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INTRODUCTION

Chromosome 22q11.2 deletion syndrome (22q11.2DS) is a neurogenetic disorder that is
associated with cognitive impairments and significantly elevated risk for developing schiz-
ophrenia. While impairments in response inhibition are central to executive dysfunction in
schizophrenia, the nature and development of such impairments in children with 22q11.2DS,
a group at high risk for the disorder, are not clear. Here we used a classic Go/No-Go para-
digm to quantify proactive (anticipatory stopping) and reactive (actual stopping) response
inhibition in 47 children with 22q11.2DS and 36 typically developing (TD) children, all ages 7-
14. A cross-sectional design was used to examine age-related associations with response
inhibition. When compared with TD individuals, children with 22g11.2DS demonstrated typ-
ical proactive response inhibition at all ages. By contrast, reactive response inhibition was
impaired in children with 22q11.2DS relative to TD children. While older age predicted bet-
ter reactive response inhibition in TD children, there was no age-related association with
reactive response inhibition in children with 22g11.2DS. Closer examination of individual
performance data revealed a wide range of performance abilities in older children with
22011.2DS; some typical and others highly impaired. The results of this cross-sectional
analysis suggest an impaired developmental trajectory of reactive response inhibition in
some children with 22q11.2DS that might be related to atypical development of neu-
roanatomical systems underlying this cognitive process. As part of a larger study, this
investigation might help identify risk factors for conversion to schizophrenia and lead to
early diagnosis and preventive intervention.

Keywords: 22q11.2 deletion syndrome, response inhibition, executive function, childhood cognitive development,
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Individuals with chromosome 22q11.2 deletion syndrome

Adaptive behavior in a dynamic world relies heavily on cognitive
control, defined as the ability to suppress irrelevant thoughts and
actions while strengthening others (1). An integral factor in suc-
cessful cognitive control is response inhibition, which supports
the suppression of a prepotent response that might be irrele-
vant or inappropriate in a given context. Evidence suggests that
response inhibition improves throughout child development and
into adulthood (2—4), likely due to the development of support-
ing neural architecture (5, 6). Additionally, response inhibition
is often impaired in individuals with developmental disabilities
or psychopathology (7). Individuals with schizophrenia perform
more poorly on response inhibition tasks when compared to
healthy controls (8, 9), and it is believed that aberrant response
inhibition might contribute to some of the general neuropsycho-
logical impairments seen in the disorder. Evidence also suggests
that impairments in control processes might be present in indi-
viduals long before conversion to schizophrenia (10-12), as well
as in their unaffected first-degree relatives (13). Thus, impair-
ments in inhibitory control are considered a key component of
the intermediate phenotype of the disorder (14, 15).

(22q11.2DS) represent a population with a genetically conferred
risk for developing schizophrenia that is significantly increased
relative to the general population. Approximately 30% of chil-
dren with 22q11.2DS will develop schizophrenia by adulthood
(16), rendering it the highest genetic risk factor for the disorder
after having two parents or a monozygotic twin with schizophre-
nia. Additionally, elevated rates of psychotic symptoms have been
detected in children with 22q11.2DS (17, 18).

Chromosome 22q11.2DS results from a 1.5- to 3-megabase
microdeletion on the long (q) arm of chromosome 22 (19, 20)
and occurs in approximately 1 in 2000-4000 live births (21, 22).
Children with this disorder have mild to moderate intellectual
impairments (median full scale IQ 70 +15) (23) and a cognitive
profile with difficulties on a range of functions including atten-
tion and numerical processing (24), as well as cognitive control
(25, 26). With respect to inhibitory control, impairments have
been demonstrated in children with 22q11.2DS on tasks requiring
interference control (25) and oculomotor inhibition (27).

Response inhibition, a component of inhibitory control defined
as the ability to suppress a prepotent motor response, has not been
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well characterized in children with 22q11.2DS. One study exam-
ined response inhibition in adolescents with 22q11.2DS using a
Go/No-Go task during functional magnetic resonance imaging
(fMRI) (28). While no behavioral group differences were found,
individuals with 22q11.2DS demonstrated significantly greater
brain activation in the left superior and inferior parietal lobes, sug-
gesting compensatory mechanisms might underlie typical behav-
ioral performance. For the blocked design of this fMRI study, the
Go/No-Go task consisted of two conditions: a block of all Go
trials, on which participants responded on every trial (control
condition), and a block of trials with 50% Go/No-Go probability
(experimental condition). It is possible that this relatively coarse
design, necessary for power in a fMRI study, might obscure more
subtle, specific behavioral impairments in response inhibition in
22q11.2DS.

In the present study, our goal was to examine response inhibi-
tion in children with 22q11.2DS by using a Go/No-Go task that
was designed to parametrically manipulate task difficulty, as well
as test specific component processes of response inhibition. Partic-
ipants were required to press a button in response to a frequently
occurring target (“Go” trial), and to avoid pressing the button in
response to an infrequent target (“No-Go” trial). Task difficulty
was manipulated by varying the number of Go trials leading up to
a No-Go trial, which has previously been shown to affect response
prepotency and thus ability to withhold a response (6). Addition-
ally, this Go/No-Go task supported the assessment of multiple
component processes of response inhibition. First there is proac-
tive response inhibition, which involves appropriate monitoring of
task context and preparation leading up to a successful inhibitory
response. This can be measured by response time on Go trials
and can manifest as a relative slowing of sequential Go trials lead-
ing up to a No-Go trial (29). Secondly, there is reactive response
inhibition, which is the actual inhibitory response once instructed
by a stop signal, and is measured by accuracy on No-Go trials
(30). Finally, the Go/No-Go task is sensitive to conflict monitoring,
which modulates behavior in response to perceived performance
and is typically demonstrated by a relative slowing on the first Go
trial following an incorrect relative to a correct No-Go trial (31).

Understanding component processes of response inhibition in
children with 22q11.2DS is important not only for better charac-
terizing cognitive function in this population, but also for examin-
ing a cognitive process that is considered to be a component of the
schizophrenia intermediate phenotype (13, 14). Given the genetic
predisposition for a significantly elevated schizophrenia risk in
22q11.2DS, individual performance patterns of response inhibi-
tion might help describe individuals at relatively greater or lesser
risk for conversion. Since we did not collect measures of psychosis
on the current sample of participants, we were unable to directly
test this hypothesis. However, examining performance variability
of a process that is considered to be part of an intermediate phe-
notype for schizophrenia is an important first step. Additionally,
age-related patterns of response inhibition development might
highlight individuals with more or less typical response inhibi-
tion. Thus, in addition to characterizing the nature of response
inhibition in 22q11.2DS, another goal of the current study was
to examine the development of response inhibition through mid
to late childhood in 22q11.2DS by conducting a cross-sectional

analysis in school-aged children (7-14 years) with 22q11.2DS and
age-matched typically developing (TD) children.

Based on previous findings of executive dysfunction and cogni-
tive disinhibition, we hypothesized that children with 22q11.2DS
would demonstrate impaired performance on the Go/No-Go task
when compared to age-matched TD children, and that there would
be age-related group differences. Specifically, we predicted that
(1) proactive and reactive response inhibition might be differen-
tially sensitive to group differences, and (2) response inhibition
would improve with age in TD children but less so in children
with 22q11.2DS.

MATERIALS AND METHODS

PARTICIPANTS

Forty-seven children with 22q11.2DS [mean age = 11.5(2.5) years;
17 female and 30 male] and 36 TD comparison children [mean
age =10.7(2.3) years; 21 female and 15 male], from 7 to 14 years
of age, participated in the study. Participants were recruited to
participate in the study by advertisement, and by the UC Davis
Subject Tracking System, a secure, voluntary database that houses
the names of families interested in participating in research studies.
Documentation of the deletion was provided by parents/guardians
during the pre-screening process. Data on IQ from the Wechsler
Intelligence Scale for Children — 4th edition (WISC-IV) (32) or the
Wechsler Abbreviated Scale of Intelligence (WASI) (33) was avail-
able from a subset of participants: 36 children with 22q11.2DS and
22 TD participants. Full-scale IQ (FSIQ) ranged from 54 to 103
for children with 22q11.2DS [mean = 75.1(12.0)] and 80-137 for
TD children [mean = 110.0(12.0)]. Complete demographic infor-
mation and group gender composition can be found in Table 1. A
subsample of the study participants (10 with 22q11.2DSand 8 TD)
performed the cognitive task at a conference where they did not
complete the WISC-IV or the WASI, thus contributing to incom-
plete IQ data. At the conference, participants were recruited by
advertisements and direct person-to-person solicitation. Partici-
pants were excluded if they performed at lower than 75% accuracy
when responding to the frequently occurring Go stimuli in the
behavioral paradigm. Four participants with 22q11.2DS and one
TD participant were excluded on this basis, resulting in the final
sample of 47 children with 22q11.2DS and 36 TD children that
are described here. Additional exclusion criteria for both groups
included head injury or other focal neurological abnormality.
Exclusion criteria for TD participants were presence of learning
or behavioral/psychiatric disorder. The parents of all participants
provided written informed consent based on protocols approved
by the Institutional Review Board at the University of California,
Davis.

TASK PROCEDURE

All participants completed a “whack-a-mole” version of a Go/No-
Go response inhibition task (Figure 1). This experiment was
adapted from Casey et al. (34) and stimuli were courtesy of Sarah
Getz and the Sackler Institute for Developmental Psychobiology.
Children viewed a computer screen from 60 cm and were told to
press a button as quickly as possible when a cartoon mole appeared
(Go trial). They were instructed to not press the button when
a vegetable appeared (No-Go trial). During the demonstration
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Table 1 | Demographic data on children with 22q11.2DS and TD children.

22q11.2DS TD
Age in years FSIQ Age in years FSIQ
N Mean (SD) N Mean (SD) N Mean (SD) N Mean (SD)
Gender Female 17 12.0 (2.3) 13 70.6 (10.5) 21 10.9 (2.5) 12 112.2 (14.9)
Male 30 11.3(2.7) 23 776 (12.3) 15 10.4 (2.1) 10 109.5 (7.6)
Total 47 11.6 (2.5) 36 75.1(12.0) 36 10.7 (2.3) 22 111.0 (12.0)

FIGURE 1 | Example trials from the “whack-a-mole” Go/No-Go task.
Children were instructed to press a button as quickly as possible when a
cartoon mole appeared (Go trial), but to avoid pressing the button when a
vegetable appeared (No-Go trial). Go trials appeared 75% of the time, while
No-Go trials appeared the other 25% and were preceded by one, three, or
five Go trials.

period, participants were instructed to perform the task as quickly
as they could while still responding as accurately as possible. Equal
emphasis was placed on speed and accuracy. Go trials appeared
75% of the time, while No-Go trials appeared the other 25% and
were preceded by one, three, or five Go trials. The duration of the
stimuli was 1000 ms, with interstimulus intervals of 200, 500, or
750 ms. Participants completed 20 trials of each No-Go trial type
(preceded by one, three, or five Go trials, respectively), random-
ized and distributed equally into four blocks. The experiment also
contained 12 foil trials (No-Go trials preceded by two or four Go
trials) in order to prevent learning of the pattern.

DATA ANALYSIS
Data were processed using MATLAB (version 7.8) to generate out-
come variables from raw data. Mixed model regression analyses
were used to determine the effects of between-subject variables
(diagnosis group) and task variables (Go or No-Go trial type) on
primary outcome measures (accuracy and response time). Gender
was included as a predictor in all regression models. To exam-
ine the development of response inhibition, we included age as a
regressor in additional models to examine age-related effects in a
cross-sectional analysis.

For each outcome measure, we first conducted regressions
on data from the two groups combined in order to examine

between-group differences. Subsequently, we identified distinct
trial types: five trial types for Go trials (one through five based on
sequential order following a No-Go trial) and three trial types for
No-Go trials (No-Go trials appearing after one, three, or five Go
trials, respectively). We tested for Group x Trial Type interactions,
and if any were identified, we then ran the regression models within
each group separately in order to test for group-specific effects of
trial type on performance. Finally, we corrected for multiple com-
parisons using false discovery rate (FDR). In the results below, we
documented all of the results, both before and after the correction
for multiple comparisons, in order to provide a most complete
and comprehensive picture of response inhibition in 22q11.2DS.

RESULTS

PROACTIVE RESPONSE INHIBITION DID NOT DIFFER BETWEEN
GROUPS

Proactive response inhibition, defined as the preparation prior to
an upcoming inhibitory response, was measured by accuracy and
response time (RT) on consecutive Go trials leading up to a No-
Go trial. Diagnostic group, Go trial type (one through five based
on sequential order following a No-Go trial), and gender were
regressed on accuracy and RT. There was no Group x Trial Type
interaction on accuracy [F(4, 234) =0.25, p=0.91; Figure 2A],
but there was a Group x Trial Type interaction on RT [F(4,
234) =3.24, p=0.02; Figure 2B]. In order to further unpack the
Group x Trial Type interaction on RT, we examined the effects of
Go trial type on RT within each group separately. Both groups
demonstrated a similar performance pattern, consisting of a rel-
ative slowing from the first up to the fourth Go trial follow-
ing a No-Go trial [F(4, 140) =25.6, p <0.0001 for TD; F(4,
184) =28.5, p < 0.0001 for 22q11.2DS; Figure 2B]. Additionally,
the Group x Trial Type interaction on RT did not survive cor-
rection for multiple comparisons. Thus, we concluded that this
interaction may be a spurious result due to noise that generates
subtle group effects at different trial types, such as the slower RT
in one group on the second Go trial, relative to a faster RT on the
fifth Go trial. While accuracy was the same between groups and
was not affected by trial type, both groups demonstrated a com-
parable and significant slowing of RT on consecutive Go trials,
indicative of similar proactive inhibition between groups.

REACTIVE RESPONSE INHIBITION WAS ABERRANT IN 22q11.2DS

Reactive response inhibition, defined as the implementation of an
inhibitory response once instructed by a stop signal, was measured
by accuracy on No-Go trials that were parametrically manip-
ulated for difficulty (No-Go trials following one, three, or five
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Go trials, respectively). Diagnostic group, No-Go trial type, and
gender were regressed on accuracy and RT. We found a signifi-
cant Group x Trial Type interaction [F(2, 162) =3.83, p=0.02;
Figure 3A]. In order to better understand this interaction, we
next examined the effects of No-Go trial type within each group
separately by regressing No-Go trial type on No-Go accuracy for
each group. There was a significant effect of No-Go trial type on
accuracy in TD children, such that when No-Go trials were pre-
ceded by increasing numbers of Go trials, TD children had greater
accuracy [F(2,70) =7.07, p=0.002; mean accuracy = 71.7(19.2),
78.5(15.5), and 82.1(15.5)% for one, three, and five preceding
Go trials, respectively]. By contrast, children with 22q11.2DS
demonstrated no change in performance across trial types [F(2,
92) =0.05, p =0.95; mean accuracy =71.7(16.4), 72.4(16.5), and
72.0(18.0)% for one, three, and five preceding Go trials, respec-
tively; Figure 3A]. The Group x Trial Type interaction on No-Go
accuracy did not remain significant after accounting for multi-
ple comparisons; however, within the TD group, the effect of Trial
Type on No-Go accuracy survived this correction. Thus, it appears
that the two groups have differential patterns of performance as a
function of No-Go trial type.

In order to examine possible group differences in the error
mechanism, we next examined RT on the incorrect No-Go trials,
or false alarms. There were no effects of group, or a Group x Trial
Type interaction (Figure 3B). Thus, the false alarm RT was the
same between and within groups across No-Go trial types.

REACTIVE RESPONSE INHIBITION WAS IMPAIRED IN OLDER CHILDREN
WITH 22411.2D8

To examine the development of response inhibition in the two
groups, we conducted a cross-sectional analysis in children with
22q11.2DS relative to TD children, all aged 7-14 years with no
age difference between groups [#(77) = 1.03, p =0.31]. To assess
proactive inhibition, the following were regressed on Go accuracy
and RT: diagnostic group, age, gender, and Go trial type. There
were main effects of age, such that age predicted higher accuracy
[F(1, 78) =13.90, p =0.0004] and faster RT [F(1, 78) =39.20,
p <0.0001], although the Age x Group interaction was not sig-
nificant (p =0.26 and p =0.77 for accuracy and RT, respectively;

demonstrate this pattern. (B) There were no group differences in response
time on incorrect No-Go trials (false alarms).

Table 2 | Age effects on Go/No-Go performance.

Outcome measure Group x Age interaction

F p
Percent accuracy on Go trials 1.15 0.29
RT on Go trials (ms) 0.23 0.63
Percent accuracy on No-Go trials 4.4 0.04"
RT on incorrect No-Go trials (ms) 0.00 1
Post-error processing difference (ms) 0.69 0.41

Above are the test statistics from regressions of age against each outcome mea-
sure with both groups in the same model to examine group by age interactions
that might represent group differences in developmental trajectories. Gender was
included in all models.

Table 2; Figures 4A,B). The age effects on accuracy and RT sur-
vived correction for multiple comparisons. Thus, accuracy was
better and RT was faster in older individuals across both groups,
and this pattern did not differ between groups.

To examine age effects on reactive inhibition, the following
were regressed on No-Go accuracy: diagnostic group, age, gen-
der, and No-Go trial type. Collectively, there was no overall effect
of age [F(1, 78)=0.59, p=0.45], but there was a significant
Age x Group interaction on No-Go accuracy [F(1, 78) =4.39,
p = 0.04; Table 2; Figure 4C]. Within groups, there was a signifi-
cant effect of age on accuracy in TD children, such that older TD
children had higher No-Go accuracy [F(1, 33) =4.9, p=0.03].
By contrast, performance in children with 22q11.2DS did not dif-
fer with age [F(1, 44) = 0.45, p=0.51]. Though the Age x Group
interaction on No-Go accuracy did not remain significant after
accounting for multiple comparisons, the main effect within the
TD group survived this correction. Thus, while the TD children
demonstrated an association between improved reactive inhibi-
tion and age, the children with 22q11.2DS did not. This appears
due to a subgroup of the oldest children with 22q11.2DS that have
lower levels of accuracy relative to others their age in either group.
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in older TD children relative to younger, but this was not the case in children
with 22q11.2DS. (D) Both groups demonstrated a similar relationship of faster
No-Go (false alarm) RT and age.

We next examined age-related effects on No-Go RT. While
there was a main effect of age, such that age predicted faster
RT [F(1, 78) =36.00, p < 0.0001], there were no interactions of
Age x Group [F(1, 78) =0.01, p = 0.92; Table 2; Figure 4D]. The
main effect of age survived correction for multiple comparisons.
Thus, while No-Go RT was faster in older individuals, this pattern
did not differ between groups.

CONFLICT MONITORING WAS ATTENUATED IN SOME OLDER CHILDREN
WITH 22q11.2DS

Following detection of a conflict (such as an incorrect response),
post-error processing, which is one aspect of conflict monitoring,
triggers compensatory adjustments to modulate behavior (31). In
speeded response tasks such as this one, it is well established that
this manifests as slower RT on the first Go trial following an incor-
rect relative to a correct No-Go trial. To examine this process in
our sample, we regressed diagnostic group, gender, and preced-
ing No-Go trial accuracy on RT for the first Go trial following a
No-Go trial. For both groups, RT for Go trials was slower after an
incorrect relative to correct No-Go trial, as indicated by a positive
difference score [mean RT on the first Go trial following an incor-
rect minus that following a correct No-Go trial =60.3(80.0) ms
for TD; 87.8(74.4) for 22q11.2DS], and this difference was similar
between groups [F(1, 80) =2.58, p=0.11; Figure 5A].

To examine possible age effects on post-error processing, age
was regressed on the RT difference score for each group. There
was an overall main effect of age, such that age predicted a
smaller RT difference score [F(1, 78) =6.59, p=0.02], though
this effect did not survive correction for multiple comparisons.

Additionally, this relationship did not differ between groups
[F(1, 78)=0.69, p=0.41; Table 2; Figure 5B]. To further
examine the functional effects of conflict monitoring, age and
RT difference score were regressed on No-Go accuracy. There
was no Group x Accuracy interaction on difference score [F(1,
74) =0.007, p=0.94; Figure 5C], thus suggesting that better
inhibitory performance is related to conflict monitoring similarly
in both groups.

GENERAL INTELLECTUAL ABILITY DID NOT CORRELATE WITH
RESPONSE INHIBITION

To examine group-related differences in general intellectual abil-
ity, diagnostic group and gender were regressed on FSIQ. Children
with 22q11.2DS had significantly lower FSIQ relative to TD chil-
dren [F(1, 55)=121.7, p <0.0001], an effect that survived after
correction for multiple comparisons. In order to examine the pos-
sible relationship of this general intellectual ability with response
inhibition, we regressed gender and FSIQ on No-Go accuracy for
each group. There was no relationship between FSIQ and No-Go
accuracy for children with 22q11.2DS [F(1, 32) =1.33, p =0.26]
or TD children [F(1, 18) =0.07, p =0.79].

DISCUSSION

Understanding response inhibition and individual differences in
this process in children with 22q11.2DS is of particular impor-
tance given their cognitive dysfunction, aberrant neuroanatomy,
and high risk for developing schizophrenia in adulthood. We used
a Go/No-Go task to examine the nature and development of
response inhibition in a cross-sectional study of 7- to 14-year-old
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children with 22q11.2DS and TD children. Factors that contribute
to successful performance on the Go/No-Go task include: (1)
proactive stopping, which involves appropriate monitoring of the
task context and supports preparation leading up to an upcom-
ing inhibitory response; (2) reactive stopping, which is the actual
implementation of an inhibitory response once instructed by a
stop signal; and (3) conflict monitoring, which encompasses aware-
ness that an error has been made, and implements appropriate
behavioral adjustments in an effort to minimize future errors.
We found that children with 22q11.2DS demonstrated proactive
stopping comparable to age-matched TD children. By contrast,
older children with 22q11.2DS demonstrated aberrant patterns
of reactive stopping, and performance varied greatly among these
individuals.

The behavioral manifestation of proactive stopping is a relative
slowing of responses in preparation for an upcoming inhibitory
response. By slowing down, participants are able to stop more
successfully if an inhibitory response is required. RT slowing on
Go trials did not differ between children with 22q11.2DS and
TD children. Thus, children with 22q11.2DS demonstrated typi-
cal monitoring of context in anticipation of an increasingly likely
No-Go stimulus.

Despite typical proactive stopping, the results suggest aber-
rant patterns of reactive stopping in children with 22q11.2DS,
as well as an impaired developmental trajectory of reactive stop-
ping. While TD children demonstrated better No-Go accuracy
on trials that followed a greater number of preceding Go trials,
the children with 22q11.2DS did not demonstrate this pattern.
Additionally, some older children with 22q11.2DS had worse over-
all No-Go accuracy relative to older TD children. Interestingly,
another study of children in the same age range (and involving
a partially overlapping sample of participants from the current
study) examined orienting of attention in a Posner cueing par-
adigm and found the opposite pattern: performance in older
individuals with 22q11.2DS was significantly better and less vari-
able than that of their younger counterparts, and no different from
that of age-matched TD individuals (35). Therefore, the results of
the current study suggest a highly specific age-dependent impair-
ment in reactive inhibitory control, a process that is mediated by
neural networks that are known to mature in TD children during
this time period (6).

Given the relative specificity of the reactive inhibition impair-
ment in older children with 22q11.2DS, and the relevance of
response inhibition in schizophrenia, it is clear that continued
exploration of individual performance patterns of response inhi-
bition and their significance in 22q11.2DS is a promising area of
further research. After all, these findings generate a number of sub-
sequent questions, such as whether the older, lower-performing
individuals are at greater risk for conversion to schizophrenia. If
so, performance on this task could be an important contributor as
anon-invasive diagnostic measure for risk probability or evaluator
of the efficacy of potential targeted interventions (36).

Impairments in response inhibition are common in other
neurodevelopmental and neuropsychiatric disorders. In order to
examine whether or not group differences in general intellectual
ability (non-specific to 22q11.2DS) were driving the results, we
included FSIQ as a regressor in the statistical models. We found
that FSIQ did not co-vary with task performance in either diag-
nostic group, suggesting that the results were not driven by IQ
differences.

The response inhibition task also enabled us to examine the
participants’ abilities to evaluate and modify their own task per-
formance, a process known as conflict monitoring. This evalua-
tive dimension of cognitive control is critical for dispelling the
notion of a “homunculus” that guides behavior, as it provides a
mechanism for accessing information about how well a system is
functioning, enabling behavioral modification based on that infor-
mation (37). The conflict monitoring hypothesis is supported by
evidence that response strategies change reactively during response
inhibition tasks, in the form of slower RTs on the first Go tri-
als following incorrect relative to correct No-Go trials (38), an
adjustment aimed to generate shifts in speed-accuracy tradeoffs
(39). In our study, both children with 22q11.2DS and TD chil-
dren demonstrated effective post-error slowing, consistent with
the conflict monitoring theory. Thus, within the context of this
task, it seems that conflict monitoring is relatively unimpaired in
children with 22q11.2DS. It will be important to further test this
hypothesis through larger studies designed to examine this process
specifically.

Importantly, the results of this study generate hypotheses with
respect to structural and functional brain abnormalities through-
out development in children with 22q11.2DS. Response inhibition
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is believed to be mediated by circuits involving reciprocal connec-
tions between the prefrontal cortex (PFC) and basal ganglia (40,
41). For reactive stopping, sensory input about the stop stimu-
lus projects to the PFC where there are two critical regions for
stopping: right inferior frontal cortex (rIFC) and presupplemen-
tary motor area (preSMA). These regions then project to the basal
ganglia to suppress basal ganglia output that would otherwise initi-
ate motor responses to Go commands (30). Evidence also suggests
that this same network is active during proactive stopping (42,43).
For conflict monitoring, evidence supports the role of the anterior
cingulate cortex (ACC), which has a modulatory effect on the PFC
and is also responsive during the presence of conflict (31).

Though limited, there is some evidence that these circuits are
atypical in 22q11.2DS. Structural imaging studies have demon-
strated reduction in gray matter of frontal regions in 22q11.2DS
(44), as well as alterations in midline cortical thickness and gyri-
fication patterns (45). In one study, reduced volume of ACC was
related to poor executive function in children with the disorder
(46). There is also evidence for atypical basal ganglia structure
in 22q11.2DS (47-49), as well as atypical structural connectiv-
ity within frontal networks (50). With respect to more global
anatomical differences and their relationship to schizophrenia
in 22ql11.2DS, one study demonstrated that total brain vol-
ume and total white matter volume were reduced in 22q11.2DS
adults with schizophrenia, relative to 22q11.2DS adults without
schizophrenia (51).

Functional imaging studies have also demonstrated irregulari-
ties in these networks in children with 22q11.2DS when compared
to TD children. Gothelf et al. (28) examined response inhibition in
adolescents with 22q11.2DS using a Go/No-Go task during fMRI,
and reported that increased parietal activation might be recruited
as a mechanism compensating for atypical prefrontal cortical con-
trol of inhibition. Furthermore, atypical prefrontal activity during
response inhibition in 22q11.2DS was supported by the finding of
reduced No-Go anteriorization (NGA) during a response inhibi-
tion task in children and adolescents with 22q11.2DS (52). The
NGA is a reliable, stable parameter of medial prefrontal function;
thus significantly diminished NGA implies atypical prefrontal
control during response inhibition in 22q11.2DS. Interestingly,
though the NGA is typically modulated by activation of the
ACC, source localization did not identify any alteration of ACC
activity during response inhibition in their sample of 22q11.2DS
individuals, suggesting that a different mechanism accounted for
the observed NGA reduction. Given that the behavioral results
of the current study demonstrated that post-error slowing was
largely typical in the children with 22q11.2DS, we speculate that
conflict monitoring, as mediated by ACC activation, is relatively
unimpaired in many of the children with the disorder.

Additional fMRI studies suggest that functional aberrations in
neurocognitive networks might contribute to impaired cognitive
control and schizophrenia risk in 22q11.2DS. Working memory
is another cognitive process that is mediated by the PFC and
PFC-associated networks. A study by Kates et al. (53) demon-
strated hypoactivation of the PFC during a working memory task
in children with 22q11.2DS, in a similar age range as those in our
study (815 years). More recently, Debbané et al. (54) applied task-
independent fMRI to examine high-level neurocognitive networks

in adolescents with 22q11.2DS, and found atypical functional
connectivity that correlated with prodromal symptoms. Thus, it
will be important to pursue neuroimaging studies that directly
examine the relationship of neurocognitive network function to
response inhibition and schizophrenia risk in 22q11.2DS.

Frontostriatal circuitry follows a protracted developmental
time course, proceeding throughout childhood and adolescence,
and into early adulthood (55-57), concomitant with the devel-
opment of response inhibition. Thus, our results suggest the
possibility of atypical development of this circuitry in those older
individuals with 22q11.2DS who have impaired reactive stopping
performance. This interpretation is supported by evidence that
the developmental trajectory of cortical gyrification is atypical in
children with 22q11.2DS relative to TD children in this age range
(6—15years) (58). The specific nature and timing of these trajec-
tories are still unclear, however, and to date there have only been a
few longitudinal studies of developmental trajectories of brain
structure in 22q11.2DS (59-62). While these studies indicated
neuroanatomical differences in frontal and parietal regions in chil-
dren and adolescents with 22q11.2DS relative to TD individuals,
evidence for atypical developmental trajectories was inconsistent.
Larger samples of longitudinal studies during this critical develop-
mental time period will be important for more directly examining
the development of brain and behavior relationships responsible
for response inhibition in 22q11.2DS.

In addition to brain and behavior relationships, there are
a number of additional modulatory factors that are important
to consider that will affect individual differences in cognitive
control and subsequent risk for psychopathology. These include
genetic variants, epigenetic variables, and environmental factors
that will all contribute to an individual’s risk for developing
schizophrenia, likely as a function of complex interactions of dif-
ferent combinations of the above. One candidate gene of interest
within the 22q11.2DS deleted region is the gene for catechol-O-
methyltransferase (COMT), an important regulator of prefrontal
dopamine levels. Since this gene has two possible variants (Val
and Met for high versus low enzymatic activity, respectively), some
studies have examined the possible relationship of COMT geno-
type to cognitive function in 22q11.2DS. Results from these studies
do not indicate any clear patterns, with some studies reporting Met
hemizygosity of COMT to be related to poorer outcome on tasks
requiring executive control (63, 64), and others reporting better
outcomes (65, 66). Additional studies have found no relationship
between COMT genotype and measures of cognitive control in
22q11.2DS (67, 68). The discrepancies are not that surprising,
given that the effects of a single gene are not likely to be very pow-
erful, and impact might also vary as a function of other factors
such as age, gender (69), or other genetic variants (70).

In summary, a cross-sectional analysis is an important pre-
liminary step for a comprehensive evaluation of the development
of response inhibition in children with 22q11.2DS and TD chil-
dren. When compared to TD children, children with 22q11.2DS do
not demonstrate typical developmental improvements in response
inhibition. This is suggestive of specific neural and cognitive char-
acteristics that develop differently in children with 22q11.2DS and
which may have a critical impact on general neuropsychological
impairments and risk for psychopathology in 22q11.2DS.

www.frontiersin.org

August 2013 | Volume 4 | Article 81 | 7


http://www.frontiersin.org
http://www.frontiersin.org/Child_and_Neurodevelopmental_Psychiatry/archive

Shapiro et al.

Atypical response inhibition in 22911.2DS

ACKNOWLEDGMENTS
This work was supported by the National Institute of Health
(Grant number RO1HD02974 to Tony J. Simon) and the National
Center for Medical Research (Grant number UL1 RR024146). The
funding bodies had no further role in the study design; in the
acquisition, analysis, and interpretation of data; in the writing

REFERENCES

1

58]

Y

'

[}

[=2)

~

oo

o

. Bunge

. Nigg

. Miller EK, Cohen JD. An inte-

grative theory of prefrontal cor-
tex function. Annu Rev Neurosci
(2001) 24:167-202. doi:10.1146/
annurev.neuro.24.1.167

. Huizinga M, Dolan CV, van der

Molen MW. Age-related change
in executive function: develop-
mental trends and a latent vari-
able analysis. Neuropsychologia
(2006) 44:2017-36. doi:10.1016/j.
neuropsychologia.2006.01.010

. Tillman CM, Thorell LB, Brocki

KC, Bohlin G. Motor response
inhibition and execution in the
stop-signal task: development

and relation to ADHD
behaviors. Child Neu-
ropsychol ~ (2008)  14:42-59.

do0i:10.1080/09297040701249020

. Urben S, van der Linden M, Baris-

nikov K. Development of the abil-
ity to inhibit a prepotent response:
influence of working memory and
processing speed. Br J Dev Psychol
(2011) 29:981-98. doi:10.1111/j.
2044-835X.2011.02037.x

SA, Dudukovic NM,
Thomason ME, Vaidya CJ, Gabrieli
JDE. Immature frontal lobe con-
tributions to cognitive control in
children: evidence from fMRI.
Neuron (2002) 33:301-11. doi:10.
1016/S0896-6273(01)00583-9

. Durston S, Thomas KM, Yang Y,

Ulug AM, Zimmerman RD, Casey
BJ. A neural basis for the develop-
ment of inhibitory control. Dev Sci
(2002) 5:F9-16.doi:10.1111/1467-
7687.00235

JT. On inhibi-
tion/disinhibition in  develop-
mental psychopathology: views
from cognitive and personal-
ity psychology and a working
inhibition taxonomy. Psy-
chol Bull (2000) 126:220-46.
doi:10.1037/0033-2909.126.2.220

. Wykes T, Reeder C, Corner J.

The prevalence and stability of
an executive processing deficit,
response inhibition, in people
with chronic schizophrenia. Schiz-
ophr Res (2000) 46:241-53. doi:10.
1016/50920-9964(99)00233-9

. Thoma P, Wiebel B, Daum 1.

Response inhibition and cogni-
tive flexibility in schizophrenia
with and without comorbid

10.

1

—

12.

13.

14.

15.

16.

17.

substance use disorder. Schiz-
ophr Res (2007) 92:168-80.
doi:10.1016/j.schres.2007.02.004
Cannon TD, van Erp TGM,
Bearden CE, Loewy R, Thompson
P, Toga AW, et al. Early and late
neurodevelopmental influences in
the prodrome to schizophrenia:
contributions of genes,
ronment, and their interactions.
Schizophr Bull (2003) 29:653—
69.  doi:10.1093/oxfordjournals.
schbul.a007037

envi-

. Brewer WJ, Francey SM, Wood SJ,

Jackson H]J, Pantelis C, Phillips L],
et al. Memory impairments identi-
fied in people at ultra-high risk for
psychosis who later develop first-
episode psychosis. Am ] Psychia-
try (2005) 162:71-8. doi:10.1176/
appi.ajp.162.1.71

Lencz T, Smith CW, McLaugh-
lin D, Auther A, Nakayama E,
Hovey L, et al. Generalized and
specific neurocognitive deficits
in prodromal schizophrenia.
Biol Psychiatry (2006) 59:863-71.
doi:10.1016/j.biopsych.2005.09.
005
Snitz BE, MacDonald AW,
Carter CS. Cognitive deficits in
unaffected first-degree relatives
of schizophrenia patients: a
meta-analytic review of puta-
tive  endophenotypes.  Schiz-
ophr Bull (2006) 32:179-94.
doi:10.1093/schbul/sbi048
Gottesman II, Gould TD. The
endophenotype concept in psy-
chiatry: etymology and strategic
intentions. Am J Psychiatry (2003)
160:636—45. doi:10.1176/appi.ajp.
160.4.636

Meyer-Lindenberg A, Weinberger
DR. Intermediate phenotypes and
genetic mechanisms of psychiatric
disorders. Nat Rev Neurosci (2006)
7:818-27. doi:10.1038/nrn1993
Murphy KC, Jones LA, Owen
MJ. High rates of schizophre-
nia in adults with velo-cardio-
facial syndrome. Arch Gen Psychia-
try (1999) 56:940-5. doi:10.1001/
archpsyc.56.10.940

Vorstman JAS, Morcus MEJ, Dui-
jff SN, Klaassen PWJ, Heineman-
de Boer JA, Beemer FA, et al. The
22q11.2 deletion in children: high
rate of autistic disorders and early
onset of psychotic symptoms. J

of the manuscript; and in the decision to submit the paper for
publication. We would like to thank all the families that par-
ticipated in our research. Additionally, we would like to thank
the Sackler Institute for Developmental Psychobiology for the
use of their child friendly “whack-a-mole” Go/No-Go response
inhibition task.

18.

19.

20.

21.

22.

23.

24.

25.

26.

Am Acad Child Adolesc Psychiatry
(2006) 45:1104-13. doi:10.1097/
01.chi.0000228131.56956.c1
Baker KD, Skuse DH. Adolescents
and young adults with 22q11 dele-
tion syndrome: psychopathology
in an at-risk group. Br J Psychi-
atry (2005) 186:115-20. doi:10.
1192/bjp.186.2.115

Carlson C, Sirotkin H, Pandita R,
Goldberg R, McKie J, Wadey R, et
al. Molecular definition of 22ql1
deletions in 151 velo-cardio-facial
syndrome patients. Am ] Hum
Genet (1997) 61:620-9. doi:10.
1086/515508

Robin NH, Shprintzen RJ. Defin-
ing the clinical spectrum of dele-
tion 22qll.2. J Pediatr (2005)
147(1):90-6. doi:10.1016/j.jpeds.
2005.03.007

Oskarsdottir S, Vujic M, Fasth
A. Incidence and prevalence of
the 22ql1 deletion syndrome: a
population-based study in West-
ern Sweden. Arch Dis Child (2004)
89:148-51. doi:10.1136/adc.2003.
026880

Tézenas Du Montcel S, Mendiz-
abai H, Aymé S, Lévy A, Philip
N. Prevalence of 22q11 microdele-
tion. ] Med Genet (1996) 33:719.
doi:10.1136/jmg.33.8.719

Scambler  PJ. The 22ql1
deletion syndromes. Hum
Mol Genet (2000) 9:2421-6.

do0i:10.1093/hmg/9.16.2421
Simon TJ, Bish JP, Bearden CE,
Ding L, Ferrante S, Nguyen V,
et al. A multilevel analysis of
cognitive dysfunction and psy-
chopathology associated ~ with
chromosome 22q11.2  deletion
syndrome in children. Dev Psy-
chopathol ~ (2005)  17:753-84.
doi:10.1017/50954579405050364
Bish JP, Ferrante SM, McDonald-
McGinn D, Zackai E, Simon TJ.
Maladaptive conflict monitoring
as evidence for executive dysfunc-
tion in children with chromosome
22q11.2 deletion syndrome. Dev
Sci (2005) 8:36—43. doi:10.1111/j.
1467-7687.2005.00391.x

Sobin C, Kiley-Brabeck K,
Karayiorgou M.  Associations
between  prepulse
executive  visual  atten-
tion in children with the
22qll deletion syndrome. Mol

inhibition
and

2

2

2

3

3

3

3

3

7.

8.

9.

—

2.

3.

4.

w

Psychiatry ~ (2005)  10:553—62.
doi:10.1038/sj.mp.4001609

Sobin C, Kiley-Brabeck K,
Karayiorgou M. Lower prepulse
inhibition in children with the
22ql1 deletion syndrome. Am J
Psychiatry  (2005)  162:1090-9.
doi:10.1176/appi.ajp.162.6.1090
Gothelf D, Hoeft F Hinard
C, Hallmayer JE Stoecker JVD,
Antonarakis SE, et al. Abnor-
mal cortical activation during
response inhibition in 22ql1.2
deletion syndrome. Hum Brain
Mapp (2007) 28:533—42. doi:10.
1002/hbm.20405

Verbruggen F, Logan GD. Proactive
adjustments of response strate-
gies in the stop-signal paradigm.
J Exp Psychol Hum Percept Per-
form (2009) 35:835-54. doi:10.
1037/a0012726

. Aron AR. From reactive to

proactive and selective control:
developing a richer
for stopping inappropriate
responses. Biol Psychiatry (2011)
69:55-68. doi:10.1016/j.biopsych.
2010.07.024

model

. Botvinick MM, Braver TS, Barch

DM, Carter CS, Cohen JD. Con-
flict monitoring and cognitive con-
trol. Psychol Rev (2001) 108:624—
52. doi:10.1037/0033-295X.108.3.
624

Wechsler D. WISC-1V  Techni-
cal and Interpretive Manual. San
Antonio, TX: Psychological Corp
(2003).

Wechsler D. Wechsler Abbreviated
Scale of Intelligence (WASI). San
Antonio, TX: Psychological Corp
(1999).

Casey BJ, Trainor RJ, Orendi
JL, Schubert AB, Nystrom
LE, Giedd JN, et al. A
developmental functional MRI
study of prefrontal activation

during  performance of a
Go-No-Go task. J Cogn
Neurosci (1997) 9:835-47.

doi:10.1162/j0cn.1997.9.6.835

. Shapiro HM, Takarae Y, Harvey

D, Cabaral M, Simon TJ. A cross-
sectional study of the development
of volitional control of spatial
attention in children with chromo-
some 22q11.2 deletion syndrome.
] Neurodev Disord (2012) 4(1):5.
doi:10.1186/1866-1955-4-5

Frontiers in Psychiatry | Child and Neurodevelopmental Psychiatry

August 2013 | Volume 4 | Article 81| 8


http://dx.doi.org/10.1146/annurev.neuro.24.1.167
http://dx.doi.org/10.1146/annurev.neuro.24.1.167
http://dx.doi.org/10.1016/j.neuropsychologia.2006.01.010
http://dx.doi.org/10.1016/j.neuropsychologia.2006.01.010
http://dx.doi.org/10.1080/09297040701249020
http://dx.doi.org/10.1111/j.2044-835X.2011.02037.x
http://dx.doi.org/10.1111/j.2044-835X.2011.02037.x
http://dx.doi.org/10.1016/S0896-6273(01)00583-9
http://dx.doi.org/10.1016/S0896-6273(01)00583-9
http://dx.doi.org/10.1111/1467-7687.00235
http://dx.doi.org/10.1111/1467-7687.00235
http://dx.doi.org/10.1037/0033-2909.126.2.220
http://dx.doi.org/10.1016/S0920-9964(99)00233-9
http://dx.doi.org/10.1016/S0920-9964(99)00233-9
http://dx.doi.org/10.1016/j.schres.2007.02.004
http://dx.doi.org/10.1093/oxfordjournals.schbul.a007037
http://dx.doi.org/10.1093/oxfordjournals.schbul.a007037
http://dx.doi.org/10.1176/appi.ajp.162.1.71
http://dx.doi.org/10.1176/appi.ajp.162.1.71
http://dx.doi.org/10.1016/j.biopsych.2005.09.005
http://dx.doi.org/10.1016/j.biopsych.2005.09.005
http://dx.doi.org/10.1093/schbul/sbi048
http://dx.doi.org/10.1176/appi.ajp.160.4.636
http://dx.doi.org/10.1176/appi.ajp.160.4.636
http://dx.doi.org/10.1038/nrn1993
http://dx.doi.org/10.1001/archpsyc.56.10.940
http://dx.doi.org/10.1001/archpsyc.56.10.940
http://dx.doi.org/10.1097/01.chi.0000228131.56956.c1
http://dx.doi.org/10.1097/01.chi.0000228131.56956.c1
http://dx.doi.org/10.1192/bjp.186.2.115
http://dx.doi.org/10.1192/bjp.186.2.115
http://dx.doi.org/10.1086/515508
http://dx.doi.org/10.1086/515508
http://dx.doi.org/10.1016/j.jpeds.2005.03.007
http://dx.doi.org/10.1016/j.jpeds.2005.03.007
http://dx.doi.org/10.1136/adc.2003.026880
http://dx.doi.org/10.1136/adc.2003.026880
http://dx.doi.org/10.1136/jmg.33.8.719
http://dx.doi.org/10.1093/hmg/9.16.2421
http://dx.doi.org/10.1017/S0954579405050364
http://dx.doi.org/10.1111/j.1467-7687.2005.00391.x
http://dx.doi.org/10.1111/j.1467-7687.2005.00391.x
http://dx.doi.org/10.1038/sj.mp.4001609
http://dx.doi.org/10.1176/appi.ajp.162.6.1090
http://dx.doi.org/10.1002/hbm.20405
http://dx.doi.org/10.1002/hbm.20405
http://dx.doi.org/10.1037/a0012726
http://dx.doi.org/10.1037/a0012726
http://dx.doi.org/10.1016/j.biopsych.2010.07.024
http://dx.doi.org/10.1016/j.biopsych.2010.07.024
http://dx.doi.org/10.1037/0033-295X.108.3.624
http://dx.doi.org/10.1037/0033-295X.108.3.624
http://dx.doi.org/10.1162/jocn.1997.9.6.835
http://dx.doi.org/10.1186/1866-1955-4-5
http://www.frontiersin.org/Child_and_Neurodevelopmental_Psychiatry
http://www.frontiersin.org/Child_and_Neurodevelopmental_Psychiatry/archive

Shapiro et al.

Atypical response inhibition in 22g11.2DS

36.

37.

38.

39.

40.

4

—_

42.

43.

44.

45,

Carter CS, Barch DM. Cognitive
neuroscience-based approaches to
measuring and improving treat-
ment effects on cognition in schiz-
ophrenia: the CNTRICS initiative.
Schizophr Bull (2007) 33:1131-7.
doi:10.1093/schbul/sbm081

Hazy TE, Frank M]J, O’Reilly RC.
Towards an executive without a
homunculus: computational mod-
els of the prefrontal cortex/basal
ganglia system. Philos Trans R Soc
Lond B Biol Sci (2007) 362:1601—
13. doi:10.1098/rstb.2007.2055
Verbruggen F Logan GD,
Liefooghe B, Vandierendonck
A. Short-term aftereffects of
response inhibition: repetition
priming or between-trial control
adjustments? | Exp Psychol Hum
Percept Perform (2008) 34:413-26.
doi:10.1037/0096-1523.34.2.413
Ridderinkhof KR, van den
Wildenberg WPM, Segalowitz
SJ, Carter CS. Neurocognitive
mechanisms of cognitive control:
the role of prefrontal cortex
in action selection, response
inhibition, performance monitor-
ing, and reward-based learning.
Brain Cogn (2004) 56:129-40.
doi:10.1016/j.bandc.2004.09.016
Koechlin E, Ody C, Kouneiher F.
The architecture of cognitive con-
trol in the human prefrontal cor-
tex. Science (2003) 302:1181-5.
doi:10.1126/science.1088545

. Casey BJ, Durston S. From behav-

ior to cognition to the brain
and back: what have we learned
from functional imaging studies
of attention deficit hyperactivity
disorder? Am ] Psychiatry (2006)
163:957—60. doi:10.1176/appi.ajp.
163.6.957

Vink M, Kahn RS, Raemackers M,
van den Heuvel M, Boersma M,
Ramsey NFE. Function of striatum
beyond inhibition and execution
of motor responses. Hum Brain
Mapp (2005) 25:336-44. doi:10.
1002/hbm.20111

Jahfari S, Stinear CM, Claffey M,
Verbruggen F, Aron AR. Respond-
ing with restraint: what are
the neurocognitive mechanisms? J
Cogn Neurosci (2010) 22:1479-92.
doi:10.1162/jocn.2009.21307
Shashi V, Kwapil TR, Kaczorowski
J, Berry MN, Santos CS, Howard
TD, et al. Evidence of gray mat-
ter reduction and dysfunction
in chromosome 22ql11.2 dele-
tion syndrome. Psychiatry Res
(2010) 181:1-8. doi:10.1016/j.
pscychresns.2009.07.003

Bearden CE, van Erp TGM, Dut-
ton RA, Lee AD, Simon TJ, Cannon

46.

47.

48.

49.

50.

51

52.

53.

TD, et al. Alterations in midline
cortical thickness and gyrifica-
tion patterns mapped in children
with 22q11.2 deletions. Cereb Cor-
tex (2009) 19:115-26. d0i:10.1093/
cercor/bhn064

Dufour F Schaer M, Debbané
M, Farhoumand R, Glaser B,
Eliez S. Cingulate gyral reduc-
tions are related to low exec-
utive functioning and psychotic
symptoms in 22q 11.2 dele-
tion syndrome. Neuropsychologia
(2008) 46:2986-92. doi:10.1016/j.
neuropsychologia.2008.06.012
Sugama S, Bingham PM, Wang
PP, Moss EM, Kobayashi H,
Eto Y. Morphometry of the
head of the caudate nucleus in
patients with velocardiofacial syn-
drome (del 22q11.2). Acta Paedi-
atr (2000) 89:546-9. doi:10.1080/
080352500750027826

Eliez S, Barnea-Goraly N, Schmitt
JE, Liu Y, Reiss AL. Increased
basal ganglia volumes in velo-
cardio-facial syndrome (deletion
22q11.2). Biol Psychiatry (2002)
52:68-70. doi:10.1016/S0006-
3223(02)01361-6

Kates WR, Burnette CP, Bes-
sette BA, Folley BS, Strunge L,
Jabs EW, et al. Frontal and cau-
date alterations in velocardiofa-
cial syndrome (deletion at chro-
mosome 22q11.2). ] Child Neu-
rol (2004) 19:337-42. doi:10.1177/
088307380401900506

Simon TJ, Wu Z, Avants B, Zhang
H, Gee JC, Stebbins GT. Atypi-
cal cortical connectivity and visu-
ospatial cognitive impairments are
related in children with chromo-
some 22q11.2 deletion syndrome.
Behav Brain Funct (2008) 4:25.
doi:10.1186/1744-9081-4-25

. van Amelsvoort T, Daly E, Henry

J, Robertson D, Ng V, Owen M,
et al. Brain anatomy in adults
with velocardiofacial syndrome
with and without schizophrenia:
preliminary results of a struc-
tural magnetic resonance imaging
study. Arch Gen Psychiatry (2004)
61:1085-96. doi:10.1001/archpsyc.
61.11.1085

Romanos M, Ehlis A-C, Baehne
CG, Jacob C, Renner TJ, Storch
A, et al. Reduced NoGo-
anteriorisation during continuous
performance test
syndrome 22q11.2. ] Psychiatr Res
(2010) 44:768-74. doi:10.1016/j.
jpsychires.2010.02.001

Kates WR, Krauss BR, Abdulsabur
N, Colgan D, Antshel KM, Higgins
AM, et al. The neural correlates of
non-spatial working memory in

in deletion

54.

55.

56.

57.

58.

59.

60.

61.

velocardiofacial syndrome
(22q11.2  deletion  syndrome).
Neuropsychologia (2007)
45:2863-73. doi:10.1016/j.

neuropsychologia.2007.05.007
Debbané M, Lazouret M, Lagioia
A, Schneider M, van de Ville
D, Eliez S. Resting-state networks
in adolescents with 22q11.2 dele-
tion syndrome: associations with
prodromal symptoms and exec-
utive functions. Schizophr Res
(2012) 139:33-9. doi:10.1016/j.
schres.2012.05.021

Giedd JN, Blumenthal J, Jeffries
NO, Castellanos FX, Liu H, Zij-
denbos A, et al. Brain development
during childhood and adolescence:
alongitudinal MRI study. Nat Neu-
rosci (1999) 2:861-3. doi:10.1038/
13158
Sowell ER, Thompson PM,
Holmes CJ, Jernigan TL, Toga
AW. In vivo evidence for post-
adolescent  brain  maturation
in frontal and striatal regions.
Nat Neurosci (1999) 2:859-61.
doi:10.1038/13154

Gogtay N, Giedd JN, Lusk L,

Hayashi KM, Greenstein D,
Vaituzis AC, et al. Dynamic
mapping of human cortical

development during childhood
through early adulthood. Proc
Natl Acad Sci U S A (2004) 101:
8174-9. doi:10.1073/pnas.
0402680101

Srivastava S, Buonocore MH,
Simon TJ. Atypical developmen-
tal trajectory of functionally sig-
nificant cortical areas in chil-
dren with chromosome 22q11.2
deletion syndrome. Hum Brain
Mapp (2011) 33:213-23. doi:10.
1002/hbm.21206

Gothelf D, Penniman L, Gu E,
Eliez S, Reiss AL. Developmental
trajectories of brain structure
in adolescents with 22ql11.2

deletion  syndrome: a lon-
gitudinal study. Schizo-
phr  Res  (2007)  96:72-81.

doi:10.1016/j.schres.2007.07.021
Kates WR, Antshel KM, Faraone
SV, Fremont WP, Higgins

AM, Shprintzen RJ, et al
Neuroanatomic predictors
to prodromal  psychosis in
velocardiofacial syndrome

(22q11.2 deletion syndrome): a
longitudinal study. Biol Psychiatry
(2011) 69:945-52. doi:10.1016/j.
biopsych.2010.10.027

Schaer M, Debbané M, Bach
Cuadra M, Ottet M-C, Glaser B,
Thiran J-P, et al. Deviant tra-
jectories of cortical maturation
in 22ql11.2 deletion syndrome

62.

63.

64.

65.

66.

67.

68.

69.

(22q11DS): a cross-sectional and
longitudinal study. Schizophr Res
(2009) 115:182-90. doi:10.1016/j.
schres.2009.09.016

Kunwar A, Ramanathan S, Nel-
son J, Antshel KM, Fremont
W, Higgins AM, et al. Cortical
gyrification in velo-cardio-facial
(22q11.2 deletion) syndrome: a
longitudinal study. Schizophr Res
(2012) 137:20-5. doi:10.1016/j.
schres.2012.01.032

Takarae Y, Schmidt L, Tas-
sone E Simon TJ. Catechol-O-
methyltransferase polymorphism
modulates control
in children with chromosome
22q11.2  deletion syndrome.
Cogn  Affect  Behav ~ Neu-
rosci (2009) 9:83-90.
doi:10.3758/CABN.9.1.83

Baker K, Baldeweg T, Sivagnana-

cognitive

sundaram S, Scambler P,
Skuse D. COMT Vall08/158
Met  modifies  mismatch

negativity and cognitive func-
tion in 22q11 deletion syndrome.
Biol Psychiatry (2005) 58:23-31.
doi:10.1016/j.biopsych.2005.03.
020

Shashi V, Keshavan MS, Howard
TD, Berry MN, Basehore
M]J, Lewandowski E, et al.
Cognitive correlates of a func-
tional COMT polymorphism in
children with 22q11.2 deletion

syndrome. Clin Genet (2006)
69:234-8. doi:10.1111/j.1399-
0004.2006.00569.x

Bearden CE, Jawad AF, Lynch DR,
Sokol S, Kanes SJ, McDonald-
McGinn DM, et al. Effects of a
functional COMT polymorphism
on prefrontal cognitive function
in patients with 22q11.2 deletion
syndrome. Am J Psychiatry (2004)
161:1700-2. doi:10.1176/appi.ajp.
161.9.1700

Glaser B, Debbané M, Hinard
C, Morris MA, Dahoun SP,
Antonarakis SE, et al. No evi-
dence for an effect of COMT
Val158Met genotype on executive
function in patients with 22ql1
deletion syndrome. Am J Psychia-
try (2006) 163:537-9. doi:10.1176/
appi.ajp.163.3.537

Campbell LE, Azuma R,
Ambery F, Stevens A, Smith A,
Morris RG, et al
functions and memory abili-
ties in children with 22q11.2
deletion syndrome. Aust N Z
J Psychiatry (2010) 44:364-71.
doi:10.3109/00048670903489882

Kates WR,  Antshel KM,
Abdulsabur N, Colgan D,
Funke B, Fremont W, et al. A

Executive

www.frontiersin.org

August 2013 | Volume 4 | Article 81 |9


http://dx.doi.org/10.1093/schbul/sbm081
http://dx.doi.org/10.1098/rstb.2007.2055
http://dx.doi.org/10.1037/0096-1523.34.2.413
http://dx.doi.org/10.1016/j.bandc.2004.09.016
http://dx.doi.org/10.1126/science.1088545
http://dx.doi.org/10.1176/appi.ajp.163.6.957
http://dx.doi.org/10.1176/appi.ajp.163.6.957
http://dx.doi.org/10.1002/hbm.20111
http://dx.doi.org/10.1002/hbm.20111
http://dx.doi.org/10.1162/jocn.2009.21307
http://dx.doi.org/10.1016/j.pscychresns.2009.07.003
http://dx.doi.org/10.1016/j.pscychresns.2009.07.003
http://dx.doi.org/10.1093/cercor/bhn064
http://dx.doi.org/10.1093/cercor/bhn064
http://dx.doi.org/10.1016/j.neuropsychologia.2008.06.012
http://dx.doi.org/10.1016/j.neuropsychologia.2008.06.012
http://dx.doi.org/10.1080/080352500750027826
http://dx.doi.org/10.1080/080352500750027826
http://dx.doi.org/10.1016/S0006-3223(02)01361-6
http://dx.doi.org/10.1016/S0006-3223(02)01361-6
http://dx.doi.org/10.1177/088307380401900506
http://dx.doi.org/10.1177/088307380401900506
http://dx.doi.org/10.1186/1744-9081-4-25
http://dx.doi.org/10.1001/archpsyc.61.11.1085
http://dx.doi.org/10.1001/archpsyc.61.11.1085
http://dx.doi.org/10.1016/j.jpsychires.2010.02.001
http://dx.doi.org/10.1016/j.jpsychires.2010.02.001
http://dx.doi.org/10.1016/j.neuropsychologia.2007.05.007
http://dx.doi.org/10.1016/j.neuropsychologia.2007.05.007
http://dx.doi.org/10.1016/j.schres.2012.05.021
http://dx.doi.org/10.1016/j.schres.2012.05.021
http://dx.doi.org/10.1038/13158
http://dx.doi.org/10.1038/13158
http://dx.doi.org/10.1038/13154
http://dx.doi.org/10.1073/pnas.0402680101
http://dx.doi.org/10.1073/pnas.0402680101
http://dx.doi.org/10.1002/hbm.21206
http://dx.doi.org/10.1002/hbm.21206
http://dx.doi.org/10.1016/j.schres.2007.07.021
http://dx.doi.org/10.1016/j.biopsych.2010.10.027
http://dx.doi.org/10.1016/j.biopsych.2010.10.027
http://dx.doi.org/10.1016/j.schres.2009.09.016
http://dx.doi.org/10.1016/j.schres.2009.09.016
http://dx.doi.org/10.1016/j.schres.2012.01.032
http://dx.doi.org/10.1016/j.schres.2012.01.032
http://dx.doi.org/10.3758/CABN.9.1.83
http://dx.doi.org/10.1016/j.biopsych.2005.03.020
http://dx.doi.org/10.1016/j.biopsych.2005.03.020
http://dx.doi.org/10.1111/j.1399-0004.2006.00569.x
http://dx.doi.org/10.1111/j.1399-0004.2006.00569.x
http://dx.doi.org/10.1176/appi.ajp.161.9.1700
http://dx.doi.org/10.1176/appi.ajp.161.9.1700
http://dx.doi.org/10.1176/appi.ajp.163.3.537
http://dx.doi.org/10.1176/appi.ajp.163.3.537
http://dx.doi.org/10.3109/00048670903489882
http://www.frontiersin.org
http://www.frontiersin.org/Child_and_Neurodevelopmental_Psychiatry/archive

Shapiro et al.

Atypical response inhibition in 22911.2DS

gender-moderated effect of a
functional COMT polymorphism
on prefrontal brain morphology
and function in velo-cardio-facial
syndrome (22q11.2 deletion
syndrome). Am ] Med Genet
B Neuropsychiatr Genet
(2006) 141B:274-80.
doi:10.1002/ajmg.b.30284

JAS, Turetsky BI,
Sijmens-Morcus MEJ, de Sain
MG, Dorland B, Sprong M, et
al. Proline affects brain function

70. Vorstman

in 22ql1DS children with the
low activity COMT 158 allele.
Neuropsychopharmacology (2009)
34:739-46. doi:10.1038/npp.2008.
132

Conflict of Interest Statement: The
authors declare that the research was
conducted in the absence of any com-
mercial or financial relationships that
could be construed as a potential con-
flict of interest.

Received: 31 December 2012; accepted: 22
July 2013; published online: 07 August
2013.

Citation: Shapiro HM, Wong LM and
Simon TJ (2013) A cross-sectional
analysis  of the development  of
response inhibition in children with
22q11.2  deletion  syn-
drome. Front. Psychiatry 4:81. doi:
10.3389/fpsyt.2013.00081

This article was submitted to Frontiers in
Child and Neurodevelopmental Psychia-
try, a specialty of Frontiers in Psychiatry.

chromosome

Copyright © 2013 Shapiro, Wong and
Simon. This is an open-access article dis-
tributed under the terms of the Creative
Commons Attribution License (CC BY).
The use, distribution or reproduction in
other forums is permitted, provided the
original author(s) or licensor are cred-
ited and that the original publication
in this journal is cited, in accordance
with accepted academic practice. No use,
distribution or reproduction is permit-
ted which does not comply with these
terms.

Frontiers in Psychiatry | Child and Neurodevelopmental Psychiatry

August 2013 | Volume 4 | Article 81 | 10


http://dx.doi.org/10.1002/ajmg.b.30284
http://dx.doi.org/10.1038/npp.2008.132
http://dx.doi.org/10.1038/npp.2008.132
http://dx.doi.org/10.3389/fpsyt.2013.00081
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.frontiersin.org/Child_and_Neurodevelopmental_Psychiatry
http://www.frontiersin.org/Child_and_Neurodevelopmental_Psychiatry/archive

	A cross-sectional analysis of the development of response inhibition in children with chromosome 22q11.2 deletion syndrome
	Introduction
	Materials and methods
	Participants
	Task procedure
	Data analysis

	Results
	Proactive response inhibition did not differ between groups
	Reactive response inhibition was aberrant in 22q11.2DS
	Reactive response inhibition was impaired in older children with 22q11.2DS
	Conflict monitoring was attenuated in some older children with 22q11.2DS
	General intellectual ability did not correlate with response inhibition

	Discussion
	Acknowledgments
	References


