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The allostatic theory of drug abuse describes the brain’s reward system alterations as sub-
stance misuse progresses. Neural adaptations arising from the reward system itself and
from the antireward system provide the subject with functional stability, while affecting the
person’s mood. We propose a computational hypothesis describing how a virtual subject’s
drug consumption, cognitive substrate, and mood interface with reward and antireward sys-
tems. Reward system adaptations are assumed interrelated with the ongoing neural activity
defining behavior toward drug intake, including activity in the nucleus accumbens, ventral
tegmental area, and prefrontal cortex (PFC). Antireward system adaptations are assumed to
mutually connect with higher-order cognitive processes occurring within PFC, orbitofrontal
cortex, and anterior cingulate cortex.The subject’s mood estimation is a provisional function
of reward components. The presented knowledge repository model incorporates pharma-
cokinetic, pharmacodynamic, neuropsychological, cognitive, and behavioral components.
Patterns of tobacco smoking exemplify the framework’s predictive properties: escalation of
cigarette consumption, conventional treatments similar to nicotine patches, and alternative
medical practices comparable to meditation.The primary outcomes include an estimate of
the virtual subject’s mood and the daily account of drug intakes.The main limitation of this
study resides in the 21 time-dependent processes which partially describe the complex
phenomena of drug addiction and involve a large number of parameters which may under-
constrain the framework. Our model predicts that reward system adaptations account
for mood stabilization, whereas antireward system adaptations delineate mood improve-
ment and reduction in drug consumption. This investigation provides formal arguments
encouraging current rehabilitation therapies to include meditation-like practices along with
pharmaceutical drugs and behavioral counseling.

Keywords: drug addition, allostasis, reward system adaptations, antireward system adaptations, mood, drug intake
prediction, multiscale computational model, knowledge repository model

INTRODUCTION
The principle of allostasis was established to enhance the homeo-
static model whereby the well-balanced functional state of a living
being is sustained by the constant conservation of the organism’s
inner environment. Each divergence from the normal state of the
organism is counterbalanced by negative feedback mechanisms
which support the reinstatement of original setpoints. Instead, the
allostatic model advances that the internal state of the organism
continuously adapts to the surrounding natural world, attain-
ing functional stability through the adaptation of physiological
thresholds (1). As defined by Sterling and Eyer, “allostasis provides
for continuous re-evaluation of need and for continuous readjust-
ment of all parameters toward new setpoints” (1). In humans, this
continuous adaptation to the environment is reached by means
of neural and endocrine processes that are able to take priority

over homeostatic regulations (1). The present paper is concerned
with understanding and modeling the role of allostasis in drug
addiction.

According to the hypothesis put forward by Koob and col-
leagues, a drug addict attains the allostatic state through the
chronic deviation of their hedonic baseline. The addict’s physi-
ological state is maintained operative by means of this affective
adaptation, rather than by reinstatement of the original homeo-
static balance. Symptoms of allostasis are manifested as changes
in the addict’s mood or state of mind (2). The concept of allosta-
sis accounts for the transitions in the gradual development of
a dependency whereby drugs are first experienced to “feel high”
but subsequently to “feel normal.” The allostatic framework of
addiction relies on changes observed in the subject’s nervous and
endocrinal systems which occur as addiction perpetuates, causing
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continuous and progressive distortions of the subject’s affective
state (3). The raison d’être of these distortions is to guarantee the
functional stability of the organism while its hedonic homeostatic
state is corrupted.

The hedonic effect of an addictive substance on the brain’s
reward system is orchestrated by within-system neuroadaptations
and between-system neuroadaptations (4). Experimental observa-
tions show that rats undergo a continuous degradation of hedonic
valence during extended periods of cocaine consumption (5). Sim-
ilarly, the negative hedonic valence of the individual is increased by
within-system and between-system neuroadaptations, and chron-
ically impacts the person’s mood (2). Initial drug consumption
disrupts the normal synaptic physiology of the reward system (6)
which aims to reinstate its equilibrium by means of within-system
neuroadaptations (4). Within-system adaptations act at the mol-
ecular or cellular levels that define the brain reward circuitry (7)
and increase the magnitude of the ideal threshold of the reward
(8). For instance, if the effect of the consumed drug of abuse
relies on the availability of a particular neurotransmitter, within-
system adaptations will diminish its amount within the reward
system (9). With repeated drug administration the reward system
becomes accustomed to extended activations of the within-system
component, which eventually causes withdrawal symptoms dur-
ing periods of abstinence (4). Dopamine in the nucleus accumbens
(NAc) and extended amygdala plays an important role in within-
system adaptations (10). As consumption further advances, the
brain’s expectation for future rewards increases and within-system
neuroadaptations become progressively inadequate and eventually
fail to provide the individual with a well-adjusted functional state.

Due to deficiencies of within-system adaptations, brain struc-
tures different than the ones defining the reward system are
recruited through the deployment of between-system neuroadap-
tations to further counterbalance the effect of the drug (4). These
brain structures, delineated by Koob and Le Moal, embody the
“antireward systems” (11). Between-system adaptations increase
the baseline reward threshold (8) and originate in the brain
stress system (4). For example, if a drug has a particular effect
on the reward circuit, between-system activations could pro-
mote a hormonal response leading to the opposite effect (9). The
corticotropin-releasing factor operating in the amygdala, stria ter-
minalis, and ventral tegmental area (VTA) plays an important role
in between-system adaptations (10).

The current investigation was undertaken to further explore
the allostatic theory of addiction and combines two existing com-
putational models: (i) a pharmacological model which describes
how decreased reward function induces compulsive cocaine self-
administration in rats (8) and (ii) a dynamical system model that
represents hypotheses in terms of behavior, cognition, and neu-
ropsychology, occurrences of spontaneous remissions from drug
use in humans (12). More specifically, these models are con-
nected by two computational hypotheses and one provisional
assumption. The first hypothesis outlines within-system neu-
roadaptations, the second hypothesis delineates between-system
neuroadaptations, and the provisional assumption relates to the
mood of a virtual subject. In particular, within-system adaptations
reflect changes in the reward system, whereas between-system
adaptations embody modification in the antireward system. Mood

estimation relies on the direct effect of the drug and its influence
on these two neuroadaptations.

METHODS: COMPUTATIONAL FRAMEWORK FOR
ALLOSTASIS
Figure 1 represents the model at the center of this investiga-
tion. The color code denotes different scales of observation:
behavior (blue), neuropsychology (green), cognition (red), heal-
ing (orange), and pharmacology (light blue). The outputs of this
discrete-time model reside in the pharmacological scale which
includes computational predictions of drug intakes, Z (t ), and
mood, M (t ). The processes composing the model are estimated
over time-scales of minutes (t ) and hours (t∗). With the exception
of Z, which is a binary variable, all other variables have contin-
uous values with units of measurements that are left unspecified
since corresponding human measurements are not available at this
time. The current section describes the two hypotheses, the provi-
sional assumption, and the dynamical system model at the center
of the present investigation. Formal definitions of the processes in
Figure 1 are included in the Supplementary Material.

The first hypothesis identifies reward system adaptations with
ongoing neural activities within NAc, VTA, and prefrontal cor-
tex (PFC); the second hypothesis associates antireward sys-
tem adaptations with higher-order cognitive processes within
PFC, orbitofrontal cortex (OFC), and anterior cingulate cor-
tex (ACC); and the provisional assumption considers the vir-
tual subject’s mood as a combination of reward components.
Hypotheses and the provisional assumption reside in the phar-
macological scale of the framework which extends the pharmaco-
kinetic/pharmacodynamic (PK/PD) model of allostasis for labo-
ratory rats of Ahmed and Koob (8). The PK component includes
the drug concentration in the brain, C(t ), and represents how the
rat’s bloodstream and brain absorb the substance. The PD com-
ponent includes the lowering effect on reward threshold, T, and
the reward set point, T S, accounting for the threshold-lowering
effect of the drug. T depends on the baseline reward threshold, T 0,
which is a constant value in Ref. (8). The thresholds T, T S, and T 0,
are the reward components associated respectively with the inverse
variation of the brain’s reward sensitivity, the drug’s evolving acute
effect which is reminiscent of the intracranial self-stimulation par-
adigm (13), and the minimal drug effect providing the individual
with a reliable outcome (“feel high”). The decision-making process
defining the animal’s future drug self-administration is controlled
by the negative hedonic valence induced by the substance, arith-
metically T -T S. In the present model these thresholds change over
time and are respectively denoted T (t ), T S(t∗), and T 0(t∗).

Within-system alterations are represented by changes in the
drug potency index, T 50 , and between-system adjustments are
described by variations in the baseline reward threshold, T 0.
Ahmed and Koob (8) successfully replicate patterns of intra-
venous cocaine self-administration observed in laboratory rats,
while relying on values of constant magnitudes to represent the
within-system and the between-system adaptations. We translate
the model of Ahmed and Koob toward human application by
mathematically describing within- and the between-system com-
ponents as explicit time-dependent functions, and by providing
an estimation of the virtual subject’s mood. The pharmacological
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FIGURE 1 | Diagram of the computational model. Time units differ: t is in
minutes and t* in hours. Output M (t ) is the mood estimation within the
allostatic framework which combines the rush/comedown effect of the drug,
rc(t ), with the virtual subject’s cognitive distortion, cd (t ). Levels of
observations include the neuropsychological scale in green, the cognitive
scale in red, and the healing scale in orange (12), which are connected to the
expanded PK/PD model (8) in light blue. The cognitive weights, which
modulate the ongoing neural activity on the neuropsychological scale, define

the tendency of drug-seeking behavior, G(t*). This predisposition influences
the reward set point, T S(t*), which together with the lowering effect on
reward threshold, T (t ), defines decisions about drug intake, Z (t ). The cognitive
weights influence the baseline reward threshold, T 0(t*), indirectly influence
T (t ), and are affected by Z (t ). A healing intervention has a direct impact on
both cognitive learning and T 0(t*), and an indirect effect on T S(t*) associated
with changes in the virtual subject’s rationality density, rd (t*). The mood M (t )
is a combination of Z (t ), T (t ), T 0(t*), and T S(t*).

(light blue) scale of the framework pictured in Figure 1 is an
extended version of the PK/PD model discussed in Ref. (8).

HYPOTHESIS 1: WITHIN-SYSTEM NEUROADAPTATIONS
(PHARMACOLOGICAL SCALE)
Ahmed and Koob (8) emulate within-system neuroadaptations by
means of the drug potency index, T 50 , one of the constant para-
meters used to define T. The present study complements this inter-
pretation by considering a subsequent report of the same authors
(14) about cocaine intake escalation in rats. Ahmed and Koob
observed rats evolving in environments with different regimes of
cocaine availability, compared the animals’ drug intake patterns,
and suggested that the rat’s reward system homeostatic set point
deteriorates gradually rather than abruptly (14).

Along those lines, our model is based on the following
hypothesis: within-system adaptations are expressed by the

reward set point, T S, which deteriorates for maladaptive behav-
iors and improves for healthy behaviors. More specifically,
within-system neuroadaptations depend upon the virtual sub-
ject’s current attitude toward drug use, G(t∗), which emu-
lates the translation of ongoing neural activities within the
NAc, VTA, and PFC into behavior. Computationally, after the
first drug intake, T S is assumed to monotonically increase for
healthy behavior and exponentially decrease for maladaptive
behavior:

TS
(
t∗ + 1

)
=


λ ·
(
1− e−β·d

)
+TS (tc)

if G (t∗) ≥ 0 and
∑

Z ≥ 1

TS (tc) · e−γ ·d if G (t∗) < 0 and
∑

Z ≥ 1

TS (t∗) otherwise,
(1)
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where λ, β, and γ , are constants; t c corresponds to the last time t∗

when G changed its sign; d is a temporal unit-step counter reset
to 0 when G changes its sign, ensuring mathematical continuity to
T S; and6Z ≥ 1 denotes that at least one drug intake occurred up
to time t∗.

HYPOTHESIS 2: BETWEEN-SYSTEM NEUROADAPTATIONS
(PHARMACOLOGICAL SCALE)
Goldstein and Volkow (15) proposed the “impaired response inhi-
bition and salience attribution” (I-RISA) theory of addiction while
assessing the PFC significant impact on cognitive alterations in
terms of maladaptive behavior toward drug abuse. This theory is
based on observations in which addicts display significant differ-
ences from healthy individuals within the mesolimbic and meso-
cortical dopaminic pathways, as well as within the orbitofrontal
and anterior cingulate cortices (15). These changes suggest that
an addict is more susceptible to experience cognitive distortions.
The Encyclopedia of Cognitive Behavior Therapy defines cognitive
distortions as “identifiable errors in thinking ” (16) which sustain
pathologies related to alcohol and drug use (17) gambling (18, 19),
eating (20), and Internet use (21).

Along those lines, our model considers the following hypoth-
esis: between-system adaptations are expressed by the baseline
reward threshold, T 0, which increases when maladaptive behavior
occurs and decreases during healthy behavior. After some drug
intakes, cognitive weights which adapt to maladaptive behavior
will cause T 0 to increase. In case the virtual subject regains a
healthy behavior, these cognitive weights cause T 0 to decrease.
More specifically, between-system alterations are defined as a func-
tion of cognitive time-dependent weights, ωS(t∗), ωP (t∗), and
ωD(t∗), and healing intervention, H (t∗). Cognitive weights mimic
associative learning between the drug and its pleasurable effect,
whereas H emulates positive cognitive changes toward remission
from drug intake. Computationally, after a number of drug intakes,
the cognitive substrate of the virtual subject starts to stochastically
influence T 0 by means of ωS , ωP , ωD and the healing interven-
tion H. The modulating influence of ωS , ωP , and ωD on T 0 has
opposite valence when a healing intervention occurs (H = 1) than
when it does not (H = 0):

T0
(
t∗ + 1

)
=


T0 (t∗)+ δT 0 · (−2 ·H (t∗)+ 1)

· (ωS (t∗)− ωP (t∗)+ ωD (t∗))
if
∑

Z ≥ α

T0 (t∗) otherwise,
(2)

where δT0 and α are constants, and 6≥α denotes the period
subsequent to at least α drug intakes.

PROVISIONAL ASSUMPTION: MOOD
(BEHAVIORAL/PHARMACOLOGICAL SCALE)
A classical validation schema, where simulations are compared
to laboratory data is not suitable for the proposed model, as
human measures of the considered processes are not currently
available. Instead, for qualitative evaluation purposes, an addi-
tional provisional assumption is formulated to predict the subject’s
mood, M, as an aggregate of neural and psychological compo-
nents. The former component relies on the direct rush/comedown

effect of the drug, rc(t ), and the latter upon cognitive distortions,
cd(t ), emulated as a function of current and previous hedonic
adaptations.

The evolution of rc is defined as the summation of piece-wise
sinusoidal functions each of one period with slightly exponentially
decaying tails that initiate when a drug intake occurs. Cognitive
distortions related to addiction are assumed to depend on the over-
all current reward state of the virtual subject which includes T, T S,
and T 0. Healthy individuals should not suffer from cognitive dis-
tortions: no current drug’s effect on reward threshold (T ) should
arise, nor should any negative hedonic valences from within- and
between-system neuroadaptations (T S and T 0). The speculative
cd combines the current reward state of the individual, the cur-
rent activation of within- and between-system neuroadaptations,
alongside of previously experienced hedonic adaptations:

M (t ) = rc (t )+ cd (t )

with cd (t ) = −T (t )+ γM ·1TSO
(
t∗
)

−1TSO
(
t∗ − 1

)
when

∑
Z ≥ 1,

(3)

where γM is constant;6Z ≥ 1 denotes that at least one drug intake
occurred up to t ; and 1TSO stands for the arithmetic difference
between T S and T 0. The formulation of cd is suggested by the
temporal difference component employed in the first model of
learning mechanism associated with dopaminergic neurons in the
basal ganglia (22, 23).

BEHAVIORAL, COGNITIVE, AND NEUROPSYCHOLOGICAL SCALES OF
THE MODEL
The tendency for drug-seeking behavior, G(t∗), defines the behav-
ioral scale of the model (in blue on Figure 1). Healthy behavior,
i.e., avoidance of drug use, corresponds to positive values of G, and
maladaptive behavior, i.e., a tendency toward drug-seeking behav-
ior, corresponds to negative values. G assesses how neural activity
of brain regions sensitive to addictive drugs affects the ratio of
compulsion and inhibition (24). Compulsion is assessed accord-
ing to the Robinson and Berridge “incentive-sensitization” theory
of addiction (25), whereas inhibition is estimated through devel-
opmental and biosocial factors. Even though previously presented
as time-dependent processes (24), in the present study the behav-
ioral scale is simplified and includes compulsion and inhibition as
constant parameters.

The cognitive apparatus of the virtual subject (in red on
Figure 1) transforms the ongoing neuropsychological activities
into information accessible at the behavioral scale. The ratio of
compulsion and inhibition is driven by the cognitive state, cs(t∗),
which is a mathematical transformation into the real interval [0, 1]
of the virtual subject’s rationality density, rd(t∗). A more compul-
sive behavior is expressed when cs is equal to 0, whereas a stronger
inhibitory behavior is expressed when cs is equal to 1. In terms
of economic theories of addiction, cs and rd delineate whether
the virtual subject is irrational, imperfectly rational, or ratio-
nal (26). The process rd brings together the neuropsychological
processes and adjusts them through their correspondent cogni-
tive weights, which include a set of time-varying processes ωS(t∗),
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ωP (t∗),ωD(t∗), and constant parameters ωQ ,ωA , and ωH . Time-
dependent cognitive weights ωS , ωP , and ωD stochastically adjust
and predispose the virtual subject toward maladaptive behavior.
The time-dependent cognitive weights mimic alterations in the
PFC, OFC, and ACC that lead addicted persons and healthy indi-
viduals to manifest contrasting saliencies during affective events
related to drug consumption (27, 28).

The neuropsychological activities (in green on Figure 1)
encompass internal processes (S, P, D, and Q) and external triggers
(AS, AP, AD, and AQ). The negative affective state of nervousness,
anxiety, or stress, S(t∗), of an addict expands during withdrawal
phases (29) due to changes occurring in the brain reward and stress
systems (2) including the VTA, the NAc, the amygdala, and the
lateral hypothalamus (30). The level of burden or worry, P(t∗),
related to a person’s health state increases as a consequence of
drug consumption (31). The intensity of drug craving, D(t∗),
strongly correlates with the level of extracellular dopamine in key
brain areas. Animal experiments show how the concentration of
dopamine in the NAc increases during acute drug consumption
(32) and decreases during withdrawal (33). Human studies suggest
that dopamine-related neural activity in the OFC and ACC inten-
sifies under the influence of drugs (34), and diminishes during
long-term withdrawal (15).

Severe stressors, AS(t∗), such as electric foot-shocks for labo-
ratory rats (35) and verbal scolding for humans (36), can lead to
the reinstatement of maladaptive behavior. Acute distress events,
AP(t∗), such as non-fatal overdoses for injection drug users (37)
or coronary heart disease for smokers (38) may cause the indi-
vidual to rapidly cease using the substance. After a period of
abstention, rats (39) and humans (40) exposed to drug prim-
ing, AD(t∗), are more likely to stumble into relapse. Drug-
associated cues linked to a particular environment, AQ(t∗), can
reactivate drug-seeking behavior (41). The magnitude, Q(t∗), of
these cues depends upon the drug-contingent neural mechanisms
of learning and memory (42) that may facilitate the sensitiza-
tion of incentive salience of drug cues leading to compulsive
consumption (43).

Healing interventions (in orange on Figure 1), H (t∗), can
cause immediate abstinence by direct alteration of the virtual
subject’s rationality rd and by adapting cognitive weights of inter-
nal and external processes. These modifications can endure over
time and reflect real-life occurrences of “maturing out ” of addic-
tion (12). When active, healing interventions influence ωS , ωP ,
ωD , and rd, inclining the virtual subject toward healthy behav-
ior. Once H becomes idle, residual cognitive effects on these
weights stochastically become permanent. Different occurrences
of H delineate replacement therapies (e.g., nicotine replacement
therapy) or complementary treatments (e.g., mindfulness medita-
tion). Both these techniques favorably support cigarette-smoking
cessation (44, 45). The first is simulated with an active H lasting
several days, whereas the second by a sequence of active H ’s of
much shorter durations.

As discussed above, the pharmacological scale (in light blue on
Figure 1) includes the binary decision toward Z which depends
on the arithmetic difference between the lowering effect on reward
threshold, T (t ), and the reward set point, T S(t∗), similarly to the
model in Ref. (8).

ILLUSTRATIVE RESULTS
The experimental set up includes mathematical definitions of
the processes described above and detailed in the Supplemen-
tary Material, as well as their correspondent implementation in
MATLAB®. The initial conditions of the presented simulations
are defined by 71 parameters whose values, reported in Table S1 in
Supplementary Material, are chosen according to Ref. (8) and (12)
with few exceptions: where possible, parameters defining the sim-
ulations were chosen according to human studies. The rat brain
apparent volume of distribution for cocaine used in Ref. (8) was
replaced with an estimate for (S)-[11C]nicotine in humans (46).
The number of drug intakes defining the initial associative learn-
ing reflected in ωS ,ωP ,ωD , as well as the constant α in Eq. 2, were
chosen according to a clinical study by DiFranza at al. (47) which
classifies the progression of physical addiction into four stages:
none (stage 1), wanting (stage 2), craving (stage 3), and needing
(stage 4). Associative learning is active until the virtual subject
reaches the needing phase, and the constant α relates to the crav-
ing phase. For nicotine, the four stages correspond to consumption
rates of 2.2± 3.4, 4.4± 5.0, 8.6± 7.1, and 13.2± 7.7 cigarettes per
smoking day (47), respectively. The minimum amount of time
separating consecutive drug intake of 4 s in Ref. (8) was changed
to 30 min.

Three Case Studies based on the same experimental set up,
and narrating tobacco smoking, are presented herein to exemplify
the methods described in the previous section: (i) escalation from
early to heavy smoking, (ii) conventional therapeutic process (e.g.,
nicotine patches), and (iii) alternative medical treatment (e.g.,
meditation). Case Study 1 stands for the evaluation baseline; Case
Study 2 is identical but includes two long-lasting healing interven-
tions, H ; whereas Case Study 3 encompasses eight short-lasting
healing interventions. The total amount of time for which H is
active in these Case Studies is respectively 0, 10, and 5 days.

Each Case Study includes three Evaluations: in the first both
T S and T 0 are time-dependent processes according to Eqs 1 and
2; in the second T S is constant and T 0 is time-dependent; and in
the third T S is time-dependent and T 0 is constant. The simulation
results include means for 100 runs and 95% simulation envelopes
corresponding to a period of 160 days with the drug becoming
available on the fifth day. Changes in the allostatic state of the
virtual subject are estimated through variations of the mood M.
The daily abstinence index is the ratio (as a percentage) between
the runs in which the virtual subject don’t use the addictive drug
and the total number of simulation runs. This index assesses the
virtual subject’s stage according to the classification by DiFranza
et al. (47).

CASE STUDY 1: ALLOSTATIC STATE TRAJECTORY DURING ESCALATION
OF DRUG CONSUMPTION
Figures 2 and 3 depict the behavior of a virtual subject who
engages in cigarette-smoking 5 days after the simulation begins.
In Evaluation 1, changes in ωS , ωP , and ωD are gradual; T is at
first weaker than T S but eventually surpasses it, and T 0 contin-
ually increases; M increasingly oscillates around its downslope;
the average drug consumption increases and the abstinence index
diminishes. Upon completion of the simulation, this virtual sub-
ject is characterized by an average consumption of ~42 intakes/day
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FIGURE 2 | Case Study 1 (cognitive weights and reward components).
Simulations of virtual behavior for cigarette consumption over a period of
160 days. Cigarettes are available on the fifth day. Results are the average of
100 runs. Evaluation 1 simulates both T S and T 0 as time-dependent
processes. T S is constant and T 0 time-dependent in Evaluation 2, T S is

time-dependent and T 0 constant in Evaluation 3. (A1–A3) show the evolution
of cognitive weights ωS , ωP , and ωD ; and (B1–B3) the progression of T, T 0, and
T S. The shades correspond to 95% simulation envelopes. The time-scales are
hours for (A1–A3), and minutes for (B1–B3). Further details of these
simulations are reported in Figures S1 and S2 in Supplementary Material.
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FIGURE 3 | Case Study 1 (mood and health state assessments).
Simulations of virtual behavior for cigarette consumption over a period of
160 days. Cigarettes are available on the fifth day. Results are the average of
100 runs. Evaluation 1 simulates both T S and T 0 as time-dependent
processes. T S is constant and T 0 time-dependent in Evaluation 2, T S is

time-dependent and T 0 constant in Evaluation 3. (A) Shows the evolution of
the subject’s mood M ; (B) the average number of drug intakes; and (C) the
abstinence index. The shades correspond to 95% simulation envelopes. The
time-scales are minutes for (A), and days for (B,C). Further details of these
simulations are reported in Figures S1 and S2 in Supplementary Material.

(~2 packs) and an abstinence index of ~11%, comparable to a
severe stage 4 (47).

In Evaluation 2, the cognitive adaptations occur significantly
faster than in Evaluation 1. T and T S are approximately equal at
first, but eventually T becomes larger than T S as T 0 constantly
increases. M abruptly decreases during the loading phase and
subsequently manifests a negative trend enclosed by minor oscilla-
tions. The average consumption quickly increases and the virtual
subject reaches a satiety state of ~48 cigarettes/day. Note that the
number of intakes defining satiety is not an explicit constraint
defined in the model. The abstinence index is consistently at zero.

In Evaluation 3, the evolution of the virtual subject’s processes
is very similar to the predictions for Evaluation 1, but T decreases
and M has a less negative downslope. This evaluation ends with
~34 intakes/day and ~25% abstinence.

Additional details can be found in the Supplementary Mate-
rial. Figures S1 and S2 in Supplementary Material include the
fine details for Case Study 1, and Figures S3–6 in Supplemen-
tary Material show how different probabilities defining changes
in ωS ,ωP , and ωD influence the predicted consumption rates and
mood downslope. If the first smoked cigarette within the simula-
tions is considered as the first ever in the life of the virtual subject,
then Figures S3–6 in Supplementary Material can be considered to

relate to different rates of progression from recreational smoking
toward heavy smoking.

Case study 1 indicates that a virtual subject consuming drugs
for the first time, or relapsing after a period of abstinence, under-
goes a continuous negative shift in mood baseline which directly
correlates with the strength of cognitive learning facilitating drug
consumption. In addition, the virtual subject suffers growing
mood swings during protracted consumption. When T S is con-
stant, the mood substantially decreases during the first number
of drug intakes, and the virtual subject rapidly reaches the satiety
consumption rate. With T 0 constant, the simulated mood has a
weaker negative tendency and oscillates less.

This Case Study shows that escalation in drug consumption
occurs together with chronic depression of mood. When just
between-system adaptations are operative, these simulations pre-
dict that the virtual subject’s mood strongly drops, whereas it
moderately decreases when just within-system adaptations are
operative.

CASE STUDY 2: ALLOSTATIC STATE TRAJECTORY DURING
CONVENTIONAL THERAPIES
The profile presented in Figures 4 and 5 is similar to Case Study
1 but also includes healing interventions (H ). Five-day long H

www.frontiersin.org December 2013 | Volume 4 | Article 167 | 7

http://www.frontiersin.org
http://www.frontiersin.org/Addictive_Disorders_and_Behavioral_Dyscontrol/archive


Levy et al. Computational allostasis and healing

FIGURE 4 | Case Study 2 (cognitive weights and reward components).
Simulations of virtual behavior for cigarette consumption over a period of
160 days. Cigarettes are available on the fifth day. Results are the average of
100 runs. Evaluation 1 simulates both T S and T 0 as time-dependent
processes. T S is constant and T 0 time-dependent in Evaluation 2, T S is
time-dependent and T 0 constant in Evaluation 3. In all evaluations, the

recovery process H is activated at t =1920 and t =2280 [hours] (in light pink)
and stays active for 120 h (dark pink). (A1–A3) show the evolution of cognitive
weights ωS , ωP , and ωD ; and (B1–B3) the progression of T, T 0, and T S. The
shades correspond to 95% simulation envelopes. The time-scales are hours
for (A1–A3), minutes for (B1–B3). Further details of these simulations are
reported in Figures S7 and S8 in Supplementary Material.
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FIGURE 5 | Case Study 2 (mood and health state assessments).
Simulations of virtual behavior for cigarette consumption over a period of
160 days. Cigarettes are available on the fifth day. Results are the average of
100 runs. Evaluation 1 simulates both T S and T 0 as time-dependent
processes. T S is constant and T 0 time-dependent in Evaluation 2, T S is
time-dependent and T 0 constant in Evaluation 3. In all evaluations, the

recovery process H is activated at t =1920 and t =2280 [hours] (in light pink)
and stays active for 120 h (dark pink). (A) shows the evolution of the subject’s
mood M ; (B) the average number of drug intakes; and (C) the abstinence
index. The shades correspond to 95% simulation envelopes. The time-scales
are minutes for (A), and days for (B,C). Further details of these simulations
are reported in Figures S7 and S8 in Supplementary Material.

events are activated at t = 1920 and t = 2280 [hours]. This is
intended to emulate 25 days of a replacement therapy using a
nicotine transdermal system for two 5 days periods separated from
each other by 15 days. All evaluations for Case Studies 1 and 2 are
similar until H is activated.

During the first therapeutic period in Figures 4 and 5, ωS , ωP ,
and ωD are influenced by H to promote healthier behavior. This
positive effect partially persists after the first period of therapy
and is further strengthened by the second. In Evaluation 1, the
activation of H causes a small upswing in T, a strong upswing in
T S, and a decrease in the upslope of T 0. The degradation of M
becomes less accentuated after the treatment. The average drug
consumption drops and the abstinence index rises while H is
active. This experiment’s endpoint is comparable to an advanced
stage 3 or an intermediate stage 4 (47), with a consumption rate
of ~14 intakes/day and an abstinence index of ~62%. In Evalua-
tion 2, both T and T 0 reduce their upslope during the therapy,
while the effect on M is negligible. The average consumption
steadily increases ending at ~47 intakes/day, and the abstinence
index drops to zero. In Evaluation 3, the progression of the virtual
subject’s processes is similar to Evaluation 1 but somewhat slower.
M stabilizes and becomes nearly constant after the therapy. This
endpoint is ~8 intakes/day and ~81% abstinence.

Additional fine detail for Case Study 2 can be found in
Figures S7 and S8 in Supplementary Material. Figures S9–12 in
Supplementary Material show how different probabilities defining
the influence of H affect the permanent predicted consump-
tion rates. Higher probabilities lead the virtual subject to stage
1 or intermediate stage 2, whereas lower probabilities to advanced
stage 4. The same sets of probabilities are tested when T S is con-
stant (Figures S13–16 in Supplementary Material) and when T 0

is constant (Figures S17–20 in Supplementary Material). For T S

constant, the virtual subject always gets to a satiety consump-
tion rate and reveals a slight shy positive trend in M for the
highest probabilities along with a decrease in average consump-
tion. For T 0 constant, M becomes constant after the therapy and
its variations become smaller as the tested probabilities become
higher.

Case study 2 shows how a few, though long, healing interven-
tions diminish the negative trend in the virtual addict’s mood.
Early indications of mood increase appear when healing signals are
highly effective. When T S is constant, curative effects on the mood
are negligible, unless cognitive learning is exceptionally successful.
Even though positive, the influences on mood for this extreme
case are quite limited. With T 0 constant, the mood stabilizes after
healing interventions and remains roughly constant.
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This Case Study exemplifies the effect of prolonged healing
interventions. When just between-system adaptations are opera-
tive, these simulations predict that the virtual subject’s mood con-
tinues to worsen in spite of therapeutic events. When just within-
system adaptations are operative, the predicted mood stabilizes as
a consequence of healing periods.

CASE STUDY 3: ALLOSTATIC STATE TRAJECTORY DURING ALTERNATIVE
MEDICAL TREATMENTS
The profile in Figures 6 and 7 present a different type of healing
intervention than in Case Study 2. At each of the simulated times
t ∈ {1920, 1960, 2000, 2040, 2280, 2320, 2360, 2400} [hours], a 15 h
H event is activated. This is intended to emulate two 5 day healing
periods during which the virtual subject undergoes four medita-
tion practices. The benefit of each practice lasts for 15 h, and the
two healing periods are 10 days apart. Other than H event dura-
tions and activation times, all the parameters defining this case
study are the same as in Case Studies 1 and 2.

During the first period of meditation, ωS , ωP , and ωD

strongly adjust. The enduring positive changes are additionally
expanded after the second period of meditation. In Evaluation
1, T decreases before meditation, increases during meditation,
and finally decreases again afterward. There is an upswing of T S

when H is active. T 0 initially increases, becomes constant after
the first healing session, and decreases after the second. After the
first period of meditation, M stops declining, and after it increases
with reduced oscillation. The average drug consumption signifi-
cantly decreases after the first healing period and further decreases
after the second. The abstinence index robustly increases during
the treatment. The endpoint of this evaluation corresponds to
~1 intake/day and ~97% abstinence, placing the virtual subject in
stage 1 or early stage 2 (47). In Evaluation 2,T variations are minor,
and T 0 is a wide bell-shaped curve whose maximal height corre-
sponds to the healing periods. Activations of H first lead to stabi-
lization of M, and then to its increase. The bell-shaped average drug
consumption reaches its maximum and starts to decrease when H
is active, finishing at ~12 intakes/day. The abstinence index starts
to increase shortly after the end of the treatment, reaching ~40% at
the end of the simulation. Evaluation 3 is comparable to Evaluation
1 but M stabilizes after the therapy rather than increasing, and its
final state is characterized by<1 intake/day and ~99% abstinence.

Additional details for Case Study 3 can be found in the Supple-
mentary Material. Figures S21 and S22 in Supplementary Material
show the fine details. Figures S23–26 in Supplementary Mater-
ial illustrate how different probabilities defining the influence of
H permanently impact the predicted consumption rates. Higher
probabilities lead the virtual subject to cease using the drug,
whereas lower probabilities lead the subject to advanced stage 1
or intermediate stage 2. The same sets of probabilities are tested
when T S is constant (Figures S27–30 in Supplementary Material)
and when T 0 is constant (Figures S31–34 in Supplementary Mate-
rial). For T S constant, the virtual subject always gets to its satiety
consumption rate, and after the treatment M increases. For T 0

constant, M tends to become constant after the therapy and its
variations become smaller as the probability becomes higher.

Case study 3 displays how phasic healing interventions increase
the mood of the virtual addict. This increase becomes very

conspicuous while healing signals have high effectiveness. Also,
when T S is constant, mood increases as a direct correlation of
healing success. With T 0 constant, after healing interventions the
mood stabilizes and becomes approximately constant.

This case study exemplifies the effect of brief healing inter-
ventions that follow one another at short intervals. When just
between-system adaptations are operative, these simulations pre-
dict that the virtual subject’s mood increases as a result of curative
events. When just within-system adaptations are operative, the
predicted mood stabilizes but does not improve after healing
periods.

DISCUSSION
The computational framework for allostasis presented above
unites and elaborates two earlier formal models (8, 12). The first
relies on a closed-loop representation of the pharmacokinetics,
the pharmacodynamics, and a decision-making process delin-
eating future cocaine consumption in rats (8). The second is a
dynamical system model that encompasses neuropsychological
and cognitive elements to mimic human occurrences of nat-
ural recoveries (12). The allostatic theory of addiction comprises
within-system and between-system neuroadaptations that influ-
ence the brain’s reward system: the former by a direct impact, and
the latter by means of antireward system activations. The function
of these adaptations is to balance the hedonic state of the addict
and to provide the organism with a reasonable operational exis-
tence. Manifestations of the allostatic state come through mood
alterations (2, 7).

The present article is an exploratory instance of knowledge
repository (KR) modeling for addiction (48) which investigates
cognitive correlates of the allostatic theory. A KR model comprises
a collection of empirical observations that are mathematically
translated and unified to predict the natural course of an entity
(48). This class of models promotes the identification of plausible
hypotheses which, if experimentally tested, could provide perti-
nent knowledge to further improve the computational framework.
The repetition of this investigative process initiates a hypothesis-
driven sequence of experiments supporting translational research
(49). The present model assembles building blocks of neuropsy-
chology, cognition, and behavior into a multiscale computational
framework aiming to facilitate rational entailments of the allostatic
theory.

The computational description of a complex phenomenon
such as drug use and abuse requires finding a compromise between
two desirable but incompatible objectives. On the one hand, the
biological components defining the model embrace a simplified
ontology of addiction, and on the other hand, the mathematical
features of the framework include a sizable number of elements
and parameters making the model underconstrained. Moreover, a
useful formal system should suggest testable hypotheses to further
advance the investigated field. These perspectives are considered
herein.

BIOLOGICAL CONJECTURES AND LIMITATIONS
The simulations discussed in this investigation represent arche-
typal patterns of drug-seeking including transitions from
recreational to heavy use, and rehabilitation. They express the
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FIGURE 6 | Case Study 3 (cognitive weights and reward components).
Simulations of virtual behavior for cigarette consumption over a period of
160 days. Cigarettes are available on the fifth day. Results are the average of
100 runs. Evaluation 1 simulates bothT S andT 0 as time-dependent processes.
T S is constant and T 0 time-dependent in Evaluation 2, T S is time-dependent
and T 0 constant in Evaluation 3. In all evaluations, the recovery process H is

activated at t ∈ {1920, 1960, 2000, 2040, 2280, 2320, 2360, 2400} [hours] (in
light pink) and stays active for 15 h (dark pink). (A1–A3) show the evolution of
cognitive weights ωS , ωP , and ωD ; and (B1–B3) the progression of T, T 0, and
T S. The shades correspond to 95% simulation envelopes. The time-scales are
hours for (A1–A3), and minutes for (B1–B3). Further details of these
simulations are reported in Figures S21 and S22 in Supplementary Material.
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FIGURE 7 | Case Study 3 (mood and health state assessments).
Simulations of virtual behavior for cigarette consumption over a period
of 160 days. Cigarettes are available on the fifth day. Results are the
average of 100 runs. Evaluation 1 simulates both T S and T 0 as
time-dependent processes. T S is constant and T 0 time-dependent in
Evaluation 2, T S is time-dependent and T 0 constant in Evaluation 3. In
all evaluations, the recovery process H is activated at t ∈ {1920, 1960,

2000, 2040, 2280, 2320, 2360, 2400} [hours] (in light pink) and stays
active for 15 h (dark pink). (A) shows the evolution of the subject’s
mood M ; (B) the average number of drug intakes; and (C) the
abstinence index. The gray shades correspond to 95% simulation
envelopes. The time-scales are minutes for (A), and days for (B,C).
Further details of these simulations are reported in Figures S21 and
S22 in Supplementary Material.

comorbidity between addiction and mood disorders for an addict
vulnerable to both reward and antireward system neuroadap-
tations. As drug intake proceeds, the model estimates a steady
decrease in the addict’s mood that increasingly oscillates until
the virtual subject reaches the satiety rate of drug consump-
tion. This computational model also suggests a possible remission
of the individual’s healthy state as a consequence of cognitive
adjustments induced by conventional or alternative treatments.
The model predicts a contraction in the addict’s negative mood
tendency and fluctuations while solely reward system neuroad-
aptations influence the hedonic valence of the individual. This
rigidity endures during healing interventions as the model pre-
dicts stabilization of the subject’s mood, rather than its increase.
When the unique source of neuroadaptations affecting the brain’s
reward system relies on the antireward system, the model predicts
a noteworthy negative deflection of the subject’s mood during
the first number of drug intakes. The model also predicts that
neuroadaptations occurring during healing periods, and that are
uniquely induced by the antireward system, empower the indi-
vidual with the possibility to regain a healthy mood state. These
simulations also suggest that the satiety rate of drug consump-
tion is reached more rapidly when the individual expresses only
antireward system adaptations.

An important biological limitation of this model resides in the
omission of mechanisms responsible for the increase of pharma-
codynamic tolerance, which arises when receptors or second mes-
sengers are blunted by drugs such as alcohol or opiates (50). One
approach to overcome this shortcoming can be found in the expan-
sion and incorporation of a cellular and molecular scale within the
model. Such elaboration could also enhance the computational
framework with a greater descriptive ability for diverse classes of
drugs. For nicotine dependence, a suitable candidate lies in a pre-
viously presented KR model which describes how dopaminergic
signaling in the VTA increases through nicotine intake and influ-
ences synaptic plasticity in the dorsal striatum, making cigarette-
smoking compulsive (51). A complementary candidate resides
in a model describing how variations of extracellular levels of
dopamine and glutamate within the brain’s reward system impact
the virtual subject’s likelihood of drug consumption (52).

The discussed model could be further elaborated to con-
sider alcohol dependence and treatment (53); to incorporate ele-
ments related to medical conditions that occur frequently together
with drug abuse, such as posttraumatic stress disorder, atten-
tion deficit hyperactivity disorder, and schizophrenia (54); and
to include components of genetic regulatory networks pertinent
to addiction (55).
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THE MODEL’S HIGH-DIMENSIONALITY
A KR model is inclined toward a high-dimensionality due to
a large number of descriptive variables since its objective is to
describe the studied phenomenon as comprehensively as possible.
The predictions presented in this investigation rely on the high-
dimensional dynamical model shown in Figure 1 that comprises
21 time-dependent biological processes translated into the same
number of mathematical expressions. In addition, there are 71
parameters, the setting of which can dramatically affect the model’s
behavior. Such high-dimensionality could simulate an assortment
of dynamics larger than the ones expressed by living creatures,
consequently limiting the model’s predictive power. The natural
processes included in the presented computational framework are
sizable, yet their descriptions are determined conservatively. For
instance, the processes comprising the neuropsychological scale of
the model have limited domains of definition which facilitate their
tractability. These restricted domains reflect biological plausibility
and ease the sensitivity analysis (56), a necessary step toward the
qualitative validation of the model.

Another attempt at mathematical moderation resides in the
definition of healing interventions. The same mathematical def-
inition used with different calibrations to mimic conventional
and alternative cures was intentionally deployed as a lower-
bound estimation of real-life cleansing episodes. In fact, the
minimal duration of nicotine replacement therapies ranges from
3 weeks to 3 months (44), and mindfulness meditation requires
4 weeks of training to effectively influence regions surrounding
the ACC of humans (57). Even though broadly delineated and
similarly defined, these healing emulations provisionally advo-
cate that for some nicotine addicts short interventions closely
spaced in time (e.g., meditation episodes) have a more benefi-
cial health impact on the brain’s cognitive substrate than longer
interventions (e.g., nicotine patches). This conjecture is sup-
ported by a recent translational study where memories related
to drug consumptions are triggered at different times to facili-
tate their extinction and decrease heroin craving in recovering
humans (58, 59). The simulated healing processes also corrob-
orate a recent cohort study debating how nicotine replacement
therapies may not be the universal solution to attain long-term
smoking abstinence (60).

IMPLICATIONS FOR TREATMENTS
This article provides formal arguments, conditional upon the
validity of the hypotheses defining the computational framework,
in favor of a stronger consideration of the addict’s cognitive state
evolution throughout the treatment process. In particular, this
investigation suggests that higher rates of rehabilitation from drug
addiction in humans can be reached by combining medical thera-
pies that employ pharmaceutical drugs and counseling along with
non-conventional treatments.

Several pharmacotherapies are available for smoking cessation,
as for example nicotine in various forms (gums, patches, inhalers,
tablets) and antidepressant drugs (44). Clinical studies show that
these replacement therapies enhance the likelihood of rehabilita-
tion by restraining drug craving during abstinence. The escalation
of nicotine craving during smoking cessation is lower for therapies
involving the use of two medications rather than for monothera-
pies,where the former results in a higher cessation rate, respectively

of 54 and 45% (61). Non-pharmacological interventions included
in the therapy, such as behavioral counseling and personal support,
aim to further increase smoking cessation rates and are recognized
as primary components for the therapy’s success (62). Behavioral
counseling positively impacts cessation rates (63, 64) by providing
patients with coping skills effective in the reduction of withdrawal
symptoms (65), but is less significant in preventing relapse (66).
With respect to rehabilitation, the combination of pharmaceutical
drugs is not effective on all occasions. For smokers with low depen-
dence on nicotine and living in antagonistic social environments
(e.g., with a smoking partner) there is no significant difference in
success rates of therapies involving one or the combination of two
medications (65).

Behavioral counseling and personal support are instances of
behavioral-cognitive therapies: non-pharmacological interven-
tions which have flourished since the 1960s for the treatment of
depression and anxiety (67–69). A complementary category of
non-pharmacological interventions resides in mind-body prac-
tices, which include mindfulness meditation, guided imagery, and
relaxation (70). Both the definitions of behavioral-cognitive (69)
and mind-body (70) practices rely on the beneficial impact that
healthy cognitive states exert on the overall person’s well being.
A patient undergoing behavioral-cognitive therapy learns how to
recognize and manage real-life situations that are negatively evalu-
ated because of cognitive distortions,whereas mind-body practices
provide the patient with a more realistic awareness that decreases
irrational thoughts. In both cases the objective is to lead the patient
to healthier physical and psychological states.

Behavioral-cognitive practices have demonstrated their pos-
itive impact on smoking cessation (66, 71), and mind-body
techniques related to the treatment of nicotine addiction are
restrained by a shortfall of related investigations (72), even
though recent studies demonstrate their great potential. Pre-
liminary experimental support in favor of mindfulness medita-
tion as a practice decreasing relapse rates for post-rehabilitation
patients was provided in a study including 168 participants who
ceased the use of substances including alcohol, cocaine, and
methamphetamines (73).

The rational speculation that arises while considering phar-
macological and non-pharmacological healing practices suggests
that current therapies deploying one or multiple pharmacolog-
ical means along with counseling will raise their success rates
by uniting with alternative medical practices. The computational
framework presented in this investigation provides formal argu-
ments to endorse this conjecture as the allostatic state of an addict,
assessed through mood variations, is shown to improve because of
cognitive interventions provided by practices comparable to those
of conventional and alternative medicine.

If the predictions delivered by the computational model dis-
cussed in this investigation constitute a fair approximation to
describe how cigarette-smoking influences the allostatic state of a
human addicted to nicotine, then it is expected that an integrative
medicine approach to drug rehabilitation will provide higher ces-
sation rates and lower relapse rates than current therapies. Given
that the allostatic theory of addiction is not limited to the descrip-
tion of a particular substance of abuse, this prediction should apply
by extension also to addictive substances including heroin, alcohol,
and others.
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CONCLUDING REMARKS
The computational model presented in this article considers drug
addiction as a disease (74). Such viewpoint may lead to “increas-
ing alienation, stigmatization, and social distance” (75) of human
beings abusing drugs. Multi-leveled overlooks of addiction that
include biological/psychological/social (76), and even spiritual
(77) elements are suggested as potential candidates to restrain
such an undesirable possibility (78). Along these lines, the mul-
tiscale standpoint of the framework shown in Figure 1 aims to
promote a comprehensive understanding of addiction that pro-
vides prospect for recovery, which seems to occur more often
than commonly believed (79). The present investigation develops
a multiscale computational model to further explore the allostatic
theory of addiction (2) in terms of a KR model (48) in align-
ment with the exploratory review in Ref. (80), and aims to engage
hypothesis-driven research (49) for addiction and allostasis. Such
an approach can facilitate the detection of ambiguous knowl-
edge that requires future biological and computational explo-
ration in order to better understand this disease. The framework
presented in this article supports the view that integrative med-
icine can be an effective approach to improve treatment of drug
addiction.
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