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Recent reviews and meta-analyses suggest that reducing the duration of untreated psy-
chosis leads to better symptomatic and functional outcome in patients with psychotic
disorder. Early intervention attenuates the symptoms of individuals at clinical high-risk (HR)
for psychosis and may delay or prevent their transition to psychosis. Identifying biological
markers in the early stages of psychotic disorder is an important step toward elucidating the
pathophysiology, improving prediction of the transition to psychosis, and introducing tar-
geted early intervention for help-seeking individuals aiming for better outcome. Mismatch
negativity (MMN) is a component of event-related potentials that reflects preattentive audi-
tory sensory memory and is a promising biomarker candidate for schizophrenia. Reduced
MMN amplitude is a robust finding in patients with chronic schizophrenia. Recent reports
have shown that people in the early stages of psychotic disorder exhibit attenuation of
MMN amplitude. MMN in response to duration deviants and in response to frequency
deviants reveals different patterns of deficits. These findings suggest that MMN may be
useful for identifying clinical stages of psychosis and for predicting the risk of develop-
ment. MMN may also be a “translatable” biomarker since it reflects N -methyl-d-aspartte
receptor function, which plays a fundamental role in schizophrenia pathophysiology. Fur-
thermore, MMN-like responses can be recorded in animals such as mice and rats. This
article reviews MMN studies conducted on individuals with HR for psychosis, first-episode
psychosis, recent-onset psychosis, and on animals. Based on the findings, the authors dis-
cuss the potential of MMN as a clinical biomarker for early intervention for help-seeking
individuals in the early stages of psychotic disorder, and as a translatable neurophysiologi-
cal marker for the preclinical assessment of pharmacological agents used in animal models
that mimic early stages of the disorder.
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INTRODUCTION
Recent reviews and meta-analyses suggest that patients with
shorter duration of untreated psychosis (DUP) show better symp-
tomatic and functional outcome (1–3). For example, early detec-
tion in first-episode psychosis (FEP) leads to a higher percentage
of recovery over 10 years relative to usual-detection patients (4).
Furthermore, early intervention in individuals with clinical high-
risk (HR) for psychosis attenuates their symptoms and potentially
delays or prevents their transition to psychosis (5–9). These find-
ings suggest that early detection and intervention play a critical
role in the improvement of functional outcome and even in the
prevention of psychosis.

High-risk individuals can be identified using clinical criteria
based on symptomatology (10); the rate of transition to psychosis
is approximately 35% within 2–3 years of follow-up (11), which
is substantially higher than the incidence rate of psychosis in the
general population. Higher sensitivity and specificity are required
from the viewpoint of targeted early intervention.

For this reason, identifying biological markers in the early
stages of psychotic disorders is an important step not only toward

elucidating the underlying pathophysiology but also toward
improving prediction of the transition to psychosis and introduc-
ing targeted early intervention to help-seeking individuals aiming
for better outcome (12–14).

Auditory mismatch negativity (MMN) is a component of the
event-related potential (ERP) and a promising biomarker candi-
date for psychotic disorders such as schizophrenia. A meta-analysis
and several reviews of MMN in chronic schizophrenia (CSZ) are
currently available (15–21). In this article, we focus on MMN in
the early stages of psychotic disorders.

Mismatch negativity may also be a “translatable” biomarker
because MMN reflects N -methyl-d-aspartte (NMDA) receptor
function which plays a fundamental role in the pathophysiology of
schizophrenia (22, 23), and MMN-like response can be recorded
in animals including mice and rats (described later).

The following sections review MMN studies conducted on
individuals in the early stages of psychosis and also on animals.
In particular, the authors pay special attention to the finding
that MMN in response to duration deviant stimuli and MMN
in response to frequency deviant stimuli demonstrate different
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characteristics in the early stages of psychosis. Based on the results
of these studies, the authors discuss the potential of MMN as a
clinical biomarker for early intervention in help-seeking individ-
uals and also as a translatable neurophysiological marker for the
preclinical assessment of pharmacological agents tested in animal
models that mimic early stages of the disorder.

GENERAL BACKGROUND OF MMN
Mismatch negativity is an ERP component elicited when an infre-
quent deviant stimulus occurs in a sequence of repetitive audi-
tory stimuli. In an oddball paradigm, deviant stimuli differ from
repetitive standard stimuli in one or more perceptual character-
istics, including frequency, duration, intensity, location, spectro-
temporal pattern, and phonemes (16, 19). MMN is even elicited
under passive conditions when subjects ignore the stimuli. Thus,
it is considered an index of preattentive auditory discrimination
as well as a preattentive form of sensory memory (24).

Mismatch negativity relates to the difference wave obtained by
subtracting the standard stimulus ERP from the deviant stimu-
lus ERP (Figure 1) and usually peaks between 150 and 250 ms
after presentation of the deviant stimulus (24). On electroen-
cephalogram (EEG), maximal MMN responses are evident at
frontocentral scalp recording sites, with phase reversal at mastoids.

MMN IN CHRONIC SCHIZOPHRENIA
Reduced MMN amplitude is one of the most robust findings in
schizophrenia (25), and the mean effect size is approximately 0.99
(17). Given its high test-retest reliability (26), MMN has been
proposed as a statistically reliable biomarker for schizophrenia.

Although many studies have used duration and/or frequency as
deviant stimuli in auditory oddball paradigms, MMN in response
to duration deviants (dMMN) and in response to frequency
deviants (fMMN) have different sensitivity. Michie et al. (15)
examined both duration and frequency deviants in CSZ patients
and demonstrated that amplitude reduction is larger in dMMN
than in fMMN. Meta-analysis conducted on CSZ patients also
revealed that the effect size of dMMN is larger than fMMN (17).

Mismatch negativity amplitude reduction reflects sensory net-
work dysfunction in schizophrenia, as attention and motivation
have little effect on MMN (15, 16, 19, 24). This provides an impor-
tant advantage in clinical settings since patients are not required
to perform an active task.

Previous studies have shown that antipsychotic medication has
little effect on MMN (27–32); however, recently Zhou et al. (33)
reported that antipsychotics such as aripiprazole improve MMN
amplitude reduction in schizophrenia. Benzodiazepine has been
reported to have no significant effect on MMN amplitude (34).
Interestingly, it has been suggested that drugs acting at the NMDA
receptor may have a significant effect on MMN in schizophrenia.
Lavoie et al. (35) reported that N -acetyl-cysteine, a glutathione
precursor that can potentiate the activity of NMDA receptors,
increases fMMN amplitude in schizophrenia patients. However,
further studies are needed to clarify whether other modulators
of NMDA receptors, such as glycine transporter inhibitors and
d-serine, can similarly enhance MMN amplitude in schizophrenia.

Correlations between MMN amplitude and clinical variables
have been described in the literature. For example, it has been
reported that the amplitude of dMMN is associated with social

FIGURE 1 | MMN waveform. MMN relates to the difference wave obtained by subtracting the standard stimulus ERP from the deviant stimulus ERP.
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function (36), social cognition (37), and executive function (38)
in CSZ, while phonetic MMN amplitude has been reported to
be associated with verbal memory (39) and social skills acquisi-
tion (40). These findings indicate that MMN is a biologically and
clinically significant index of schizophrenia.

MMN IN PATIENTS WITH FIRST-EPISODE OR RECENT-ONSET
PSYCHOSIS
In recent years, the number of MMN reports on FEP and on recent-
onset psychosis (ROP) has grown (see Table 1). These studies
suggest that dMMN and fMMN have different properties, as seen
in CSZ.

All of these studies reported a significant attenuation of dMMN
and fMMN amplitude in ROP, including recent-onset schizophre-
nia (RSZ), subjects compared to healthy controls (HC). Excluding
the findings of Magno et al. (46), they also reported a significant
attenuation of dMMN amplitude in FEP subjects compared to
HC. In contrast, only Devrim-Ucok et al. (45) noted a significant

reduction of fMMN amplitude in FEP subjects compared to HC
(see Table 2). Salisbury et al. (54) reported that fMMN amplitude
in first-episode schizophrenia (FES) patients became significantly
smaller compared to HC approximately 1.5 years after onset of the
illness,which correlated with a reduction in Heschl’s gyrus volume.
Thus, fMMN may reflect progression of the disease pathology, and
dMMN amplitude may be attenuated before the onset of psychosis.

Within dMMN, the duration increment deviants (long dura-
tion) and the duration decrement deviants (short duration) may
have different sensitivity. One study has demonstrated that a dura-
tion increment condition can discriminate between patients with
CSZ and HC better than a duration decrement condition (16).
While it is unclear whether this superiority of duration increment
over duration decrement is true of FEP, it is interesting to note
that all of the studies reporting a significantly attenuated dMMN
in FEP or ROP utilized duration increments, whereas only Magno
et al. (46) chose duration decrement and failed to show signif-
icantly decreased dMMN in FES (see Table 2). Atkinson et al.

Table 1 | Demographic data of previous studies of FEP or ROP.

Publication HC Patients Comments

N M/F Age N M/F Age DOI (y)

Javitt et al. (41) 20 8/7 36.3 (9.5) 13 (RSZ) 10/3 27.4 (2.7) Most patients took medication

Salisbury et al. (42) 27 20/7 24.2 (4.3) 21 (FES) 18/3 24.9 (6.2) Most patients took medication

Oades et al. (43) 22 12/10 17.6 (0.4) 28 (FES) 21/7 17.5 (0.4)

Umbricht et al. (44) 39 26/13 30.5 (7.1) 26 (FES) 19/7 23.9 (5.5) 0.05 (0.1) Most patients took SGA

26 (RSZ) 14/12 30.3 (6.7) 3.4 (1.5)

Devrim-Ucok et al. (45) 34 19/15 24.5 (6.4) 30 (FES acute) 15/15 22.1 (5.7) Ten acute FES patients took medication

21 (FES post) 12/9 21.6 (5.6) All post FES patients took medication

Magno et al. (46) 27 13/14 38.0 (12.9) 12 (FES) 9/3 24.3 (6.2) Drug-naïve except for one patient taking

chlorpromazine

Todd et al. (47) 14 7/7 24.0 (11.7) 14 (SZ short) 8/6 25.0 (10.7) 2.6 (1.7) Most patients took SGA

Hermens et al. (48) 17 7/9 22.6 (2.8) 17 (FEP) 12/5 22.5 (3.2) Patients; 1 SZ, 3 SZA, 5 SZP, 2 BP, 6 MDD

Medication; 15 SGA, 9 AD, 3 mood

stabilizers

Bodatsch et al. (49) 67 35/32 25.8 (4.0) 33 (FES) 26/7 26.0 (6.5)

Jahshan et al. (50) 28 18/10 19.2 (3.4) 31 (RSZ) 25/6 29.8 (3.6) 1.2 (0.8) Twenty-five patients took SGA

Kaur et al. (51) 18 11/7 23.1 (3.0) 17 (FEPa) 10/7 22.8 (4.6) Most patients took SGA

18 (FES) 13/5 22.2 (3.5)

Atkinson et al. (12) 61 20/41 19 (3.5) 11 (FEP) 5/6 21 (2.7) Eight patients took antipsychotics

Higuchi et al. (52) 20 14/6 25.4 (6.9) 20 (FES) 9/11 27.2 (7.3) 0.65 (0.5) Seven patients had no medication

More than half of the patients took SGA

Mondragon-Maya et al.

(53)

24 14/10 22.6 (5.8) 20 (FEP) 13/7 26.1 (7.2) Antipsychotic naive

All values are shown as mean (standard deviation).

AD, antidepressant; BP, bipolar disorder; DOI, duration of illness; FEP, first-episode psychosis; FEPa, FEP with affective-spectrum; FES, first-episode schizophrenia;

HC, healthy controls; MDD, major depressive disorder; ROP, recent-onset psychosis; RSZ, recent-onset schizophrenia; SGA, second-generation antipsychotics; SZ,

schizophrenia; SZA, schizoaffective disorder; SZP, schizophreniform disorder.

FES acute means patients with FES on acute phase.

FES post means patients with FES on post-acute phase when their symptoms improved.

SZ short means patients with schizophrenia who received their first diagnosis within 5 years.
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Table 2 | Oddball paradigm and results of previous studies of FEP or ROP.

Publication Deviant Stimulus characteristics Probability

(%)

ISI/SOA Electrodes Results of

MMN amplitude

Standard (Hz) Deviant (Hz)

Frequency Duration Frequency Duration

Javitt et al. (41) Duration 1000 100 1100 100 12.5 Fz dMMN; HC > RSZ

Frequency 1000 250 12.5 667–770 Fz fMMN; HC > RSZ

Salisbury et al.

(42)

Frequency 1000 100 1200 100 5 333 All and

midline

fMMN; HC=FES

Oades et al. (43) Duration 800 80 800 40 10 850–1050 FC dMMN; HC > FES

Frequency 600 80 10 850–1050 Only dMMN was

analyzed

Umbricht et al.

(44)

Duration 1000 100 1500 100 10 300 FC dMMN; HC > FES

and RSZ

Frequency 1000 250 10 300 FC fMMN; HC > RSZ,

HC=FES

Devrim-Ucok et

al. (45)

Frequency 1000 50 1500 50 20 1500 FCP fMMN; HC=FESa,

HC > FESp

Magno et al. (46) Duration 1000 50 1000 25 10 500 FC dMMN; HC=FES

Frequency 1200 50 10 500 FC fMMN; HC=FES

Todd et al. (47) Duration 1000 80 1000 125 6 450 FC dMMN; HC > SZ

short

Frequency 1200 80 6 450 FC fMMN; HC=SZ

short

Intensity 1000 80 6 450 FC iMMN; HC > SZ

short

Hermens et al.

(48)

Duration 1000 50 1000 100 8 500 Fz, Cz dMMN; HC > FEP

Bodatsch et al.

(49)

Duration 1000 80 1000 40 10 500±150 FC dMMN; HC > FES
Frequency 1200 80 10 500±150 FC fMMN; HC=FES

Jahshan et al. (50) Duration 1000 50 1000 100 10 500 FC dMMN; HC > RSZ

Kaur et al. (51) Duration 1000 50 1000 100 8 500 Fz, Cz dMMN; HC > FEPa,

HC > FES

Atkinson et al.

(12)

Duration 1000 50 1000 100 7.5 600 Fz, Cz dMMN (increment);

HC > FEP

Duration 1000 100 1000 50 7.5 600 Fz, Cz dMMN (decrement);

HC > FEP

Higuchi et al. (52) Duration 1000 50 1000 100 10 500 Fz dMMN; HC > FES

Mondragon-Maya

et al. (53)

Frequency 1000 100 1500 100 10 300 FC fMMN; HC = FEP

FC, frontocentral; FCP, frontocentral and parietal; HC, healthy controls; ISI, interstimulus interval; FEP, first-episode psychosis; FEPa, FEP with affective-spectrum;

FES, first-episode schizophrenia; ROP, recent-onset psychosis; RSZ, recent-onset schizophrenia; SOA, stimulus onset asynchrony; SZ, schizophrenia.

FESa means patients with FES on acute phase.

FESp means patients with FES on post-acute phase when their symptoms improved.

SZ short means patients with schizophrenia who received their first diagnosis within 5 years.

“A > B” means that A is significantly larger than B. “A=B” means that A and B are not significantly different.
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(12) examined both duration increment and duration decrement
and found that MMN to both duration deviants was reduced in
FEP compared to HC. Discrepancies in the results of Magno et al.
(46) and Atkinson et al. (12) may be due to differences in sample
characteristics and the methods used to measure MMN.

The effect of medication on MMN has not been sufficiently
investigated in FEP and ROP, although the finding that medica-
tion has little effect on MMN in CSZ lends to the possibility that a
similar effect may be observed in FEP and ROP. However, further
studies are needed to clarify this point.

Todd et al. (47) reported a significant positive correlation
between fMMN amplitude and total score of the Schedule for
Assessment of Positive Symptoms (SAPS), Delusions, Positive For-
mal Thought Disorder, and between iMMN amplitude and Hal-
lucination, which indicates that higher symptom severities were
associated with smaller MMN amplitude. In contrast, no corre-
lation was found between dMMN amplitude and SAPS. Other
studies have reported that no significant correlation exists between
MMN amplitude and positive symptoms, as assessed by the Brief
Psychiatric Rating Scale (BPRS) or the SAPS (12, 42, 43, 45).

As to negative symptoms, Oades et al. (43) reported that
reduced mastoid dMMN is related to anergia and flat affect, as
assessed by the Schedule for Assessment of Negative Symptoms
(SANS). Umbricht et al. (44) demonstrated that a larger fMMN is
associated with a higher SANS total score. However, other studies
have described no significant correlation between MMN ampli-
tude and negative symptoms, as assessed by BPRS or SANS (12,
42, 45, 47).

Besides positive and negative symptoms, MMN amplitude has
also been significantly associated with anxious depression fac-
tor (42), Clinical Global Impression (CGI) (43), and cognitive
functions (48, 51). On the other hand, it has been reported that
MMN amplitude does not correlate with DUP (45), duration
of illness (DOI) (46), or the Global Assessment of Functioning
(GAF) (50).

Although a number of studies have noted a correlation between
MMN amplitude and various clinical ratings in FEP as well as in
CSZ, the findings are relatively inconsistent. Further studies with
a large sample size are needed to confirm these correlations. In
addition, a cross-sectional design study may not be appropriate
since fMMN shows a progressive decrease after the onset of psy-
chosis. Longitudinal studies will be more useful for investigating
the association between MMN and clinical variables.

MMN IN INDIVIDUALS AT CLINICAL HIGH-RISK FOR
PSYCHOSIS
Since Brockhaus-Dumke et al. (55) first examined MMN in indi-
viduals at clinical HR for psychosis, several MMN studies targeted
at HR individuals have been reported (see Table 3). Regarding the
criteria for HR, all of the studies utilized either the Bonn Scale
for the Assessment of Basic Symptoms (BSABS) (56), Compre-
hensive Assessment of At-Risk Mental State (CAARMS) (57), or
the Structured Interview for Prodromal Symptoms (SIPS) (58).
CAARMS and SIPS include three subgroups for HR: attenuated
psychotic symptoms (APS), brief limited intermittent psychotic
episode (BLIP), and genetic risk and deterioration syndrome
(GRD). BSABS describes basic symptoms (59).

The average observation period in these studies was approx-
imately 7 months to 2 years, and the rate of conversion to psy-
chosis was as follows: 13% [2/16; (60)], 40% [25/62; (49)], 8%
[2/26; (50)], 20% [6/30; (12)], 24% [10/41; (14)], and 24%
[4/17; (52)]. Most of these rates were consistent with a previ-
ous study that assessed nearly 300 HR help-seeking individuals
whose conversion rate was approximately 35% within 2–3 years of
follow-up (11).

Most of these HR-focused studies examined dMMN (see
Table 4), which might be because dMMN amplitude attenuation
has a higher sensitivity than fMMN in FEP and in CSZ. Three
studies examined fMMN (49, 53, 55), and all of them failed to
show reduced fMMN amplitude in HR compared to HC, which is
consistent with the previous findings that fMMN reflects the pro-
gressive pathological process and that fMMN amplitude reduction
is marked after the onset of psychosis (54). Significant reductions
of dMMN amplitude were observed in most of the studies (12, 14,
50, 60). However, in two studies, dMMN amplitude in HR indi-
viduals was not significantly smaller than that observed in HC,
and dMMN amplitude of converters to psychosis was significantly
attenuated compared to HC (49, 52). Therefore, dMMN amplitude
reduction seems evident as early as before the onset of full-blown
psychosis.

Shin et al. (60) demonstrated that a smaller left dMMN mag-
netic counterpart dipole moment was associated with a larger
positive symptom score, as measured by CAARMS. Other studies
reporting on the association between MMN amplitude and clinical
symptoms,as assessed by BPRS,SAPS,or SANS,have not described
any significant relations. Although an association between dMMN
amplitude and GAF was reported in CSZ, two studies that exam-
ined GAF and MMN in HR failed to find a significant relation
(50, 60). As to the relation between MMN and cognitive func-
tion, Higuchi et al. (52) showed that a larger dMMN amplitude
was associated with a larger score of verbal fluency, as assessed by
the Brief Assessment of Cognition in Schizophrenia (BACS). On
the other hand, Brockhaus-Dumke et al. (55) reported no relation
with multiple domains of cognitive function.

Finally, dMMN might have the ability to predict the conver-
sion from HR to psychosis. Bodatsch et al. (49); Shaikh et al. (14),
and Higuchi et al. (52) reported that converters to psychosis have
significantly reduced dMMN amplitudes at presentation relative
to non-converters. Furthermore, Bodatsch et al. (49) showed that
dMMN amplitude could predict onset of psychosis; a prognostic
score was calculated based on a Cox regression model and strat-
ified into two risk classes, which revealed significantly different
survival curves. Previous studies with a large cohort of individu-
als at clinical HR have demonstrated that clinical variables such
as clinical symptoms and social dysfunction can predict the onset
of psychosis in multivariate prediction algorithms (11, 61). Thus,
dMMN may improve the predictive power for onset of psychosis
in HR individuals.

MMN IN ANIMALS
MMN-like responses have also been reported in monkeys (62,
63), cats (64), guinea pigs (65), rats (66–75), and mice (76–78).
Some studies have reported that evoked ERP responses are not
necessarily MMN in rabbits (79), rats (80, 81), and mice (82).

www.frontiersin.org September 2013 | Volume 4 | Article 115 | 5

http://www.frontiersin.org
http://www.frontiersin.org/Schizophrenia/archive


Nagai et al. Mismatch negativity in early psychosis

Table 3 | Demographic data of previous studies of HR.

Publication HC HR Conversion to psychosis

N M/F Age N M/F Age Criteria Medication

Brockhaus-Dumke et al. (55) 33 28/15 24.5 (3.3) 43 29/14 25.4 (5.8) BSABS

Shin et al. (60) 18 12/6 22.1 (2.0) 16 10/6 21.3 (3.2) CAARMS 3 SGA 2 Individuals

Bodatsch et al. (49) 67 35/32 25.8 (4.0) 62 41/21 24.8 (6.0) BSABS None 25 (23 SZ, 1 SZP, 1 DD)

Jahshan et al. (50) 28 18/10 19.2 (3.4) 26 22/4 21.9 (3.7) SIPS 7 SGA 2 (1 Manic, 1 SZ)

Atkinson et al. (12) 61 20/41 19 (3.5) 30 10/20 17 (3.6) CAARMS 7 RIS 6 (3 SZA, 1 SZPa, 1 SZUn, 1 P-NOS)

Shaikh et al. (14) 50 25/25 24.6 (4.5) 41 26/15 24.7 (4.7) CAARMS None 10 (9 SZ, 1 Bipolar)

Higuchi et al. (52) 20 14/6 25.4 (6.9) 17 4/13 19.4 (4.4) CAARMS 3 AP 4 (4 SZ)

Mondragon-Maya et al. (53) 24 14/10 22.6 (5.8) 23 16/7 20.1 (5.4) SIPS None

All values are shown as mean (standard deviation).

AP, antipsychotics; BSABS, the Bonn scale for the assessment of basic symptoms; CAARMS, the comprehensive assessment of at-risk mental state; DD, delusional

disorder; HC, healthy controls; HR, clinical high-risk for psychosis; P-NOS, Psychotic disorder not otherwise specified; RIS, risperidone; SGA, second-generation

antipsychotics; SIPS, the structured interview for prodromal symptoms; SZ, schizophrenia; SZA, schizoaffective disorder; SZP, schizophreniform disorder; SZPa,

schizophrenia paranoid type; SZUn, schizophrenia undifferentiated type.

Table 4 | Oddball paradigm and results of previous studies of HR.

Publication Deviant Stimulus characteristics Probability

(%)

ISI/SOA dB Electrodes Results of

MMN amplitude

Standard Deviant

Frequency Duration Frequency Duration

Brockhaus-Dumke et

al. (55)

Duration 1000 80 1000 40 10 500±150 75 FC dMMN; HC=HR
Frequency 1200 80 10 500±150 75 FC fMMN; HC=HR

Shin et al. (60) Duration 1000 50 1000 100 18.2 300 80 dMMN Dipole

moment; HC > HR

Bodatsch et al. (49) Duration 1000 80 1000 40 10 500±150 75 FC dMMN; HC = HR,

HC > HR-C

Frequency 1200 80 10 500±150 75 FC fMMN; HC = HR

Jahshan et al. (50) Duration 1000 50 1000 100 10 500 85 FC dMMN; HC > HR

Atkinson et al. (12) Duration 1000 50 1000 100 7.5 600 70.5 Fz, Cz dMMN (Increment);

HC > HR

Duration 1000 100 1000 50 7.5 600 70.5 Fz, Cz dMMN (Decrement);

HC > HR

Shaikh et al. (14) Duration 1000 25 1000 50 15 300 80 Fz, F3, F4 dMMN; HC > HR

Higuchi et al. (52) Duration 1000 50 1000 100 10 500 60 Fz dMMN; HC = HR,

HC > HR-C

Mondragon-Maya et

al. (53)

Frequency 1000 100 1500 100 10 300 FC fMMN; HC = HR

FC, frontocentral; HR, clinical high-risk for psychosis; HR-C, HR who converted to psychosis; ISI, interstimulus interval; SOA, stimulus onset asynchrony.

“A > B” means that A is significantly larger than B. “A=B” means that A and B are not significantly different.

Previous studies using animal models have shown that
antagonists of NMDA receptors reduce MMN (22, 69, 77).
Given that NMDA receptors play an important role in
the pathophysiology of schizophrenia, MMN may be a bio-
marker of dysfunctional NMDA receptors in this disease.

Ehrlichman et al. (78) reported that mutant mice heterozy-
gous for neuregulin 1 showed reduced MMN. Since neureg-
ulin 1 is one of the susceptibility genes for schizophrenia,
MMN may be an intermediate phenotype that links genes
to schizophrenia. These findings suggest that MMN may be
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useful for investigating molecular and cellular mechanisms of
schizophrenia.

Recently, the neural adaptation hypothesis has been proposed as
a general mechanism underlying MMN, which challenges the tra-
ditional sensory memory hypothesis (83). The former hypothesis
argues that repeated presentation of standard stimuli results in an
adapted and attenuated response of neurons in the auditory cortex,
whereas rare deviant stimuli evoke a larger response of neurons
that are less adapted. Thus, MMN might reflect a stimulus-specific
adaptation (SSA) rather than genuine deviance detection. A num-
ber of studies have attributed MMN-like responses to SSA in
monkeys (84), cats (85), rats (86–91), and mice (92).

In order to resolve the controversy between the two hypotheses,
several studies have adopted a many standards control paradigm to
differentiate between SSA and genuine deviance detection. Some
studies support the deviance detection theory (73, 74, 88), while
others do not (84). Although NMDA receptor antagonists have
been shown to attenuate MMN amplitude (22, 69, 77), Farley et
al. (88) reported that SSA is not affected by NMDA receptor antag-
onism and suggested that the NMDA sensitivity reported for the
MMN might occur at a mechanistic locus outside of SSA. In other
words, the SSA hypothesis cannot explain MMN.

Recent modeling studies have proposed that MMN reflects pre-
diction rather than adaptation (93, 94). These studies found that
the prediction error hypothesis based on Bayesian inference can
explain the property of MMN measured in human subjects. To our
knowledge, however, there is no animal study that has investigated
MMN based on the prediction error hypothesis. Since it has been
found that NMDA receptor antagonists alter the process associ-
ated with prediction error (95), this hypothesis may provide a
neurobiological mechanism that links NMDA receptors to MMN.

Overall, compared to human studies, there are more incon-
sistencies in the MMN studies carried out on animals. Even if
MMN-like responses are evoked, the polarity and latency win-
dow of responses vary in rats (74). These inconsistencies could
result from species or line differences, anesthesia effect, stimuli or
paradigm differences, and different cortical layers targeted.

Improved protocols and replication of studies might overcome
these variables, after which utilization of MMN as a translatable
brain marker could be feasible for the preclinical assessment of
pharmacological agents in animal models that mimic the early
stage of psychotic disorders.

CONCLUSION
Mismatch negativity amplitude reduction is one of the most
robust neurophysiological findings in schizophrenia patients.

The amplitude of dMMN and that of fMMN have different
characteristics. The fMMN amplitude may reflect the progres-
sive pathological process and is attenuated after the onset of
first-episode psychosis along with the reduction of Heschl’s gyrus
volume. The dMMN amplitude reduces before the onset of psy-
chosis and may be a significant predictor of the conversion
to psychosis. Since early interventions may delay or prevent
the transition to psychosis, dMMN may be useful for identify-
ing people who require early intervention. In contrast, fMMN
may be a potential therapeutic target for preventing the disease
progression. Although further longitudinal studies are needed,
MMN may be an important step toward introducing targeted
early intervention of help-seeking people aiming for a better
outcome.

Animal studies have shed light on the underlying cellular mech-
anisms of MMN. If further studies could clarify these molecular
and cellular mechanisms then MMN could potentially be used
as a translatable brain marker for the preclinical assessment of
pharmacological components designed to improve symptoms and
cognitive and/or functional impairment in individuals in the early
stages of psychosis.
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