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INTRODUCTION

While early experiences are proposed to be important for the emergence of anxiety and
other mental health problems, there is little empirical research examining the impact of
such experiences on the development of emotional learning. Of the research that has
been performed in this area, however, a complex picture has emerged in which the matu-
ration of emotion circuits is influenced by the early experiences of the animal. For example,
under typical laboratory rearing conditions infant rats rapidly forget learned fear associa-
tions (infantile amnesia) and express a form of extinction learning which is relapse-resistant
(i.e., extinction in infant rats may be due to fear erasure). In contrast, adult rats exhibit very
long-lasting memories of past learned fear associations, and express a form of extinction
learning that is relapse-prone (i.e., the fear returns in a number of situations). However,
when rats are reared under stressful conditions then they exhibit adult-like fear retention
and extinction behaviors at an earlier stage of development (i.e., good retention of learned
fear and relapse-prone extinction learning). In other words, under typical rearing conditions
infant rats appear to be protected from exhibiting anxiety whereas after adverse rearing
fear learning appears to make those infants more vulnerable to the later development of
anxiety. While the effects of different experiences on infant rats’ fear retention and extinc-
tion are becoming better documented, the mechanisms which mediate the early transition
seen following stress remain unclear. Here we suggest that rearing stress may lead to an
early maturation of the molecular and cellular signals shown to be involved in the closure
of critical period plasticity in sensory modalities (e.g., maturation of GABAergic neurons,
development of perineuronal nets), and speculate that these signals could be manipulated
in adulthood to reopen infant forms of emotional learning (i.e., those that favor resilience).

Keywords: maternal-separation, FGF2, fear conditioning, memory retention, extinction, development, infant, critical
period

processes involved in fear learning and fear inhibition (13-18).

Early life experiences have long been considered critical for the
establishment of mental health. Exposure to a range of childhood
adversities such as maladaptive family functioning, rearing in an
institutional setting, and trauma lead to increased mental health
risk and difficulties in emotional regulation and cognitive func-
tioning (1-5). In both humans and non-human species the early
rearing environment has been shown to influence the development
of brain regions critical to emotional processing and/or mental
health outcomes (3, 6-8). Despite the recognized importance of
early life experiences in the establishment of mental health how-
ever, there has been surprisingly little empirical research which
examines the role of early experiences (such as adverse rearing)
on the development of emotional learning. Yet some forms of
emotional learning (e.g., learning to fear and learning to inhibit
fear responses) are critically involved in both the establishment
and treatment of mental health disorders in humans [see (9),
for a review (10-12)]. Further, evidence from animal models has
demonstrated considerable developmental heterogeneity in the

Hence, understanding the maturation of emotional learning and
how its developmental trajectory is altered by different early expe-
riences might aide in our understanding and treatment of mental
health disorders across the lifespan.

In this review we describe the normal trajectory of fear learning
across the infancy to juvenile periods of development in the rodent
and discuss how developmental dissociations in these learning
processes are altered by a variety of early life experiences (specifi-
cally, exposure to early life adversity or fibroblast growth factor-2;
FGF2). Considering the high degree of similarity in fear learning
outcomes following early manipulation of the rearing environ-
ment and FGF2, we propose a model via which the experience of
early adversity might activate, within the limbic circuit, molecu-
lar signals known to be involved in critical periods of plasticity in
other brain regions via an FGF2-dependent pathway. The review
ends with a discussion on how the proposed model might guide
further pre-clinical research in this field as well as highlighting
potential areas for translation to humans.
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DEVELOPMENTAL DIFFERENCES IN FEAR LEARNING

In recent years, studies using Pavlovian fear conditioning have
demonstrated a number of fundamental differences in emotional
learning in infant and adult animals. During a typical Pavlovian
fear conditioning procedure an initially neutral conditioned stim-
ulus (CS; e.g., noise) is paired with an aversive unconditioned
stimulus (US; e.g., footshock). Such pairings rapidly lead the ani-
mal to express a species-specific defensive/fear response toward the
CS [e.g., freezing in the rat; (19)]. Although both infant and adult
rodents can learn a CS-US association during fear conditioning,
their retention of those fear memories differs dramatically. Specif-
ically, following fear conditioning adult rats will typically express
fear to that cue for the rest of their life (20). Infant rats, on the other
hand, exhibit rapid forgetting, a phenomenon known as infantile
amnesia (13). For example, when given two pairings of a white
noise CS with a foot shock US, both infant [i.e., postnatal day (P)
16] rats and juvenile (i.e., P23) rats show equivalent levels of fear
immediately after training (18). However, when tested 2 days after
training, infants show a dramatic decrease in fear, while juveniles
continue to express a high level of fear in the presence of the CS.
This suggests that while infant animals can acquire fear just as
readily as older animals, they do not retain the memory across an
extended period of time (13, 21, 22). This profound and sponta-
neous forgetting is not limited to infant rats but is experienced by
all altricial animals, including humans (23). For example, humans
are generally unable to recall events that occurred prior to the age
of 3years and have hazy memories of events that occurred until
around 5-6 years of age (24).

One question of interest to neuroscience researchers is what
happens to the memory trace following infantile amnesia. That is,
does the forgetting represent decay in the memory trace, leading to
eventual erasure of that memory, or are infant memories simply
unable to be retrieved? The evidence suggests that infantile for-
getting often represents a retrieval failure. Numerous studies have
shown that a pre-test reminder treatment effectively reverses the
deficit in retention, suggesting that infantile amnesia is caused by a
failure of cues to spontaneously retrieve the memory trace (15, 25—
27).Inaddition, reducing GABAergic inhibition in the infant rat at
test (via systemic injection of FG7142; a partial inverse agonist of
the GABA,4 receptor) leads to a forgotten memory being expressed
(15, 28). Interestingly, studies have shown that administration of
midazolam, which increases GABA, activity, in adult rats has
strong amnestic effects (29), suggesting that infantile forgetting
may be an exaggerated form of adult memory loss.

DEVELOPMENTAL DIFFERENCES IN FEAR INHIBITION

Another area where developmental differences are observed is in
the inhibition of fear. That is, once fear is acquired it can then
be decreased or inhibited through a process known as extinction.
During a typical extinction procedure the animal is repeatedly
exposed to the CS without the reinforcing US (e.g., shock). In
the last decade, extensive research has been conducted examin-
ing the behavioral, neural, and molecular mechanisms underlying
fear extinction. On a behavioral level, it is widely accepted that
extinction in older animals (e.g., juvenile and adult animals) is not
simply erasure of the original fear memory. Instead, extinction is
believed to involve the formation of a new inhibitory (CS-noUS)

memory. Evidence for the “new inhibitory learning” account of
extinction comes from both rodent and human studies showing
that fear can return following extinction training through either
a change in context [renewal; e.g., (30, 31)], presentation of an
aversive stimulus [reinstatement; e.g., (32, 33)], or simply the pas-
sage of time [spontaneous recovery; e.g., (33, 34)]. Thus, in older
animals, extinction is relapse-prone.

The idea that extinction involves new learning in juvenile and
adult animals is further supported by evidence from pharmaco-
logical studies demonstrating that extinction involves the same
cellular mechanisms as other forms of new learning. For instance,
both fear conditioning and fear extinction require activation of
the N-methyl-p-aspartate receptor (NMDAr), as administration
of bL-2-amino-5-phosphonovaleric acid (APV; an NMDAr antag-
onist) either systemically or directly into the brain disrupts both
forms of learning (35-37). Conversely, systemic or intra-amygdala
administration of the NMDAr partial agonist p-cycloserine (DCS)
enhances extinction retention (38-40). Other cellular mecha-
nisms involved in the mature form of fear extinction have also
been explored. For instance, along with NMDAr transmission,
fear extinction in juvenile/adult rats has been shown to rely on
GABAergic (41, 42) and opioidergic transmission (43, 44).

The characteristics of extinction in infant rodents have also
begun to be explored and the results suggest that infant rodents
exhibit a qualitatively different extinction profile compared to
juvenile and adults. Whereas adult animals exhibit relapse-prone
extinction, infants exhibit relapse-resistant fear extinction. That is,
infant P17 animals do not show renewal, reinstatement, or spon-
taneous recovery following extinction (16, 42, 45, 46). The lack of
relapse behavior seen after extinction in the young animal suggests
that extinction at this age is mediated by a fundamentally differ-
ent mechanism, which might be best characterized as erasure of
the original fear memory rather than new learning. In support of
this possibility, other studies have demonstrated that extinction in
infant animals is not dependent on NMDArs (47); in contrast to
P24 rats, systemic administration of the NMDAr antagonist MK-
801 did not impair extinction retention in P17 animals. This effect
is not due to a generalized lack of NMDAr-involvement in infant
learning because the same drug was shown to impair fear acqui-
sition in rats when given prior to conditioning in infancy. These
findings suggest that while NMDArs are involved in some forms
of learning during infancy (i.e., fear conditioning), they are not
involved in others (i.e., fear extinction).

Other neurotransmitters have also been shown to differentially
modulate early extinction memories. For instance, unlike juvenile
and adult rats, GABAergic transmission does not affect long-term
extinction in infant rats (42), suggesting that extinction does not
involve formation of a new “inhibitory” association in young rats.
On the other hand, some neurotransmitter systems do appear to
be involved in extinction across age. Specifically, endogenous opi-
oids appear to regulate extinction in infant animals, as P17 rats
given the opioid receptor antagonist naloxone exhibited impaired
within-session extinction compared to animals given saline (44);
a finding which is similar to that seen in adult rats (43).

The developmental differences in fear inhibition are not only
observed on the behavioral and pharmacological levels as there
are also marked differences in the neural circuitry which supports

Frontiers in Psychiatry | Molecular Psychiatry

August 2013 | Volume 4 | Article 90 | 2


http://www.frontiersin.org/Molecular_Psychiatry
http://www.frontiersin.org/Molecular_Psychiatry/archive

Callaghan et al.

Stress and critical period plasticity

extinction across development. In adult animals, lesion, immuno-
histochemical, and electrophysiological studies have implicated
the amygdala, medial prefrontal cortex (mPFC), and hippocam-
pus in the extinction of fear [see (48-50), for extensive reviews
on the role of these structures in extinction]. Specifically, a widely
accepted neural model of extinction proposes that the amygdala is
involved in the acquisition and consolidation of learned fear [e.g.,
(51)], while the mPFC is important for regulating the expression
of fear through either inhibiting or exciting amygdalar neuron
output [e.g., (50)]. Additionally, the hippocampus appears to be
involved in the contextual modulation of extinction through its
projections to the mPFC (52, 53).

While this neural model of extinction has been predominantly
based on rodent studies, there is evidence to suggest that a similar
circuitry is involved in regulating emotional memories in humans
(54). For example, Phelps and colleagues showed that the mPFC-
amygdala circuit is activated in humans following extinction train-
ing (55), while Kalisch et al. (56) found that retrieval of a context-
dependent extinction memory activated the hippocampal-mPFC
circuit. Interestingly, this “extinction circuit” has been shown to be
dysfunctional in individuals with post-traumatic stress disorder
(PTSD). Specifically, some studies have found that individuals with
PTSD exhibit hypoactivation of the fear inhibition components
of the circuit (i.e., mPFC and hippocampus) and hyperactivation
of the fear activation components of the circuit (i.e., amygdala),
relative to healthy controls [e.g., (12, 57)].

While the extinction circuit has been well documented in adult
rodents and adult humans, until very recently this circuit had not
been examined at earlier stages of development. Over the past
5 years, however, some progress has been made in mapping the
neural circuitry mediating extinction in the developing animal.
Those studies indicate that if extinction occurs in the juvenile
stage of development, then it involves the same neural circuit as
extinction in adulthood. In contrast, extinction in the infant stage
of development appears to involve a different circuit. For example,
Kim and Richardson (58) found that inactivating the amygdala
(via infusion of the GABA, agonist muscimol) prior to extinc-
tion significantly impaired long-term extinction in both P24 and
P17 rats. Further, it was observed that there was an increase in
the number of phosphorylated mitogen-activated protein kinase
(PMAPK) neurons in the basolateral amygdala (BLA) following
extinction training in rats of both ages (59). Therefore, it seems
that the amygdala is an important structure for the extinction of
conditioned fear in rats, regardless of age. In contrast, the mPFC
appears to mediate fear extinction only in older animals [i.e., juve-
niles and adults; (59)]. In that study, infusion of muscimol into the
mPFC prior to extinction training impaired extinction retention
in P24 rats but not in P17 rats. In addition, while extinction train-
ing caused an increase in pMAPK-labeled neurons in the mPFC
of P24 rats, there was no extinction-related change in pMAPK-
labeled neurons in that structure in younger animals. Together,
the research on fear extinction in the infant rat appears to suggest
that infants recruit a much simpler neural circuit during extinc-
tion than do rats extinguished at later stages of development (i.e.,
juvenile through to adulthood). It has been proposed that these
neural differences in extinction might underlie the less flexible
extinction behavior seen in infant rats. That is, perhaps the lack

Table 1 | Summary of the behavioral and neural characteristics of the
fear retention and extinction systems in adult and infant (<P21)

rodents.
Adult Infant Infant rodents following
rodent rodent early stress/CORT/FGF2
Renewal v X v
Reinstatement v X v
NMDA v X ?
GABA v X v
Endogenous opioids v v ?
Amygdala v v ?
mPFC v X ?
Good fear retention v X v

v’ Indicates that the phenomenon is present in age or treatment groups; x indi-
cates that the phenomenon is absent in age or treatment groups, ? indicates that
the phenomenon has not yet been examined in the age or treatment group. See
text for definition of the terms used in this table.

of relapse following infant extinction in the rat is the outcome of
a simple extinction circuit which cannot integrate multiple, con-
textually gated associations. See Table 1 for a summary of the
behavioral and neural differences in extinction and fear retention
across development.

The current literature clearly indicates that fear retention and
fear inhibition are dynamic processes that exhibit considerable
developmental heterogeneity. Whereas infant rats exhibit marked
forgetting and use a simpler extinction system characterized by
a resistance to relapse, older rats demonstrate better memory
retention and use a more flexible neural circuit that results in
relapse-prone extinction learning. While examination of these
differences has occurred primarily in animal models, there is evi-
dence that at least one of the transitions (i.e., the transition from
infantile amnesia to adult-like memory retention) also occurs in
developing humans. It is now commonly accepted that memo-
ries formed before the age of approximately 3 years in humans are
generally inaccessible to conscious recollection in adulthood [e.g.,
(24, 60)]. While much of the human research on infantile amnesia
has focused on various cognitive factors that might contribute to
the effect [e.g., language acquisition, development of self-concept,
increasing ability to utilize reminder cues; (61-63)], the occur-
rence of the same effect in non-human animals suggests that more
basic neurobiological mechanisms might provide a better account
for infantile amnesia. In contrast to the complimentary findings
on infantile amnesia across rodents and humans, there hasn’t been
any, to our knowledge, research examining whether the transition
from relapse-resistant to relapse-prone extinction is also a feature
of human development. Future studies should examine whether
the transition in extinction mechanisms also occurs in humans.

The fact that developmental transitions in emotional learning
take place in humans as well as rodents is of particular interest,
suggesting that findings in either species might be successfully
translated to the other. Indeed, a mechanistic understanding of
the developmental transitions in emotional learning across species
might have considerable clinical implications because anxiety
disorders are characterized by persistent expression of fear and

www.frontiersin.org

August 2013 | Volume 4 | Article 90 | 3


http://www.frontiersin.org
http://www.frontiersin.org/Molecular_Psychiatry/archive

Callaghan et al.

Stress and critical period plasticity

high rates of treatment relapse. In an effort to uncover some
of the mechanisms which regulate the expression of infant fear
learning within a rodent model, some very recent studies have
begun to examine factors which are involved in the transition from
infant- to adult-like fear learning, with a view to manipulating
these mechanisms in adulthood to promote infant-like forgetting
and relapse-resistant extinction.

EARLY EXPERIENCES REGULATE THE TRANSITION BETWEEN
INFANT- AND ADULT-LIKE FEAR LEARNING IN RODENT
MODELS

Two different types of early experience have recently been shown
to affect the age at which rats transition between infant- and adult-
like fear learning. While these experiences are vastly different in
nature, they both appear to impact the developmental transition in
fear learning in similar ways (i.e., both manipulations lead to early
expression of adult-like fear retention and extinction behaviors).

STRESS

It has been known for decades that exposure to stressors or stress
hormones (corticosterone; CORT) can program the maturation of
fear responding. For example, rats begin to exhibit species-specific
defense responses (freezing, inhibition of ultrasonic vocalizations;
USV) to the presence of a strange adult male/male odor at approx-
imately P10. Further, while the amygdala is not activated by the
presentation of a male odor in rats younger than P10, amygdala
activation is increased following presentation of the same stimu-
lus in rats aged P10 and older (64—66). Defense responding and
amygdala activation can be elicited by presentation of a potential
predator odor earlier if rats are given exogenous CORT at P8. Fur-
ther, these responses can be delayed if rats are adrenalectomized,
which leads to a reduction in CORT [i.e., removal of the adrenal
gland and subsequent reduction in CORT; (66—69)].

In addition to the stress-induced acceleration of unlearned
fear reaction development, the maturation of learned fear reac-
tions also appears to be affected by stress exposure. For example,
in the second postnatal week of life rats exhibit a developmen-
tal transition in their behavioral and neural response to an odor
previously paired with shock. Specifically, in rats aged P10 and
older odor-shock conditioning leads to subsequent avoidance of
the shock-paired odor and activation of the amygdala. However,
rats conditioned at P6-P8 exhibit a paradoxical approach response
toward the odor (70, 71). In addition, presentation of the shock-
paired odor does not lead to increased activity in the amygdala of
P8 rats (72), suggesting that different neural structures are involved
in the conditioned responses exhibited by P10 and P8 rats. Interest-
ingly, if rats were raised in a stressful rearing environment, or were
given a CORT injection before test, then a precocious avoidance
response to the shock-paired odor was observed at P8, which was
correlated with increased amygdala activity (72-75). Thus, early
life stress in rodents accelerates the transition between infant- and
adult-like behaviors and neural responses in odor-shock associa-
tive learning just like it accelerates the development of unlearned
fear responses to a potential predator odor.

Although environmental effects on the maturation of fear
responses have been investigated for some time, how the
environment affects development of fear retention and fear

extinction has only recently begun to be investigated. Interest-
ingly, those studies show that early exposure to stress or CORT
also accelerates the maturation of fear retention and extinction
learning. Specifically, compared to a group of standard-reared (SR)
infant rats, infants exposed to maternal-separation (MS; 180 min
separation from P2 to P14) before conditioning on P17 express
fear memories for longer periods of time (76). While SR infants
forgot a conditioned association in as little as 10 days, MS infants
expressed memory for the conditioned association up to 30 days
after training. Similarly, pups that were suckled by a SR mother
that had been exposed to CORT in her drinking water (from P2
to P14), but not pups suckled by vehicle-exposed mothers, also
exhibited longer retention of fear memories. Taken together, those
results suggest that early stress/CORT exposure leads to an accel-
erated transition in the fear retention system used by infant rats.
In other words, rats make a precocious transition from the infan-
tile amnesia system to the adult-like retention system following
exposure to stress/ CORT.

It is not only an early transition into adult-like retention that is
seen following MS however. In another set of studies the effect of
MS on the expression of two relapse phenomena after extinction
(fear renewal and reinstatement) was examined in infant rats (77).
It was shown that while the SR infant rats did not exhibit either
of those relapse phenomena [replicating past findings in P17 rats;
(16, 45)], the MS infants did. In other words, following MS rats
made an early transition from the infant relapse-resistant extinc-
tion system to the adult-like relapse-prone extinction system. In
addition to exhibiting increased relapse, the expression of extinc-
tion in MS P17 rats was also found to be dependent on activation
of GABA, receptors. As mentioned earlier, the expression of adult
extinction memories requires activation of the GABA, receptors
(41). Similar to studies in adults, when GABAergic inhibition was
decreased at an extinction test in juvenile rats (via injection of
FG7142), extinction retention was impaired (42). However, in that
study FG7142 had no effect on levels of expressed fear in infant
rats. That is, infant rats exhibited low levels of freezing at test fol-
lowing extinction regardless of whether they received FG7142 or
not. Interestingly, when MS infant rats were given FG7142 at test
they behaved similarly to juvenile and adult rats, suggesting that
after early stress the role of GABA, receptors in extinction expres-
sion becomes more adult-like (77). These studies suggest that the
development of fear retention and extinction learning, two behav-
iors with potential importance for vulnerability to mental health
disorders (e.g., PTSD), are dynamically regulated by the early life
rearing environment (see Table 1 for a summary) and that stress
is one condition under which increased vulnerability to mental
health problems might emerge.

FGF2

Another early life event that has been shown to influence the
development of fear learning and extinction is exposure to fibrob-
last growth factor-2 (FGF2). FGF2 is a neurotrophic factor that
regulates cell proliferation, differentiation, and survival. Dur-
ing early development FGF2 is responsible for determining the
overall morphology of the brain, and during adulthood it is
released in response to stress or brain injury, potentially playing
a neuroprotective role (78, 79). Early life exposure to FGF2 has
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marked central effects; a single peripheral administration of FGF2
on P1ledto increased cell proliferation in the hippocampus, result-
ing in a larger hippocampal volume that was first evident at P4
and that persisted throughout adulthood (80). Conversely, trans-
genic mice that lack FGF Receptor 1 (the primary receptor for
FGF2) have decreased hippocampal cell proliferation, resulting in
permanent hippocampal atrophy (80, 81).

Graham and Richardson (82) investigated whether these long-
term hippocampal morphological changes induced by early life
exposure to FGF2 might lead to changes in hippocampal-mediated
memory formation. They first examined the impact of early life
FGF2 on contextual fear conditioning in the developing rat. Infant
rats exhibit impaired long-term (i.e., after 24 h) memory for con-
textual fear relative to older rats (83). However, subcutaneous
injections of FGF2 from P1-5 led to an early emergence of long-
term memory for contextual fear in P16 rats. Early life FGF2
also enhanced contextual fear conditioning in P23 rats, an age
at which rats exhibit moderate levels of long-term memory for
contextual fear.

Graham and Richardson (82) then examined the impact of
early life FGF2 on fear extinction at P16. In those studies, cued
fear conditioning procedures were used (i.e., white noise CS paired
with shock US) as infant rats can exhibit long-term memory
of such associations. Animals were trained in one context, and
then extinguished in a different context. Early life FGF2 did not
affect the strength of cued fear conditioning, the rate of extinc-
tion acquisition, or the retention of extinction training when the
extinguished CS was presented in the extinction training context.
However, when the extinguished CS was presented in the original
fear conditioning context, FGF2-treated P16 rats exhibited recov-
ered fear responses whereas vehicle-treated P16 rats exhibited low
fear responses. That is, early life FGF2 led to a precocious emer-
gence of renewal. These results show that early exposure to FGF2
causes an accelerated emergence of the ability to encode and/or
maintain a representation of the contextual elements associated
with fear conditioning and extinction memories. When taken
together with the findings from Cheng et al. (80) it is possible
that these behavioral results are a consequence of the effects of
early life FGF2 on hippocampal development.

The fact that FGF2, maternal-separation, and exposure to
CORT have similar effects, all accelerating the development of
fear learning in infant rats, raises the possibility that stress and
FGF?2 produce their outcomes on early fear learning and extinction
through the same or a similar pathway. For example, it might be the
case that FGF2 is one of the mechanisms involved in accelerated
maturation following early stress. In support of this idea, a large
body of evidence has suggested that FGF2 is critically involved
in the effects of stress. FGF2 appears to be modulated by acti-
vation of the hypothalamic-pituitary-adrenal (HPA) axis, which
mediates the mammalian response to stress. Adrenalectomized
rats exhibit reduced expression of FGF2 in the hippocampus, stria-
tum, and frontal cortex, whereas administration of glucocorticoids
increases FGF2 mRNA in the hippocampus and prefrontal cortex;
both results support the idea that adrenal hormones (which are
responsible for terminating the stress response) exert control over
FGF2 [see review by (84)]. Indeed, both physical and psychological
stress upregulate FGF2. Specifically, brain injury leads to increases

in FGF2 around the site of the lesion, and application of FGF2 to
the lesion reduces cell death and increases astrocytic density (85,
86). Likewise, restraint stress (a psychological stressor) increases
FGF2 mRNA expression in the hippocampus and prefrontal cor-
tex (84). These findings point to a potential neuroprotective role
for FGF2 in response to stress [see (79)].

There are several factors that determine whether or not FGF2
increases in response to stress, one of which is the controllability
of the stressor. Bland et al. (87) exposed two groups of rats to a
series of tail shocks. One group could terminate the shock by turn-
ing a wheel; the other group were yoked to the first and could not
control the shock, but experienced the same number and inten-
sity of shocks as the first group. Escapable, but not inescapable,
shock led to a significant increase in hippocampal FGF2 protein
expression 2 h post-shock, and this effect persisted for 24 h. Fur-
thermore, inescapable shock, but not escapable shock, led to a
significant decrease in the proliferation of hippocampal neural
progenitor cells. A later study demonstrated that escapable shock,
but not inescapable shock, also causes increases in FGF2 mRNA
expression in the PFC (88). Similarly, Turner et al. (89) reported
that chronic (4 days) social defeat stress, in which a rat is exposed
to an aggressive male rat of a different strain, down-regulates hip-
pocampal FGF2 mRNA expression. These findings suggest that
endogenous FGF2 may protect against the harmful effects of stress
(perhaps by increasing cell proliferation), but only if the animal
has some level of control over the stressor.

Another factor that determines FGF2’s involvement in the stress
response is prior exposure to stress hormones. It has been shown
that prenatal exposure to corticosterone significantly reduces basal
FGF2 mRNA expression during adulthood. Furthermore, prenatal
exposure to corticosterone significantly attenuates the upregula-
tion of hippocampal FGF2 mRNA normally seen following acute
stress in adulthood (84). Therefore it is possible that early life
stress may alter (i.e., cause dysfunctions in) FGF2’s neuroprotective
response to stress later in life (79).

HOW DO EARLY STRESS AND FGF2 EXPOSURE ACCELERATE
THE DEVELOPMENT OF FEAR LEARNING SYSTEMS?
One intriguing possibility concerning the effects of stress and
FGF2 exposure on accelerated emotional development is that these
early experiences regulate the expression of critical period plas-
ticity. Specifically, it is possible that infantile amnesia, impaired
context learning, and relapse-resistant extinction represent forms
of critical period plasticity in emotional systems, and that these
forms of plasticity are controlled by the same cascade of signals
as critical periods in other areas of the brain. That is, stress expo-
sure could initiate a cascade of cellular and molecular changes
involved in terminating infant-like forms of fear learning via HPA
activation of FGF2 receptors. This would be an attractive, and sim-
ple, explanation for the similar outcomes of early stress and FGF2
exposure on developmental transitions in fear learning. In other
words, it is possible that stress and FGF2 activate a “signature” set
of signals involved in critical period termination across the brain.
Traditionally, critical/sensitive periods have been defined as
discrete stages of rapid neural development in which plastic-
ity is enhanced, allowing early environmental input to fine-tune
final wiring patterns in the brain before plasticity is reduced in
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adulthood [e.g., (90-92)]. The onset and offset of critical periods is
not a simple age-dependent maturational process. Rather, the tim-
ing of critical periods can be manipulated by different experiences
which affect the various molecular and cellular signals involved
in their opening and closure (90). While the high levels of plas-
ticity inherent in a critical period allow for enhanced learning
and refinement of neural functions these periods also represent a
time of vulnerability for the developing brain. If aberrant sensory
or social events are experienced, or expected environments do not
manifest, then the timing and function of the critical period can be
altered, placing the brain at risk for abnormal wiring patterns and
adverse behavioral/sensory outcomes. For instance, some devel-
opmental disorders in humans (e.g., autism) have been proposed
to result from a disruption in the timing or expression of critical
periods across various brain regions (93, 94).

There are many different critical periods which occur across
development, each involving unique brain regions or neural cir-
cuits (95). For example, critical periods in humans have been
proposed for the development of sensory/sensory-motor, cog-
nitive, and emotion systems [e.g., (4, 7, 96, 97)]. For instance,
when learning takes place before the age of 7 years, acquisition of
a second language usually occurs to a level that is grammatically
indistinguishable from that of native speakers. However, mastery
of a second language becomes progressively harder from 8 years
onward (98, 99). Other research has shown that children need to be
exposed to appropriate levels of cognitive, tactile, and emotional
stimulation early in life in order to develop adequate cognitive
functions and emotion regulation skills. Children reared in insti-
tutional settings which lack the appropriate levels of stimulation
exhibit profound deficits in cognitive and emotional development,
effects which are often permanent if children are not adopted
before the age of 2 years [see (3), for a review; (100)].

In non-human animals critical/sensitive periods have also been
shown to occur in a variety of sensory and emotional systems,
such as song learning in birds, attachment learning in rats, and
cortical responses to vibrissa stimulation in rats [see (101-103),
for a review; (71, 104, 105)]. The best characterized animal model
of critical period plasticity, however, is that of ocular dominance
(OD) plasticity induced by monocular deprivation [(106, 107); see
(91, 108), for reviews; see also (92), for a review]. Only during the
critical period for OD plasticity does closure of one eye result in
a loss of visual acuity in the closed eye (amblyopia) and a shift in
the responsiveness of neurons in the primary visual cortex away
from the closed eye.

Research investigating OD plasticity has highlighted numerous
molecular and cellular signals which are involved in opening and
closing this critical period. Importantly, these signals have been
shown to regulate the timing of sensitive periods in other sensory
modalities (104, 105), suggesting that there may be a general neural
signature which guides critical period timing across the brain.
Although the neural signature for critical period timing has mostly
been investigated in sensory systems, recent evidence suggests that
the same signals may also regulate sensitive periods in fear learn-
ing (46). Further, there is some evidence to suggest that those
neural signals are regulated by particular types of early experience,
suggesting a potential mechanism via which stress/ CORT/FGF2
may have affected the timing of adult-like fear retention, context

learning, and extinction described earlier. While a detailed analy-
sis of the molecular and cellular events involved in triggering the
onset and offset of critical period plasticity in the visual cortex
is beyond the scope of this review [interested readers are referred
to excellent past reviews on the topic: (91, 92, 108)], we provide
a brief summary of those molecular and cellular signals impor-
tant for critical period plasticity in the visual system that also may
have a role in fear and extinction learning and that appear to be
regulated by stress/ CORT/FGEF2.

SIGNALS INVOLVED IN THE OPENING OF CRITICAL PERIOD PLASTICITY
The onset of OD plasticity appears to be triggered by a change
in the balance of excitation and inhibition in the visual cortex,
mostly as a result of developmental increases in inhibitory activ-
ity. For example, 4 days of monocular deprivation starting on
P25-P27 induces OD plasticity in wild-type mice but not in mice
with a genetic knockout (KO) of the GAD65 gene, which inhibits
GABA release. However, critical period plasticity could be res-
cued in GAD65 KO mice if levels of inhibition were artificially
increased during monocular deprivation via infusion of a benzo-
diazepine directly into the visual cortex (109). Benzodiazepines
were also successful in precociously inducing OD plasticity when
monocular deprivation was performed in pre-critical period mice
[P15-P20; (90)]. It appears that the maturation of intra-cortical
inhibition is regulated by brain derived neurotrophic growth
factor (BDNF) because genetic over-expression of BDNF across
postnatal development accelerated the maturation of parvalbu-
min positive (PV+) GABAergic interneurons in the visual cortex
and resulted in a precocious critical period (110, 111). Together
these studies suggest that the molecular machinery for enhanced
plasticity is present early in life but that maturation in GABAer-
gic circuitry (e.g., PV+ interneurons and GABAergic synapses)
pushes inhibitory activity beyond a certain threshold to trigger
the opening of the critical period.

SIGNALS INVOLVED IN THE CLOSURE OF CRITICAL PERIOD PLASTICITY
While intra-cortical inhibition appears to be sufficient for the ini-
tiation of critical period plasticity, there are several mechanisms
that appear to be involved in critical period termination, many
acting as “structural brakes” which limit plasticity. For example,
critical periods appear to be regulated by the appearance of extra-
cellular matrix proteins — perineuronal nets (PNNs) — around the
dendrites, axons, and cell bodies of GABAergic neurons. PNNs
are believed to limit critical period plasticity by increasing stabil-
ity of synapses via inhibition of axonal growth and sprouting.
Appearance of PNNs in various brain regions correlates with
termination of critical period plasticity in several different sen-
sory systems [e.g., (92, 104, 105, 108)], and recently appearance
of PNNs in the amygdala was shown to correlate with the ter-
mination of infant-like, relapse-resistant extinction learning and
the transition into adult-like, relapse-prone extinction learning
(46). Interestingly, when PNNs in the visual cortex or amygdala
of adult rats are degraded via chondroitinase ABC (chABC), then
the critical periods for OD plasticity and erasure-like extinction,
respectively, are reopened (46, 112). This research strongly suggests
that erasure-like extinction represents a form of critical period
plasticity occurring in emotion circuits in the brain, and that

Frontiers in Psychiatry | Molecular Psychiatry

August 2013 | Volume 4 | Article 90 | 6


http://www.frontiersin.org/Molecular_Psychiatry
http://www.frontiersin.org/Molecular_Psychiatry/archive

Callaghan et al.

Stress and critical period plasticity

termination of this form of infant plasticity appears to be reg-
ulated by some of the same structural brakes as critical period
plasticity in sensory systems.

In addition to the formation of PNNs, other developmental
factors also appear to be involved in limiting structural plastic-
ity in the visual cortex and terminating the critical period for
OD nplasticity. For example, maturation of myelin basic protein
(MBP) in the visual cortex has been shown to correlate with ter-
mination of the critical period for OD plasticity (113), potentially
through inhibiting mechanisms of structural remodeling neces-
sary for plasticity (114). The myelin associated growth inhibitor
Nogo-66 is known to limit axonal regeneration following CNS
damage because antagonizing the Nogo-66 receptor (NgR) pro-
motes axonal regeneration following spinal cord injury in the rat
(115). Interestingly, when the NgR was genetically deleted in mice
and monocular deprivation occurred post-sensitive period (i.e.,
at P45) the mutant mice exhibited OD plasticity whereas wild-
type mice did not (113). Hence, it appears that adult mice retain
the capacity for enhanced plasticity but that increased myelina-
tion in the visual cortex which occurs across development acts as
a structural brake, limiting OD plasticity.

Another factor that has been implicated in the closure of the
critical period for OD plasticity is calcium/cAMP response element
binding protein (CREB)-mediated gene transcription. Evidence
for the role of CREB activity in OD plasticity comes from studies
which have shown that monocular deprivation during the criti-
cal period stimulates CREB-mediated gene transcription whereas
post-critical period monocular deprivation has a less pronounced
effect on CREB-mediated processes (116). Further, when CREB
activity is enhanced in adult mice (through the use of a transgenic
mouse line expressing VP16-CREB, which leads to constitutively
active CREB across life), it has been shown that persistent OD
plasticity can be induced in the visual cortex (117). Also, inhibit-
ing upstream regulators of CREB (e.g., PKA) in cats decreases OD
plasticity during the critical period (118).

It has been proposed that CREB is important in terminating
critical periods because it regulates the activity of plasticity-
modulating genes (92). Studies examining candidate CREB-
mediated genes that might be involved in OD plasticity have
focused on micro RNA (mir) 132 which has been implicated in
neural plasticity (119). In a recent study, increasing mir132 expres-
sion in mice before monocular deprivation blocked OD plasticity
during the critical period (120), suggesting that mir132 acts as a
brake on plasticity.

STRESS, CORTICOSTERONE, AND FGF2 REGULATE MOLECULAR AND
CELLULAR SIGNALS INVOLVED IN CRITICAL PERIOD TIMING

Early exposure to stress, corticosterone, and FGF2 has been
shown to accelerate the transition into adult-like fear retention
and extinction learning in infant rats; early exposure to those
events led to a precocious termination of the critical period for
infantile amnesia and erasure-like extinction. It is possible that
stress/ CORT/FGF2 exposure hastened the developmental transi-
tions in fear learning by acting on those processes known to be
involved in critical period regulation in other systems. Indeed,
evidence shows that early life adversity, CORT, and FGF2 regulate
many of the molecular and cellular signals involved in both the

opening and the closure of critical periods, accelerating the devel-
opmental emergence of those signals in brain regions important
for emotional responding in adults. However, those rodent studies
which examined environmental regulation of infant fear retention
and extinction only measured outcomes at one time point making
a determination of the early closure of the critical period possi-
ble but determination of an early opening of the critical period
uncertain. It could be the case that the critical period for infantile
amnesia and erasure-like extinction opened at the same time in
MS/CORT/FGF2 and SR/vehicle rats, but that this period closed
earlier in the MS/CORT/FGF2 rats (i.e., the time frame for the crit-
ical period was compressed). Alternatively, it may be the case that
MS/CORT/FGF2 led to an early opening as well as an early closure
of the critical period (see Figure 1 for a depiction of these possi-
bilities). The fact that stress and FGF2 appear to regulate signals
involved in both the opening and closure of critical periods, how-
ever, suggests that the latter case is most likely the case (i.e., that
stress/FGF2 leads to an early opening and closure of the critical
period in fear learning).

Evidence that stress might regulate critical period opening
in the emotional system comes from studies examining the
effect of early stress on GABAergic development. Specifically,
maternal-separation has been shown to lead to a more mature
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FIGURE 1 | Two potential outcomes of the effect of stress/CORT/FGF2
on critical period timing in the emotion system. (A) Different
manipulations may alter the duration of the critical period but may not affect
the age at opening. (B) Once opened, the duration of the critical period may
be relatively static; manipulations causing an early opening of the critical
period in emotional plasticity would also cause an early closure.
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form of GABAergic signaling in the CA1 region of the infant hip-
pocampus of male rats (121), and maternally separated rats also
exhibit a short-term upregulation of BDNF in the PFC and hip-
pocampus at P17 (122). As mentioned earlier, the critical period
for OD plasticity is triggered by maturation of GABA in the visual
cortex. Further, early over-expression of BDNF in the visual cor-
tex was shown to accelerate GABAergic maturation and lead to a
precocious emergence of OD plasticity.

In addition to influencing signals involved in the opening of
critical periods, early life stress/corticosterone/FGF2 also appear to
regulate some of the structural brakes on plasticity. For example,
early life stress (caused by weaning rats at P14 rather than P21) has
been shown to accelerate whole-brain, as well as amygdala-specific,
myelination in P21-P35 male mice (123, 124). Also, elevated glu-
cocorticoids have been shown to accelerate the initiation and rate
of myelination in co-cultures of Schwann-cell and neurons taken
from infant rats (125). In addition, oligodendrocyte cells express
FGF receptors, and FGF2 application to cultured cells stimulates
proliferation of oligodendrocyte precursor cells (126). FGF2 has
also recently been identified as a critical regulator of myelin sheath
thickness. Furusho et al. (127) created a line of mutant mice that
lacked the FGF receptors 1 and 2, the two receptors to which FGF2
binds. They reported that while mutant mice exhibited normal
initiation of myelination in the spinal cord at P4 (as judged by
immunoblotting for MBP), by P30 mutant mice exhibited signifi-
cantly less MBP positive myelin, and reduced overall white matter
area, compared to control mice, suggesting a reduction in myelin
synthesis. Accordingly, while myelin thickness increased from P15
to 10 months of age (the oldest age tested) in control mice, myelin
thickness stalled in mutant mice, who exhibited thinner myelin
compared to control mice from PND 30 to 10 months of age.
Importantly, the numbers of myelinated and unmyelinated axons
was comparable in control and mutant mice at all ages tested,
suggesting that FGF2 plays a specific role in signaling for the devel-
opment of myelin thickness. Hence, it is possible that early life
exposure to FGF2, stress, or to stress hormones may help to preco-
ciously terminate critical periods in fear learning via accelerating
the rate of myelin development in the hippocampus, amygdala,
and mPFC.

Along with potentially accelerating structural brakes in plas-
ticity, it is also possible that early life stress/ CORT/FGF2 exposure
caused an early termination of infantile amnesia, impaired context
learning, and erasure-like extinction via a CREB-mediated path-
way. For example, many of FGF2’s neurotrophic effects appear
to be mediated by phosphorylation of CREB. Sung et al. (128)
showed that FGF2 increases hippocampal neuronal differentiation
and outgrowth via causing phosphorylation of CREB and CRE-
mediated gene transcription. They also demonstrated that FGF2-
induced neuronal outgrowth was blocked in cells that contained a
dominant negative CREB construct (blocking CREB activation).
FGF?2 also appears to regulate hippocampal cell proliferation via
phosphorylation of CREB (129), and FGF2-induced cell prolif-
eration is blocked by a CREB inhibitor. Cell proliferation was
markedly increased in cell cultures that over-expressed CREB, but
only if FGF2 was applied to these cultures. In other words, CREB
over-expression did not increase cell proliferation by itself, sug-
gesting that FGF2 recruits CREB to increase cell proliferation. In

addition, recent research has shown that early exposure to stressors
(e.g., maternal-separation) regulates the expression of non-coding
RNAs which are mediated by CREB. Specifically, Uchida et al.
(130) showed that MS180 from P2 to P14 increased the expres-
sion of mir132 in the PFC of P14 mice relative to SR P14 mice.
Furthermore, FGF2 has been shown to upregulate mir132 in cul-
tured immature cortical neurons, as well as in cultured astroglial
cells (131). As mentioned earlier, alterations in the expression of
mir132 have been shown to regulate critical period timing for OD
plasticity.

Together the findings just reviewed suggest that early life expo-
sure to FGF2/stress/ CORT may regulate the developmental timing
of critical periods in fear learning via accelerated maturation of
BDNF expression, GABAergic inhibition, myelination,and CREB-
mediated gene transcription in those brain regions critical for fear
memory and extinction learning in adults — the hippocampus,
mPFC, and amygdala (see Figure 2). If this were true, it would
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FIGURE 2 | Proposed mechanism by which chronic stress accelerates
the developmental transition between infant and adult-like forms of
fear retention and fear learning in rodent models. Stress-induced
activation of the HPA axis results in increased BDNF and GABA, and central
upregulation of FGF2. BDNF and GABA stimulate early development of the
emotion system and may lead to early opening of the critical period for
infantile amnesia and erasure-like extinction. FGF2 upregulation triggers
activation of the critical period “termination signature” in the emotion
circuit (i.e., activates the cellular and molecular mechanisms known to be
involved in critical period timing in sensory systems). Activation of those
signals leads to an early termination of fear learning plasticity.
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support the idea that there may be a common neural signature
which guides critical periods of plasticity across the brain. This
idea has been raised by previous researchers to explain the finding
that the same molecular and cellular signals appear to be involved
in a variety of critical periods in different sensory systems (108).
However, the idea that the same molecular and cellular signals may
regulate critical periods of plasticity for fear learning in subcortical
circuits (e.g., the amygdala) has only recently begun to be explored
[e.g., (46)].

POTENTIAL FOR MULTIGENERATIONAL EFFECTS OF
STRESS/FGF2 ON FEAR LEARNING

If critical period mechanisms are involved in regulating the open-
ing and closure of fear learning plasticity then a potential implica-
tion is that the effects of environmental manipulations on matu-
ration of fear learning might be heritable. Indeed, epidemiological
evidence suggests that the effects of stress on mental health can
be transmitted across multiple generations. For instance, mothers
that were exposed to the September 11 terrorist attacks in New York
City during pregnancy and who subsequently developed PTSD
were shown to exhibit a suppressed basal cortisol response (132).
Interestingly, a similar profile of cortisol suppression was also evi-
dent in the infants of those mothers, with that being especially true
for infants of mothers that were in the third trimester of pregnancy
when the attacks occurred. In addition, high risk phenotypic traits
for mental health problems (e.g., behavioral inhibition) have been
shown to exhibit a high degree of heritability, which can be attrib-
uted to both genetic and environmental factors (133—136). Hence,
there is clear epidemiological data suggesting that mental health
disorders and the influence of stress on the emergence of those
disorders is heritable.

Animal models have been increasingly used to investigate
the intergenerational transmission of neurobehavioral alterations
after stress (137—140). Several studies in rodents have shown that
stress-evoked alterations in parenting style are passed onto off-
spring, and that these behavioral alterations are often accompanied
by neuroendocrine changes (141). In addition, epigenetic modifi-
cations to gene transcription caused by early life stress have been
shown to persist across the life of the rat and to be passed onto
biological offspring (137). Interestingly, more recent studies have
demonstrated that actual stress-induced behavioral phenotypes
can also be transmitted across generations. For example, mater-
nally separated rats exhibited depressed behaviors as adults, and
these same depressive behaviors were also exhibited by their adult
offspring and grandchildren, despite those subsequent generations
never being exposed to stress (138). Hence, animal research has
been useful in modeling the transmission of both neurological
as well as behavioral alterations caused by stress. One currently
unexplored possibility is that stress-induced alterations to the
maturation of fear retention and extinction systems could also
be transmitted to subsequent generations. Indeed, some of the
mechanisms involved in critical period opening and closure could
potentially lead to such a transgenerational profile. Specifically,
research has shown that transgenerational effects can be produced
by alteration of cytoplasmic RNAs (e.g., miRNA), which can be
carried in the sperm and eggs and can epigenetically alter the phe-
notype of subsequent offspring. Recently it has been proposed

that miRNAs may be important in the transmission of environ-
mentally induced phenotypic changes across generations because
some RNAs can survive degradation during embryogenesis and
have been shown to regulate offspring phenotype [e.g., (142)].
The evidence for this comes from experiments which show that
injection of a miRNA critical for brain development [mirl24;
(119, 143)] directly into cell embryos resulted in offspring which
exhibited a much faster growth rate (increased by 30%) than non-
injected offspring (144). Importantly, this “giant” phenotype was
transmitted across multiple generations via alterations of mir124
in the spermatozoa. Hence, changes in the expression levels of
certain miRNAs can be incorporated into the germ-line of ani-
mals and produce a transgenerational phenotype. As mentioned
earlier, a recent study showed that a miRNA important for inhibit-
ing OD plasticity in the visual cortex (mir132) and the miRNA
which produced a transgenerational “giant” phenotype (mir124)
was upregulated in the mPFC of P14 mice following maternal-
separation (130). Further, mir132 is upregulated by FGF2 (131).
Hence, it is possible that the expression of these miRNAs may
regulate critical period closure in fear learning systems and that
stress/FGF2-induced alterations in these miRNAs could be her-
itable. Such hypotheses will need to be investigated in future
studies.

BRIDGING THE GAP BETWEEN BASIC AND CLINICAL WORK:
CLINICAL IMPLICATIONS AND POTENTIAL TRANSLATION OF
STRESS/FGF2-INDUCED ACCELERATION OF EMOTIONAL
DEVELOPMENT IN ANIMAL MODELS

The fact that infantile amnesia and relapse-resistant extinction are
regulated by stress, FGF2, and potentially other early life events
is highly relevant for clinical researchers working on understand-
ing and treating mental health disorders across the lifespan. Early
life stress is one of the greatest contributing risk factors for mental
health problems across all life stages (145), relating not only to risk
for mental health disorders but also to transdiagnostic features
common of many psychological disorders [e.g., increased emo-
tional reactivity; (146, 147)]. Further, early adversity and abuse has
been shown in human populations to interact with specific genetic
polymorphisms to predict adult major depressive disorder and
PTSD (148, 149). However, the developmental trajectories which
are altered by such gene x environment interactions remain elu-
sive. The body of research reviewed in this paper suggests that early
emerging changes in fear learning and extinction resulting from
stress may be one outcome which could affect emotional respond-
ing across the lifespan and which might interact with genetics to
produce stable phenotypes of risk for mental health disorders.
For example, it is possible that stress exposure during a critical
period of development early in life paired with a later experienced
trauma might lead to a phenotype of treatment-resistant PTSD in
genetically predisposed individuals via a pathway of altered devel-
opment of the fear extinction system; such a possibility should be
examined in future studies.

The possibility that infantile amnesia and relapse-resistant
extinction may represent critical period plasticity in fear learning
also has significant clinical implications, especially when con-
sidering potential pharmacological treatments for mental health
disorders. As discussed earlier, the involvement of critical period
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molecular signals in terminating fear learning plasticity opens up a
possible mechanism via which the effects of stress/FGF2 exposure
might increase vulnerability for mental health problems across
multiple generations. In addition, they also suggest several novel
mechanisms via which anxiety disorders and other mental health
problems might be treated. Specifically, if critical periods of emo-
tional learning could be reopened in adulthood (or at any point
after they have closed) it may help treat the root of many anxi-
ety disorders (i.e., persistent expression of fear and relapse after
extinction). In other words, it is possible that anxious individuals
might be treated with pharmacological adjuncts to reopen infant-
like forgetting and relapse-resistant extinction, which could then
be combined with therapy to improve treatment efficacy. Indeed,
there have been three recent studies which suggest that the crit-
ical period of erasure-like (relapse-resistant) extinction can be
reopened in juvenile and adult rats. The first evidence that relapse-
resistant/erasure-like extinction could be reactivated in adult rats
came from Gogolla et al. (46). In those studies appearance of PNNs
around GABAergic amygdala interneurons was correlated with the
natural transition from relapse-resistant extinction in infant mice
to relapse-prone extinction in juvenile mice. That is, at the same
time that rats began to exhibit relapse behaviors after extinction
there was a significant increase in the number of PNNs in the
amygdala. To examine whether the formation of the PNNs was
sufficient to cause the transition into adult-like extinction Gogolla
et al. degraded amygdala PNNs with chABC in adult mice before
conditioning. The treatment with chABC significantly reduced
the number of PNNs in the adult amygdala and also reduced the
expression of relapse behaviors after extinction (i.e., the chABC-
treated adults did not show renewal or spontaneous recovery of
extinguished fear). Hence, it appears that the infant profile of
extinction learning could be reactivated in adulthood by removal
of one of the structural brakes on plasticity — PNNs.

Another line of evidence that “erasure-like” extinction can
potentially be activated in adult rats comes from recent work
on the impact of acute, exogenous FGF2 on extinction of condi-
tioned fear (150-153). Those studies demonstrated that systemic
or intra-amygdala infusion of FGF2 not only enhanced extinction
in juvenile and adult rats, but it also significantly reduced renewal
and reinstatement, even when vehicle-treated rats were given
four times the amount of extinction training to match extinc-
tion strength between vehicle- and FGF2-treated groups. In other
words, when treated with FGF2, adult rats exhibit the behavioral
qualities of infant-like (erasure-like) extinction. The neurobiolog-
ical mechanisms by which FGF2 causes infant-like extinction are
unknown. Nevertheless, similar to findings in the visual system, it
appears that adult rats retain the capacity for infant-like extinction
and that this form of plasticity can be reactivated rapidly under
conditions which favor that plasticity.

In order to investigate the possibility that extinction combined
with FGF2 leads to an erasure of the original fear memory, Gra-
ham and Richardson (152) exploited recent findings regarding
re-extinction, which refers to the process of relearning extinction
following reacquisition of fear to an extinguished cue. Converg-
ing evidence strongly suggests that whereas initial extinction in
adult rats is impaired by NMDAr antagonists, re-extinction is not
impaired by NMDAr antagonists (154—157). This suggests that

relearning to extinguish fear does not depend on NMDAr activ-
ity. However, Graham and Richardson (152) found that when rats
were systemically injected with FGF2 immediately after extinc-
tion training, then retrained to fear the extinguished CS, and then
re-extinguished following treatment with an NMDAr antagonist,
FGF2-treated rats exhibited impaired re-extinction retention. In
contrast, rats that were extinguished with vehicle and then re-
extinguished following treatment with an NMDAr antagonist did
not exhibit any impairment in re-extinction retention. That is,
during re-extinction FGF2-treated rats “behaved” as if the CS was
being extinguished for the first time. Interestingly, similar results
have been obtained for juvenile rats that are extinguished to a CS
at PND 16 (during the “erasure-like extinction” period of devel-
opment), and then retrained and re-extinguished to the same
CS later in development. In this instance, re-extinction is also
NMDAr-dependent (158). Together, these findings suggest that
FGF2 treatment, when combined with extinction training, may
reactivate the “erasure-like” fear extinction observed in infant rats.

The third study to attempt to reactive infant-like plasticity in
rodents during extinction learning was performed by Karpova et
al. (159). In that study adult mice were chronically exposed to
the antidepressant fluoxetine in their drinking water either before
or after fear conditioning and during extinction and test. They
showed that the fluoxetine-exposed mice behaved like infant mice
in past studies (46), showing less post-extinction relapse than
the vehicle-treated mice. In addition, fluoxetine treatment also
resulted in a lower proportion of PNNs in the BLA, suggesting
that the effect of fluoxetine on relapse behaviors after extinction
may have occurred through facilitating the removal of structural
brakes on plasticity (PNNs). Interestingly, combining antidepres-
sant treatments like fluoxetine with exposure therapy in humans
has often yielded better results than either treatment alone (160).
The study by Karpova et al. (159) suggests that fluoxetine-induced
reactivation of the critical period for erasure-like extinction might
underlie those clinical findings.

CONCLUSION

The findings regarding accelerated development of fear learn-
ing by stress/CORT/FGF2 are theoretically relevant because they
demonstrate that the rate at which particular forms of learning
and memory mature across the lifespan can be influenced by a
range of early life experiences. Until recently, no one had exam-
ined how early experiences affected fear retention and extinction
development, despite these forms of emotional learning being crit-
ically involved in the pathogenesis and treatment of mental health
problems. The studies reviewed here show that the timing of the
maturation of fear learning is not set in stone but can be dynami-
cally regulated by early experience. In addition, these findings are
clinically relevant because early life adversity is a common fea-
ture in persons with psychopathology [e.g., (161, 162)], and fear
retention and extinction in rats are important pre-clinical models
of anxiety problems in humans (10, 163, 164). Although many
theories have suggested that early experiences are critical for the
emergence of anxiety and other mental health problems in humans
(165-168), no studies, until very recently, had examined how fear
retention and extinction are impacted by different early experi-
ences in infant rodents. In addition, within the human literature,
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there are reports of individual differences in the processes of fear
retention and extinction which may underlie subsequent vulner-
ability to develop anxiety problems [e.g., (169, 170)], yet there is
little information on what factors might influence those differences
or the molecular mechanisms which might underlie them.

While the findings regarding environmental alteration of the
maturation of fear learning systems are novel, at this stage there
are no definitive answers about what molecular and cellular mech-
anisms drive the normal development of these emotion systems,
nor the accelerated transition produced by stress/ CORT/FGEF2.
However, the fact that all three manipulations have a similar
effect on emotion system development, that stress/CORT regu-
late FGF2, and that stress/CORT and FGF2 appear to regulate
some of the signals involved in critical periods of plasticity in
sensory systems hints at a potential mechanism for transitions in
fear learning. Specifically, we have suggested that the expression
of infantile amnesia and relapse-resistant extinction in infancy
may represent critical period plasticity and propose a model in
which early environments that alter the age at which the devel-
opmental transitions occur (e.g., stress) might function through
an HPA/FGF2-dependent activation of “critical period signals,” in
turn leading to an early termination in emotional plasticity (see
Figure 2 for a graphical depiction of this model). The proposed
model, although speculative, does suggest some potential avenues
for future research. Specifically, if the principles guiding critical
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