cahill,
2010). Support for this comes from studies showing that norep-
inephrine enhances intrinsic excitability in the IfL cortex (Barth
etal., 2007; Mueller et al., 2008), amygdala (Tully et al., 2007), and
hippocampus (Pedreira and Maldonado, 2003).

EPIGENETICS AND EXTINCTION

Epigenetic mechanisms associated with extinction learning have
received substantial attention over the pass several years and are
providing unique insight into plasticity-related mechanisms of
extinction. Epigenetic modification refers to the structural adap-
tation of chromosomes that results in altered activity states (Bird,
2007; Graff and Tsai, 2013). Epigenetic mechanisms exert lasting
control over gene expression without altering the genetic code and
may mediate stable changes in brain function (Tsankova et al,,
2007). Investigation into the epigenetic regulation of neurobio-
logical adaptations that are associated with psychiatric disorders,
including addiction and PTSD, could provide novel approaches to
the mechanisms underlying extinction learning.

The formation of long-term memories is thought to correlate
with changes in gene expression. Research suggests that epigenetic-
related mechanisms, such as histone acetylation/deacytylation and
DNA methylation/demethylation, may mediate some of these
processes (for a review, see Tsankova et al., 2007). For example,
memory deficits in rodents can be recovered with administration
of a histone deacetylase (HDAC) inhibitor, while conditioning in
rodents is associated with histone protein H3 phosphoacetylation
and chromatin remodeling (Levenson and Sweatt, 2005). Further-
more, synaptic plasticity is associated with epigenetic changes and
can be promoted with HDAC inhibitors (Levenson et al., 2004).
While these data indicate that epigenetic mechanisms are involved
during the acquisition of conditioning, evidence also indicates that
these same mechanisms may play a role in extinction learning.

In fear conditioning, it has been shown that acetylation and
deacetylation of histones can enhance memories formed during
conditioning and extinction behavior (Levenson et al., 2004; Bredy
et al., 2007; Lattal et al., 2007). The non-selective HDAC inhibitor
valproic acid can facilitate not only the acquisition and extinction
of conditioned fear, but also the reconsolidation of this memory
(Bredy and Barad, 2008). Similar results have been obtained with
the HDAC inhibitor vorinostat (Fujita et al., 2012). It has also
been shown that deficits in the extinction learning of conditioned
fear in isogenic 129S1 (S1) mice can be recovered by administra-
tion of an HDAC inhibitor (Whittle et al., 2013). Administration
of another non-selective HDAC inhibitor sodium butyrate (NaB)
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has a facilitating effect on the extinction of a fear memory in
mice (Itzhak et al., 2012), which might be due, at least in part, to
epigenetic-related mechanisms in the hippocampus and IfL cortex
(Stafford et al., 2012). Furthermore, overexpression of HDACI in
the hippocampus has also been shown to facilitate the extinction
of contextual fear memories, and this effect can be prevented by
inhibition of HDACI (Bahari-Javan et al., 2012). Finally, inhibi-
tion of p300 (a histone acetyltransferase) in the IfL cortex can
enhance extinction of fear conditioning in mice, which was sug-
gested to result from the influence of p300 on LTP in this brain
region (Marek et al., 2011).

While there have been substantially fewer studies examining the
epigenetic changes that accompany the extinction of drug-seeking
behavior, similar results to the fear-conditioning literature have
been observed. Malvaez et al. (2010) examined the effect of HDAC
inhibition on the extinction of a cocaine-induced CPP. They found
that systemic administration of NaB facilitated the extinction of
the cocaine memory and attenuated reinstatement of cocaine-
seeking behavior. Importantly, these behavioral effects correlated
with enhanced acetylation of histone H3 in the NAc. Systemic
administration of the HDAC3 inhibitor RGFP966 also facilitates
the extinction of a cocaine-related memory, and it was suggested
that this effect was mediated by enhancement of memory consol-
idation during extinction learning (Malvaez et al., 2013). These
effects were also associated with histone acetylation linked to
gene expression in the IfL cortex, hippocampus, and NAc. Taken
together, observations from the fear and addiction fields have
provided intriguing insights into the possible therapeutic targets
related to epigenetics that could potentially be utilized to facili-
tate the extinction of emotionally salient memories. While further
research is needed to fully clarify the roles of these mechanisms in
the extinction of drug-related memories, this is a promising area of
investigation for the extinction of drug cues given the established
role of epigenetic mechanisms in memory.

EXTINCTION VERSUS RECONSOLIDATION

The widely held belief that extinction learning involves the acqui-
sition of new memories has been challenged recently with the idea
that behavior typically interpreted as extinction learning may actu-
ally represent reconsolidation of previously formed memories (for
reviews on this topic, see Dudai and Eisenberg, 2004; Nader and
Einarsson, 2010; Sorg, 2012). During the initial coding of events,
memories are labile, but subsequently consolidate into long-term
storage through protein synthesis-dependent mechanisms (Quirk
et al., 2010). Thus, extinction training may serve to reverse or
update previously formed contingencies (Sorg, 2012). As such,
exposure to extinction training shortly after reactivation of a fear
memory attenuates recovery, renewal, and reinstatement of con-
ditioned fear (Monfils et al., 2009; Quirk et al., 2010). Importantly,
studies have shown that timing of the CS presentation is critical in
order to temporarily activate the labile state in which updates to the
CS-US association can occur. Reconsolidation typically requires
short presentations of the CS (Nader and Hardt, 2009), and presen-
tation of the CS alone within 6 h after memory reactivation results
in behavioral effects that reflect unlearning as opposed to the inhi-
bition of fear (Nader et al., 2000; Quirk et al., 2010). Theoretically,
the ability to modify existing memories, as opposed to creating

new inhibitory associations through the facilitation of extinction
learning, could be advantageous over extinction-based exposure
therapies. Studies show that while extinction learning can be facil-
itated pharmacologically, these effects can be context-dependent
(Bouton, 2000, 2002, 2004; Milad et al., 2005; Woods and Bouton,
2006). Modification of the original memory, rather than the cre-
ation of competitive memories, might manifest a behavior that is
more resistant to the influence of context (Quirk et al., 2010),
an idea that has clinical support. For instance, administration
of a beta-adrenergic receptor antagonist during reconsolidation
removes the fear-arousing aspects of the conditioned memory
(Soeter and Kindt, 2011). This effect was not specific to the initial
stimuli used in the fear-conditioning paradigm and generalized to
related stimuli. While there is excitement in the field that revolves
around the influence of reconsolidation on extinction behavior,
more research is clearly needed to fully elucidate the contributions
of both processes in the inhibition of behavior.

CONCLUSION

In this review, we focused on studies that incorporate learning
principles in extinction training with the goal of lessening the
influence of these cues on addictive behavior. It has been widely
recognized that drug use and relapse are strongly cue specific
(Drummond and Glautier, 1994) and one of the most impor-
tant factors that contributes to relapse is the impact of drug cues
on drug-seeking behavior. In recent years, there has been increas-
ing attention on the neural mechanisms that underlie extinction
learning in an effort to manipulate and possibly enhance learning
that occurs during inhibitory conditioning. Clinically, extinction-
based behavioral therapies have generally proven ineffective for
suppression of relapse to drug taking. This lack of efficacy may
relate to the fact that extinction learning does not erase the original
drug memory but instead involves formation of a new extinction
memory that acts in competition for control of behavior with
the drug memory. However, the intransigent nature of the drug-
memory appears to promote subsequent relapse to drug-taking.
The temporal relationship of extinction and relapse are depicted in
Figure 4. While extinction training alone can initially reduce drug-
seeking behavior, these effects are likely context-specific. Thus,
when the addict is exposed to drug cues outside of the treatment
environment, the drug memory that was suppressed but not erased
during extinction training, can reinitiate drug-seeking and drug
use. Although speculative, pharmacological facilitation of extinc-
tion learning may enhance formation of an inhibitory memory
that is much “stronger” than the initial drug memory and may
help protect against cue-induced relapse. Recent research has shed
light on pharmacologically targeting glutamatergic, adrenergic,
and epigenetic mechanisms to enhance inhibitory learning dur-
ing extinction training. Furthermore, while the neurocircuitry of
extinction likely involves a distributed network of different brain
regions that include the mPFC, NAc, amydala, hippocampus, and
hypothalamus, recent studies have implicated opposing roles of the
PrL and IfL subregions of the PFC in the control of drug-related
behavior. A model has emerged in which drug-seeking is likely
a PrL cortex driven behavior while extinction learning and the
resulting inhibition of drug-seeking is a IfL cortex driven behav-
ior. One aim of future research is to elucidate the contribution
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FIGURE 4 | lllustration showing that while behavioral extinction training

can reduce drug-seeking behavior, the persistence of the original drug
memory can promote subsequent relapse. However, pharmacological
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extinction training (cue exposure therapy)

The formation of an extinction memory that ultimately competes with the original drug memory for
control of conditioned behavior

The concept of facilitated extinction learning, likely through pharmacological treatment combined with
behavioral training, that would lessen the impact of drug cues and reduce relapse behavior.
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facilitation of the extinction process may promote a stronger and more
persistent extinction memory that may lead to reductions in the rate of
relapse.

of these different neural regions and mechanisms to the facilita-
tion of extinction learning to ultimately develop more effective
treatments for addiction.

Although there have been substantial advances in our under-
standing of the neural mechanisms involved in the extinction of
drug-related memories, a number of important issues need to be
addressed by additional studies in the field of drug addiction. For
example, while the neural circuits that mediate extinction of fear
behavior do not overlap directly with those in drug-seeking behav-
iors, are the mechanisms that mediate extinction the same for all
drugs of abuse? There is strong evidence for involvement of the
PrL cortex in cocaine-seeking and IfL cortex in cocaine extinc-
tion behavior. However, there are few and sometimes conflicting
findings with other drugs of abuse, such as heroin (Rogers et al.,
2008), methamphetamine (Rocha and Kalivas, 2010), and alcohol
(Millan et al., 2010). In addition, as recent research begins to high-
light the importance of other structures in the extinction of drug
memories, how do they interact with the established role of the
PFC in mediating extinction behavior? The identification of the
specific roles of the hippocampus, amygdala, and hypothalamus
and their influence on a “final common pathway” through the PFC
could provide insight into possible therapeutic targets to enhance
extinction learning.

The standard procedure for extinction training is repeated pre-
sentations of the CS in absence of the US. While this method
has permeated the literature since the days of Pavlov, it is not
clear whether this is the most effective approach. It is of interest
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