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Introduction: Schizophrenia (SZ) and Bipolar disorder (BD) are considered as severe
multifactorial diseases, stemming from genetic and environmental influences. Growing
evidence supports gene x environment (GxE) interactions in these disorders and neu-
roimaging studies can help us to understand how those factors mechanistically interact.
No reviews synthesized the existing data of neuroimaging studies in these issues.

Methods: \We conduct a systematic review on the neuroimaging studies exploring GxE
interactions relative to SZ or BD in PubMed.

Results: First results of the influence of genetic and environmental risks on brain structures
came from monozygotic twin pairs concordant and discordant for SZ or BD. Few structural
magnetic resonance imaging (sMRI) studies have explored the GXE interactions. No other
imaging methods were found. Two main GxE interactions on brain volumes have arisen.
First, an interaction between genetic liability to SZ and obstetric complications on gray
matter, cerebrospinal fluid, and hippocampal volumes. Second, cannabis use and genetic
liability interaction effects on cortical thickness and white matter volumes.

Conclusion: Combining GxE interactions and neuroimaging domains is a promising
approach. Genetic risk and environmental exposures such as cannabis or obstetrical com-
plications seem to interact leading to specific neuroimaging cerebral alterations in SZ. They
are suggestive of GXE interactions that confer phenotypic abnormalities in SZ and possibly
BD. We need further, larger neuroimaging studies of GxE interactions for which we may
propose a framework focusing on GxE interactions data already known to have a clinical

effect such as infections, early stress, urbanicity, and substance abuse.
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INTRODUCTION

Schizophrenia (SZ) and Bipolar disorder (BD) are considered as
severe multifactorial diseases, stemming from genetic and environ-
mental influences (1). SZ and BD are characterized by abnormal-
ities of thought, behavior, cognition, and mood with overlap and
similarities in the presentation and clinical course in many cases
(2). Diagnostic instability in both disorders, frequency of schizoaf-
fective cases, familial co-aggregation, and efficacy of new antipsy-
chotics in both disorders challenged the traditional Kraepelinian
binary classification of SZ and BD (2). Moreover, these observa-
tions of commonalities of SZ and BD are emphasized by growing
and recent evidences from developmental, genetic, cognitive, neu-
roimaging, and environmental risk studies (3, 4). With regard to
family studies, relatives of patients with SZ have an increased risk
for both disorders with a higher risk for SZ (10%) than for BD (8%)
and relatives of patients with BD have also an increased risk for
both disorders with a higher risk for BD (10%) than for SZ (3.5%)
(5). The largest available familial study observed an heritability

for SZ and BD about 60% for both (with thus 40% for envi-
ronmental effects) with partly shared genetic and environmental
causes (1). Shared genetic effects for SZ that were in common
with BD accounted for 52% of the genetic variance in SZ and for
69% in BD (1). Molecular studies demonstrated shared genetic
etiology for SZ and BD with high genetic correlation (about 0.7)
between both disorders (6). Moreover, prenatal maternal nutri-
tional deficiency, maternal infection during pregnancy, season of
birth, urbanicity, and obstetrical complications are environmental
risk factors that have long been demonstrated and associated in
both SZ and BD (7-15). These commonalities between SZ and
BD can be also observed at the brain structure level. Indeed, the
recent structural meta-analysis of controlled magnetic resonance
imaging (sMRI) studies of De Peri et al. shows significant over-
all effect sizes for intracranial, whole brain, total gray and white
matter (WM) volume reduction as well as for an increase of lateral
ventricular volume at disease onset for both BD and SZ (16). Inter-
estingly, some overlapping brain abnormalities may be already
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present at the onset of both diseases (16). However, both SZ and
BD may present neurodevelopmental specificities as whole gray
matter (GM) volume deficits and lateral ventricular enlargement
that appear to be more prominent in first-episode SZ, whereas WM
volume reduction seems more prominent in first-episode BD (16).
These genetic and environmental influences with brain abnormal-
ities might result in a cascade of events that manifest across a wide
range of neurocognitive abnormalities in both SZ and BD that can
be partly shared (17). However, worse performance exist in SZ,
which can be recognized as a “generalized deficit,” compared to
BD (17). This is particularly true for premorbid and current intel-
ligence quotient and also perhaps attention, verbal memory, and
executive functions (18). BD is rather characterized by generalized
moderate level of neuropsychological impairment with deficits in
some specific domains such as attention, executive function, and to
a lesser extent verbal memory and spatial working memory (19).

As a simple binary classification of these two disorders seems
an oversimplification of contemporary evidence, Insel and oth-
ers have promoted the need to rethink investigative approaches
and examine evidence of deficits or abnormalities in different
research domains (e.g., cognitive, neuroimaging studies, environ-
ment risks) to build a dimensional picture of clinical presentations
(20). This strategy helps clinicians identify similarities as well as
differences between disorders and is in keeping with emerging
research such as the family genetic studies of Lichtenstein and
colleagues we previously presented (1).

To summarize, several lines of evidence support the neurode-
velopmental hypothesis of SZ and BD where both diseases can
be considered as pathophysiological processes starting early in life
and resulting in pathological conditions during adulthood (21,
22). The implication of common genetic vulnerability and envi-
ronmental risk factors, that may act early during development and
even during fetal life, are well documented (23).

In this context, neuroimaging appears to be a relevant tool to
identify putative intermediate phenotypes associated with neu-
rodevelopmental abnormalities present in SZ and BD. Indeed,
it is suggested that GM cortical reductions, cerebrospinal fluid
(CSF), and hippocampal decrease volumes are associated with
both SZ and BD patients and also observed among their rela-
tives (24, 25). As we detailed previously, the common causative
factors in SZ and BD, have been also observed with neuroimaging
studies that showed substantial overlaps of brain abnormalities
between both disorders (26). Further it is observed that brain vol-
ume is highly heritable in both disorders, but more consistently
in SZ than in BD. Indeed, the Schizophrenia Twins and Relatives
consortium recently observed that the heritability of most brain
volumes were ranged between 52% (temporal cortical GM) to 76%
(cerebrum) (27). Interestingly, it has been shown that the genetic
influences and the disease-related deficits affect GM in partially
non-overlapping areas of predominantly heteromodal association
cortex, thus suggesting synergistic actions to produce the symp-
tom severity and cognitive dysfunction of the disorder (28). First
results of the influence of genetic and environmental risks on brain
structures came from monozygotic twin pairs concordant and dis-
cordant for SZ or BD (29). These studies cannot specifically test
the biological gene x environment (GxE) interaction effects, but
twin studies might contribute to (1) validate the GxE interaction

postulate, (2) quantify the relative effect of genetic and environ-
mental factors on brain structures. Twin studies with monozygotic
twin pairs concordant and discordant for SZ or BD, observe that
total brain volume and most brain regional volumes are highly
heritable (about 85%), whereas cerebral GM and lateral ventri-
cles volumes showed more common environmental effects (about
65%) (27, 30-33).

Growing evidence supports GxE interactions in these disorders.
But there are few studies about the mechanisms by which G and E
interact in SZ and BD. To this purpose, neuroimaging studies can
help us to understand how those factors mechanistically interact.
To the best of our knowledge, this is the first review that synthesizes
the existing data of neuroimaging studies of this issue.

METHODS

SEARCH STRATEGY

We conducted in April 2013 a systematic review on the neuroimag-
ing studies exploring GxE interactions associated to SZ or BD since
1990. The publications were obtained from the PubMed electronic
database. The literature search was performed using the Mesh
heading: (“schizophrenia” OR “bipolar disorder”) AND (“neu-
roimaging” OR “imagery” OR “MRI” OR “/MRI”) AND (“interac-
tion” OR “GXE” OR “gene environment” OR “environment interac-
tion”). The search found 202 results. Three supplementary original
papers were identified through reviews.

STUDY SELECTION

We first removed duplicates. Then two authors (Pierre Alexis Geof-
froy and Josselin Houenou) reviewed the title and/or abstracts
of publications identified through databases to identify eligible
studies. The two authors independently and then jointly selected
studies for detailed extraction based on the full text. Studies
were eligible if (1) they used neuroimaging exploration whatever
was the imaging technique, (2) they were original studies with-
out overlapping samples, and (3) reported a SZ or BD diagnosis
confirmation.

Studies were excluded if (1) did not assessed GxE interactions
in SZ or BD, (2) were review papers without new data, (3) were
not written in English and/or published in peer-review journals.
We followed the Preferred Reporting Items for Systematic Reviews
and Meta-Analyses, referred as the PRISMA Statement (34). The
Figure 1 shows the flow diagram of the review methods and the
search strategy. At the end, eight studies were included in the qual-
itative analysis exploring specifically the imaging GxE interactions
effects in SZ and/or BD (see Figure 1 for details).

RESULTS

Eight studies using structural MRI (sMRI) have explored the imag-
ing GxE interactions in the physiopathology of SZ and schizoaf-
fective disorder. No other imaging methods were found. Two main
GxE interactions on brain volumes have arisen:

1. aninteraction between genetic liability to SZ or schizoaffective
disorder and obstetric complications (OCs).

2. an interaction between genetic liability to SZ or schizoaffective
disorder and cannabis use.
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FIGURE 1 | Flow diagram of article selection process. The literature (“neuroimaging” OR “imagery” OR “MRI” OR “fMRI") AND
search was performed from the PubMed electronic database and using (“interaction” OR “GxE"” OR "“Gene environment” OR “Environment
the Mesh heading: (“schizophrenia” OR “Bipolar disorder”) AND interaction”).

OBSTETRIC COMPLICATIONS AND GENETIC LIABILITY INTERACTION
EFFECTS

Three classes of OCs have been studied: hypoxia-associated OCs,
maternal infection during pregnancy, and maternal stress during
pregnancy (35).

First results came from Cannon and colleagues in 1989 who
used computed tomographic (CT). They measured ventricular,
cortical, and cerebellar abnormalities to assess the effects of SZ
genetic liability and perinatal complications (36). Later, the same
research team found, with obstetric hospital records and brain
magnetic resonance imaging scans (MRI), that the effect of birth
complications on ventricular enlargement was greater among the
offspring with two parents with SZ compared with those with one
affected parent, who in turn had greater enlargement compared
to those with healthy parents (37). They demonstrated that the
interaction effects of the familial genetic risk for SZ and OC (as
perinatal exposure to ether anesthesia) strongly predict the type
and degree of brain abnormalities shown by adult subjects (37).
Cannon and colleagues further clarified their findings compar-
ing subjects with SZ or schizoaffective disorder, their siblings and
healthy controls with the same records and MRI methods through

two studies (38, 39). They replicated the environmental risk effect
of fetal hypoxia that predicted reduced GM and increased CSF in
the whole cortex (most strongly in the temporal lobe) in patients
and their siblings but not among healthy controls at low risk for SZ
(38). Haukvik and colleagues tested the interaction effects between
severe fetal hypoxia and variation in four hypoxia-regulated SZ
susceptibility genes (BDNF, DTNBP1, GRM3, and NRGI) on hip-
pocampal volume in subjects with SZ and healthy controls (40).
Of the 32 single nucleotides polymorphisms (SNPs) studied, an
allele variation in GRM3 rs13242038 was associated with effects of
severe fetal hypoxia on hippocampal volume in this relatively small
sample (54 patients with SZ and 53 controls) (40). This study is of
interest because variation in hypoxia-regulated genes, in combi-
nation with severe OCs leading to hypoxia, is thought to increase
the risk of SZ (41). Further, the effect of severe OCs on disease risk
was shown to be modified by SNP variation in BDNF, DTNBPI,
and GRM3 (41). Thus interestingly this preliminary study shows
that the effect of OCs on hippocampal volume could be modified
by variation in hypoxia-regulated genes.

In sum, these studies converge toward the existence of an inter-
action between genetic liability to SZ or schizoaffective disorder
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and OCs (especially fetal hypoxia) on GM, CSF, and hippocampal
volumes.

CANNABIS USE AND GENETIC LIABILITY INTERACTION EFFECTS
Cannabis use during early adolescence is associated with a twofold
increased risk for SZ in psychosis-free persons and with a poor
prognosis for those with an established vulnerability to psychotic
disorder (severe level of psychotic symptoms and increase need
for care) (42). McGrath et al. recently precised, using sibling pair
analysis in a cohort of young adults, that young adults who com-
menced cannabis use before 15 years were twice as likely to develop
a non-affective psychosis (43). Further, longer duration since first
cannabis use was associated with higher risk of psychosis-related
outcomes by a “dose-response” relationship (43). The effects of
exogenous cannabis and endo-cannabinoids are mostly mediated
by cannabinoid receptor 1 (CNR1 or CBI1R), which is widely
expressed in the brain (44).

Habets and colleagues first examined the impact of cannabis use
and developmental trauma associated with SZ on cortical thick-
ness (45). These authors found for cannabis a significant interac-
tion effect with stronger reductions of cortical thickness for both
SZ groups and their healthy siblings than healthy controls, thus
suggesting cannabis use and genetic liability interaction effects
on the cerebral cortical thickness. An interaction effect between
developmental trauma and cortical thickness was only observed
in the SZ group but not with their healthy siblings and so did not
demonstrate a GxE interaction as for cannabis use (45). Further,
Ho and colleagues examined among subjects with SZ the inter-
actions between CNRI genetic variants and heavy cannabis use
on brain volumes and cognitive function (46). Significant CNRI
genotype-by-cannabis use interaction effects were observed on
WM volumes and neurocognitive impairment in patients with SZ
suggesting that heavy cannabis use in the context of specific CNRI
genotypes may contribute to confer WM abnormalities and cog-
nitive impairment in SZ (46). The same team recently examined
the effect of another cannabinoid-related gene, mitogen-activated
protein kinase 14 (MAPK14): they assessed the MAPK14-CNRI
gene—gene interactions in conferring brain volumes abnormali-
ties among subjects with SZ with cannabis abuse (47). Authors
observed significant main effects of the MAPK14 CNRI diplotype
and diplotype x cannabis interaction on WM brain volumes. Fur-
ther, the two genetic variants had additive contributions to WM
volume deficits in SZ subjects with cannabis misuse but not in
patients not using cannabis (47). Thus interestingly, these find-
ings suggested a potential gene—gene interaction that influences
brain volumes among subjects with SZ and cannabis use.

In sum, these studies showed that specific CNRI variants and
potential gene—gene interactions interacted with cannabis use
on WM brain volumes and cognitive functions among subjects
with SZ.

DISCUSSION

With two distinct environmental events such as OCs and cannabis
use, we observe significant early and late GxE interaction effects
on WM volumes that lead to neurocognitive impairment confer-
ring phenotypic abnormalities in SZ. No specific studies exist on
BD, but the existence of an interaction between genetic liability to

schizoaffective disorder and fetal hypoxia on GM, CSF, and hip-
pocampal volumes is of interest and warrant further explorations
in BD population. These findings further substantiate the hypoth-
esis that brain abnormalities in SZ- and possibly BD- are at least
in part neurodevelopmental in origin and arise from GxE inter-
actions. We summarize these interactions in a putative common
developmental pathway leading to both disorders (Figure 2). The
key idea here is that genetically vulnerable populations may be
more sensitive to environmental risk factors (48).

The field of GXE interactions on gray and WM is very promising
but still poorly explored. Our review revealed that only very few
environmental factors have been explored (mainly cannabis and
obstetrical complications). Each of these factors has been studied
by one or two groups at most, requiring replication studies. Other
factors, such as migration, urbanicity, season of birth, early stress,
or infections during pregnancy have not been explored despite
being consistently associated with risk for SZ and BD (7-15).
Further GxE interactions neuroimaging studies only used sMRI.
However, other neuroimaging methods might be of interest as
functional MRI (fMRI) that has demonstrated to be efficient in
genetic and environmental explorations (49, 50). In addition, no
study has assessed the GxE interactions with neuroimaging in BD.
Nevertheless, these preliminary findings in SZ and schizoaffec-
tive disorder are paving the way to address more specifically this
question in BD.

We need further neuroimaging studies for which we may pro-
pose a framework focusing on existing GxE interactions data.
Such study is quite challenging, regarding the high number of

Genetic
Vulnerability

Early environmental
stressors
(as Obstetric Complications)

Neurodevelopmental

Alterations
Late environmental
stressors —
(as Cannabis)

Schizophrenia Bipolar Disorder

Specific and shared
neurobiological & cognitive dysfunctions

FIGURE 2 | Common developmental pathways leading to
schizophrenia and bipolar disorder.
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environmental factors known to increase risk for SZ or BD (infec-
tions, season of birth, early stress, or abuse, urbanicity, substance
abuse, migration). The tremendous number of genetic variants
identified in BD and SZ is even higher, and still growing. It
is therefore not conceivable to study all GXE interactions, as it
would require very huge sample sizes, unrealistic for neuroimaging
study.

We propose to focus on already clinically and epidemiologi-
cally known GxE interactions. They include interactions between
genetic risk for SZ and BD and OCs (51, 52), urbanicity (53, 54),
early stress (55-57), and cannabis. Other potential GxE inter-
actions are more debated and are currently being assessed by
large studies such as EU-GEI (58). Regarding genetic risk, we
can assess differential effects of environment on MRI patterns
between siblings of affected subjects and controls; or, within con-
trols, between carriers of different allelic variants. Nevertheless,
this second approach may be criticized as only very few genetic
variants have consistently been shown to have GxE interaction
effect. An intermediate solution may be the calculation of indirect
measures of genetic risk such as a “genetic risk score” from GWAS
data (6). However, none of the currently reported gene variants
have come up as highly significant. Indeed, Candidate genes asso-
ciated with BD and SZ display relatively low odds ratios (OR) and
minor allele frequencies (MAF), and therefore it is unlikely that
both disorders are determined by common variants with large
effect sizes. Thus, future studies could benefit from investigations
of polygenic risk scores, genetic pathways, and gene expressions
rather than single variants.

Additionally, some studies have explored GxE interactions on
cognition. A recent report on 234 adult healthy twins found
a significant interaction between childhood maltreatment and
COMT genotype on cognition (59). This was in accordance with
a previous experimental study that reported a moderation of
the effects of cannabis on cognition by the same COMT geno-
type (60). As cognitive performance is closely linked to neu-
roimaging features, such GXE interaction studies of cognition may
bring us clues to potentially interesting GXE interactions to study
with MRL

The sample size required for such studies can also be
decreased by cautious high-quality measurement of environmen-
tal risk factors, selection of frequent environmental risk factors,
repeated measures, and selection of extreme exposure groups
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