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Autism spectrum disorders (ASDs) are complex, heterogeneous disorders caused by an
interaction between genetic vulnerability and environmental factors. In an effort to better
target the underlying roots of ASD for diagnosis and treatment, efforts to identify reli-
able biomarkers in genetics, neuroimaging, gene expression, and measures of the body’s
metabolism are growing. For this article, we review the published studies of potential bio-
markers in autism and conclude that while there is increasing promise of finding biomarkers
that can help us target treatment, there are none with enough evidence to support routine
clinical use unless medical illness is suspected. Promising biomarkers include those for
mitochondrial function, oxidative stress, and immune function. Genetic clusters are also
suggesting the potential for useful biomarkers.

Keywords: biomarker, autism spectrum disorders, epigenetics, treatment targets, neuroimaging, genetics

INTRODUCTION
Several neurodevelopmental disorders have complex genetic and
epigenetic features that lead to their phenotype and for some there
is no single genetic marker for the diagnosis; therefore, the diagno-
sis is made phenotypically as in schizophrenia, ADHD, and autism
spectrum disorder (ASD). While phenotypic characterization of
neurodevelopmental disorders is an integral part of advances in
clinical practice and research, a given phenotype may arise from a
diverse set of biochemical processes (especially when the disorder
is caused by numerous genetic and epigenetic factors). Therefore,
the treatment of a “phenotypic diagnosis” with a specific drug or
intervention might be extremely effective for one “phenotypically
characterized” individual with a given set of genetic and/or epi-
genetic biomarkers, but completely ineffective for another with
a different pattern of biomarkers. An important goal of ongo-
ing research in ASD, therefore, is to more precisely identify the
many different abnormal genetic and epigenetic processes that
underlie the phenotype of the disorder. This might allow indi-
viduals with ASD to be characterized into subsets with certain
biomarker profiles that would respond more favorably to specific
treatments. It also has the potential to elucidate the abnormal
physiology that leads to autism, which could improve the under-
standing of the disorder and lead to earlier diagnosis and more
targeted treatments.

A significant challenge in identifying biomarkers in ASD is that
biomarkers may reflect genetic and neurobiological changes or
epigenetic (broadly defined, see below) processes that may be
active only during particular periods of time and do not define
the disorder, only the process that led to it. In addition, treatment
research should ideally include biomarkers that are believed to
predict improvements in clinical symptoms from clinical interven-
tions (1) to know if an intervention is altering or targeting an active
biomedical process that relates to response in the subject at that
time. Indeed, the National Institute of Mental Health (NIMH) has
changed how they fund clinical trials so that “trial proposals will
need to identify a target or mediator; a positive result will require

not only that an intervention ameliorated a symptom but also that
it had a demonstrable effect on a target, such as a neural pathway
implicated in the disorder or a key cognitive operation”(2).

Traditionally, research in psychiatry has been guided by DSM
symptom based diagnoses and selection criteria for clinical trials
were based on these symptom clusters. Biomarkers have not been
reliable or valid markers of response to treatment in past trials,
and this may be due to the wide variety of genetic and epige-
netic processes that underlie the DSM-based diagnosis. Recently,
progress in biomarker research has led to the commitment to the
Research Domain Criteria project (RDoC) as a basis for future
NIMH funding for biomarker based research (3, 4). The RDoC
goal is to define basic dimensions of functioning to be studied
across multiple units of analysis, from genes to neural circuits to
behaviors, cutting across disorders as traditionally defined. The
intent is to translate rapid progress in basic neurobiological and
behavioral research to an improved integrative understanding of
psychopathology and the development of new and/or optimally
matched treatments for mental disorders (5).

In this article, we review the literature on biomarkers for ASD
including genetic, epigenetic, brain based, and body metabolism
biomarkers. This is a huge area and this review is not intended to
be comprehensive. New potential biomarkers for ASD are being
identified every day so the list needs to be updated frequently.
We do extensively review the literature at the time of this writing,
report on methodologically sounds studies, offer summary tables,
and summarize what we know.

GENETIC BIOMARKERS
The literature supports a hereditary component in the susceptibil-
ity to ASDs, there are much higher concordance rates of ASDs in
monozygotic twins (92%) than dizygotic twins (10%), and a recent
estimate of the sibling recurrence risk ratio (λs) is 22 for autism.
Despite being highly heritable, ASDs show heterogeneous clini-
cal symptoms and genetic architecture, which have hindered the
identification of common genetic susceptibility factors. Although
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Goldani et al. Biomarkers in autism

previous linkage studies, candidate gene association studies, and
cytogenetic studies have implicated several chromosomal regions
for the presence of autism susceptibility loci, they have not con-
sistently identified and replicated common genetic variants that
increase the risk of ASDs other than some clearly genetic disorders
such as fragile X, tuberous sclerosis, and RASopathies whose phe-
notypes meet the ASD category description (5). As autism is not a
single clinical entity, it can be viewed as a behavioral manifestation
of tens or perhaps hundreds of genetic and genomic disorders (6).
It has been estimated that there are over 500 distinct genetic loci
that may be related to ASD (7) (Figure 1).

In addition, recent research has shown that there are many epi-
genetic mechanisms that could account for hereditary influences.
A study by Hallmayer et al. (9) reports that the environment may
actually account for more of the etiology of autism than genetics.
Their study, the largest population-based twin study of autism that
used contemporary standards for the autism diagnosis, found that

heritability estimated at 38%, while shared environmental com-
ponent was 58% (9). Heritability of ASD and autistic disorder is
estimated to be approximately 50% (10).

Being one of the most familial psychiatric disorders, autism has
garnered inquiries about possible genetic biomarkers (11); how-
ever, progress has been slow until recently with the introduction of
genome-wide association studies (GWAS) and microarrays (12).
Research into the microbiological underpinnings of ASDs sug-
gests that it is not a monogenic disorder following Mendelian
tendencies, with a few studied individuals and families as notable
exceptions (11). In fact, the literature suggests that the risk of
developing autism is derived by variations across many genes,
none of which have been conclusively, definitively responsible for
ASDs although some individuals with single gene disorders such
as fragile X also meet the criteria for ASD.

Genome-wide association studies have identified, with replica-
tion, de novo variations that are strongly associated (with sufficient

FIGURE 1 | Signaling pathways and possible treatments
associated with ASD. Molecules whose mutations or polymorphisms
are associated with ASD are indicated in red. Stimulations and
inhibitions are indicated by red and blue arrows, respectively. Possible

treatments and their target molecules are indicated by red texts in
orange boxes. SynGAP1, which directly interacts with PSD-95, could
not be placed next to PSD-95 for simplicity. Figure as originally
published in Won et al. (8).
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Goldani et al. Biomarkers in autism

Table 1 | Genetic biomarkers in ASD (see text for references).

Neurexin 1 (NRXN1) deletion

7q11.23 duplication

15q11-13 duplication

16p11.2 duplication and deletion

SHANK 3

SHANK 2

SNC2A

CHD8

DYRKIA

POG2

GRIN2B

KATNAL2

CNTN4 deletion

CNTNAP2

5p14.1

CDH10

CDH9

MTHFR 677 >T

SEMA5A

TAS2R1

2q22.1

3p26.3

4q12

14q23

NLGN4

power) with ASDs (Table 1): deletions at the Neurexin 1 (NRXN1)
locus, duplications at 7q11.23, duplications at 15q11-13, and dele-
tions and duplications at 16p11.2. Earlier studies found rare,
functional mutations in genes encoding for NRXN1, SHANK3,
and SHANK2, all of which are proteins that affect the functioning
of synapses and have been linked to other, known genetic disorders
(12). In addition, whole exome sequencing verified by four reports
have found genetic mutations associated with autism including
SNC2A, CHD8, DYRKIA, POG2, GRIN2B, and KATNAL2 (13).

Studying particular genes in certain, recognized disorders with
social deficits, such as fragile X syndrome and tuberous sclero-
sis, may shed light on the genetic underpinnings of ASDs. This
strategy gives credence to the idea that ASD is the result of many
variations among genes that converge to a similar phenotype.
A prime example of implementation of such a strategy is with
contactin 4 (CNTN4), and its association with social and intel-
lectual disability in a recurrent deletion syndrome. Mutations in
the respective genes are identified in idiopathic ASDs. Similarly,
mutations in CNTNAP2 are linked to a variety of results, such
as language delay, functional connectivity abnormalities, selective
mutism, and anxiety. More importantly in the scope of ASDs, alter-
ations in CNTNAP2 are noted in consanguineous pedigrees (12).
Research shows an increased prevalence of ASDs in families that
are consanguineous (11).

In a study published by Nature in 2009, Wang and colleagues
completed a genetic analysis in a large number of ASD individu-
als and families, with a combined sample set of more than 10,000
subjects of European ancestry. They identified common genetic

variants on 5p14.1 that are associated with susceptibility to ASDs
and replicated these findings in separate analyses. The contribu-
tion of chromosome 5p14 to cell adhesion and its connection to
autism susceptibility supports the conclusion that specific genes
in this class help create the connectivity and structure of the brain
that ultimately leads to ASD (14). Besides the potential role of
the nearby CDH10 and CDH9 genes, pathway-based association
analysis lend further support to neuronal cell-adhesion mole-
cules in conferring susceptibility to ASDs, suggesting that specific
genetic variants in this gene class may be involved in shaping the
physical structure and functional connectivity of the brain that
leads to the clinical manifestations of ASDs (14).

Among the common polymorphisms found to be associ-
ated with autism risk, the methylenetetrahydrofolate reductase
(MTHFR) polymorphism is one of the most widely studied genetic
correlations with autism. The MTHFR 677C > T polymorphism
causes a reduction in enzyme activity, which results in higher
production of 5-formyltetrahydrofolate (5-FTHF) necessary for
DNA synthesis and repair along with lower 5-MTHF production.
The MTHFR 677C > T polymorphism causes decline of normal
enzyme activity to 35% (15). The MTHFR 677T-variant allele is
correlated with a 2.79-fold increased risk for autism. However,
this study also found that MTRR 66A and SHMT 1420T alleles
demonstrated protective roles against autism risk (16). MTHFR
also has a strong interaction with maternal folic acid intake before
and during pregnancy, which is associated with autism risk. Chil-
dren with high autism risk whose mothers carried MTHFR 677
TT allele and were reported taking prenatal vitamins had fewer
diagnoses of autism than the children whose mothers with the
same allele and did not take prenatal vitamins (17).

In several GWAS (14, 18–20), four genes have been associated
with ASDs. These genes, cadherin (CDH9), cadherin 10 (CDH10),
semaphorin 5A (SEMA5A), and taste receptor, type 2, member 1
(TAS2R1), are found on chromosome 5p14, which regulates axon
growth and cell adhesion. While gene networks could not be estab-
lished from the small number of genes, these findings do suggest
that these genes and the dysregulation of synaptic connection may
be a key feature in ASDs (21).

Griswold and coworkers found a significantly higher burden
in the number and size of deletions carried by ASD individu-
als when compared with controls (22). Among the copy-number
variations (CNVs) identified were several that overlapped with
well-established autism-associated regions and candidate genes.
They isolated four large, novel deletions on 2q22.1, 3p26.3, 4q12,
and 14q23 that include new genes and regions linked to ASDs. Scat-
tered findings related to NLGN4 and autism susceptibility occur
across cultures. In the Chinese ASD cases, there were no significant
findings regarding SNPs along NLGN4 gene and autism risk (23),
yet in Greek ASD cases, nine nucleotide changes in NLGN4X are
found to be associated with autism (24).

Copy-number variations has unveiled the overexpression of
rare, de novo structural variations in the genome of simplex fam-
ilies (families which have one affected offspring) when compared
to families with multiple affected offspring, and especially con-
trol families. Furthermore, these results have been replicated in
later studies, bolstering the confidence in which discoveries can
be made about genetic ties with common diseases and autism
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(12); however, de novo CNVs have been found in only 5–10% of
researched subjects, and thus, do not make up the majority of
affected, researched individuals. Despite this finding, it seems as
though large (>100 kb), multigenic de novo CNVs are the most
indicative of ASD risk at this time.

The genetic component of a disorder can be transmitted or
acquired through de novo (“new”) mutations. A study based on
a 343 family subset of the Simons Simplex collection did not
find significantly greater numbers of de novo missense muta-
tions in affected versus unaffected children, but gene-disrupting
mutations (nonsense, splice site, and frame shifts) were twice as
frequent (59 versus 28) (25). They found that the father is more
frequently the parent of origin for de novo mutations than the
mother (50/17) for single nucleotide variants (SNVs). Parental
age also appears to play a role in mutation rate. A study published
in Nature found that the rate of de novo SNVs increases with pater-
nal age (p= 0.008) and that paternal and maternal ages are highly
correlated (p < 0.0001) (26). Overall these data demonstrate that
non-synonymous de novo SNVs, and particularly highly disrup-
tive nonsense and splice-site de novo mutations, are associated
with ASD.

Several companies are marketing genetic testing for autism
based on clusters of genes with a strong clustering for ASD risk
(27, 28). In the future, there may be biomarkers that can pinpoint
for high risk for ASD diagnosis. For example, a mother who may
be high risk for immune dysfunction leading to ASD in a second
child once the first child has ASD (29) or the increase in the Akt-
mTOR pathway, which can be seen in fragile X syndrome and in
other ASD subtypes (30).

EPIGENETICS
Considerable symptom severity differences within ASD-
concordant monozygotic twins, strongly implicates a role for
non-genetic epigenetic factors (31). Epigenetics refers to the study
of heritable changes in gene activity that are not caused by changes
in the DNA sequence; it also can be used to describe the study of
stable, long-term alterations in the transcriptional potential of a
cell that are not necessarily heritable. Epigenetic changes in ASD
occur through methylation, histone modification (31), chromatin
remodeling, transcriptional feedback loops, and RNA silencing
(32). Processes in the gene× environment interaction that influ-
ence gene expression include metabolic processes such as oxidative
stress, mitochondrial function, methylation, immune function,
and inflammation that are byproducts of influences such as the
mothers and fathers immune systems, environmental toxicants,
and diet to name a few. This section will review these epigenetic
influences associated with ASD.

Studies show that DNA methylation differences can occur in
many loci including AFF2, AUTS2, GABRB3, NLGN3, NRXN1,
SLC6A4, UBE3A (31), the oxytocin receptor (33), MeCP2 (a
cause for most cases of Rett syndrome) in the frontal cor-
tex (34), and changed chromatin structure in prefrontal cortex
neurons at hundreds of loci (35). The severity of the autis-
tic phenotype is related to DNA methylation at specific sites
across the genome (31). Environmental and physiological influ-
ences are important factors accounting for interindividual DNA
methylation differences, and these influences differ across the

genome (36). The following sections describe markers for meta-
bolic pathways and environmental influences that can effect
epigenetic changes.

METABOLIC BIOMARKERS
There are no autism-defining, metabolic biomarkers, but examin-
ing the biomarkers of pathways associated with ASD can point
to potentially treatable metabolic abnormalities and provide a
baseline that can be tracked over time. Each child may have
different metabolic pathologies related to SNPs, nutrient deficien-
cies, and toxic exposures. Examples of metabolic disorders that
can lead to an autistic-like presentation include phenylketonuria
(PKU) (37), disorders of purine metabolism (38), biotinidase defi-
ciency (39), cerebral folate deficiency (40), creatine deficiency (41),
and excess propionic acid (which is produced by Clostridium)
(42, 43).

A recent review assessed the research on physiological abnor-
malities associated with ASD (44). The authors identified four
main mechanisms that have been increasingly studied during the
past decade: immunologic/inflammation, oxidative stress, envi-
ronmental toxicants, and mitochondrial abnormalities. In addi-
tion, there is accumulating research on the lipid, GI systems,
microglial activation, and the microbiome, and how these can also
contribute to generating biomarkers associated with ASD (45, 46).

Pathways are interconnected with a defect in one likely leading
to dysfunction in others. Many metabolic disorders can lead to
endpoints such as impaired methylation, sulfuration, and detox-
ification pathways and nutritional deficiencies. Mitochondrial
dysfunction, environmental risk factors, metabolic imbalances,
and genetic susceptibility can all lead to oxidative stress (47),
which in turn leads to inflammation, damaged cell membranes,
autoimmunity (48), impaired methylation (49), cell death (48),
and neurological deficits (50). The brain is highly vulnerable to
oxidative stress (51), particularly in children (52) during the early
part of development (47). As environmental events and metabolic
imbalances affect oxidative stress and methylation, they also can
affect the expression of genes.

Several studies have detected altered levels of a large collection
of substances in body-based fluids from ASD subjects compared to
controls (e.g., serum, whole-blood, and CSF) (53). These findings
encompass either of two main disease-provoking mechanisms: a
CNS disorder that is being detected peripherally [e.g., serotonin
and its metabolites, sulfate (54), low platelet levels of gamma-
aminobutyric acid (GABA) (55), low oxytocin (which affects social
affiliation) (56), and low vitamin D levels (57, 58)] or a systemic
abnormality that has repercussions in the brain (59).

Serotonin in the brain promotes prosocial behavior and cor-
rect assessment of emotional, social cues (60) and can contribute
to immune abnormalities (61). Oxytocin can affect social affilia-
tion and social communication deficits (62). Vitamin D has many
effects including regulating serotonin synthesis, reducing mater-
nal antibodies that attack the fetal brain, modulating oxytocin
synthesis, lowering GI inflammation by lowering gut serotonin
(58), DNA repair, anti-inflammatory actions, anti-autoimmune
activities, antiseizure activity, increase in regulatory T cells, mito-
chondrial protection, stimulation of antioxidant pathway (63),and
increasing glutathione (64).
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OXIDATIVE STRESS MARKERS
Oxidative stress can be detected by studying antioxidant status,
antioxidant enzymes, lipid peroxidation, and protein/DNA oxi-
dation, all of which have been found to be elevated in children
with autism (Table 2). Different subgroups of children with ASD
have different redox abnormalities, which may arise from vari-
ous sources (65). A recent meta-analysis from 29 studies of blood
samples from subjects with ASD shows that reduced levels of glu-
tathione, glutathione peroxidase, methionine, and cysteine along
with increased levels of oxidized glutathione are statistically dif-
ferent in ASD (66). The level of antioxidants excreted in urine was
found to be significantly lower than normal in autistic children.
These findings correlated with the severity of the ASD (67).

Measurements of antioxidant status include measurement of
glutathione, the primary antioxidant in the protection against
oxidative stress, neuroinflammation, and mitochondrial damage
(68, 69). Glutathione is instrumental in regulating detoxification
pathways and modulates the production of precursors to advanced
glycation end products (AGEs) (70). Measuring reduced glu-
tathione, oxidized glutathione, or the ratio of reduced glutathione
to oxidized glutathione helps determine the patient’s oxidation sta-
tus. In many patients with ASD, the ratio of reduced glutathione
to oxidized glutathione is decreased, indicating a poor oxidation
status (71).

The enzyme glutathione peroxidase has been used as a marker
and is typically reduced. There are mixed results concerning the
enzyme levels of superoxide dismutase (SOD) (72). Other markers
for glutathione inadequacy include alpha hydroxybutyrate, pyrog-
lutamate, and sulfate, which can be assessed in an organic acid
test. Lipid peroxidation refers to the oxidative degradation of cell
membranes. There is a significant correlation between the severity
autism and urinary lipid peroxidation products (67), which are
increased in patients with ASD.

Plasma F2t-Isoprostanes (F2-IsoPs) are the most sensitive indi-
cator of redox dysfunction and are considered by some to be the
gold standard measure of oxidative stress (73). They are increased
in patients with ASD and are even higher when accompanied by
gastrointestinal dysfunction (73). F2t-isoprostanes (F2-IsoPs) can
be measured in the urine as well.

Urine 8-OHdG is biomarker for oxidative damage to DNA. It is
commonly used although there are confounding factors and intra
individual variations (74) and some researchers have reported that
the increases in urine 8-OHdG in patients with ASD is not signif-
icant. The increases in urine 8-OHdG did not reach statistical
significance (75).

Decreased levels of major antioxidant serum proteins trans-
ferrin (iron-binding protein) and ceruloplasmin (copper binding
protein) have been observed in patients with ASD. The levels
of reduction in these proteins correlate with loss of previously
acquired language (47) although there are mixed reviews of the
significance of this (66).

Plasma 3-chlortyrosine (3CT), a measure of reactive nitrogen
species and myeloperoxidase activity, is an established biomarker
of chronic inflammatory response. Plasma 3CT levels report-
edly increased with age for those with ASD and mitochondrial
dysfunction but not for those with ASD without mitochondrial
dysfunction (65).

Table 2 | Oxidative stress biomarkers in ASD (see text for references).

Glutathione – reduced/oxidized

Methionine

Cysteine

Organic acid test – alpha hydroxybutyrate, pyroglutamate, and sulfate

Plasma F2t-isoprostanes (F2-IsoPs)

Urine8-OHdG

Transferrin

Ceruloplasmin

Plasma 3-chlortyrosine (3CT)

3-Nitrotyrosine (3NT)

Table 3 | Mitochondrial function biomarkers in ASD (see text for

references).

Lactate

Pyruvate

Lactate/pyruvate ratio

Carnitine (free and total)

Alanine

Quantitative plasma amino acids

Ubiquinone

Ammonia

CD

AST/ALT

CO2

Creatine kinase

Aspartate aminotransferase

Serum creatine kinase

3-Nitrotyrosine (3NT) is a plasma measure of chronic immune
activation and is a biomarker of oxidative protein damage and
neuron death. This measure correlates with several measures of
cognitive function, development, and behavior for subjects with
ASD and mitochondrial dysfunction but not for subjects with ASD
without a mitochondrial dysfunction (65).

MITOCHONDRIAL DYSFUNCTION MARKERS
Mitochondrial dysfunction is marked by impaired energy pro-
duction. Some children with ASD are reported to have a spectrum
of mitochondrial dysfunction of differing severity (44) (Table 3).
Mitochondrial dysfunction, most likely an early event in neurode-
generation (76), is one of the more common dysfunctions found
in autism (77) and is more common than in typical controls (78).
There is no reliable biomarker to identify all cases of mitochondrial
dysfunction (79). It is possible that up to 80% of the mitochon-
drial dysfunction in patients with both ASD and a mitochondrial
disorder are acquired rather than inherited (44).

Mitochondrial dysfunction can be a downstream consequence
of many proposed factors including dysreactive immunity and
altered calcium (Ca2+) signaling (80), increased nitric oxide and
peroxynitrite (68), propionyl CoA (81), malnutrition (82), vitamin
B6 or iron deficiencies (83), toxic metals (83), elevated nitric acid
(84, 85), oxidative stress (86), exposure to environmental toxicants,
such as heavy metals (87–89), chemicals (90), polychlorinated
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biphenyls (PCBs) (91), pesticides (92, 93), persistent organic pol-
lutants (POPs) (94), and radiofrequency radiation (95). Other
sources of mitochondrial distress include medications such as val-
proic acid (VPA), which inhibits oxidative phosphorylation (96)
and neuroleptics (97, 98).

Markers of mitochondrial dysfunction include lactate, pyruvate
and lactate-to-pyruvate ratio, carnitine (free and total), quantita-
tive plasma amino acids, ubiquinone, ammonia, CD, AST, ALT,
CO2 glucose, and creatine kinase (CK) (44). Many studies of ASD
report elevations in lactate and pyruvate, others report a decrease
in carnitine, while others report abnormal alanine in ASD patients
(44) or elevations in aspartate aminotransferase and serum CK
(99). Increases in lactate are not specific and may only occur during
illness, after exercise or struggling during a blood draw (100).

Rossignol and Frye (44) recommend a mitochondrial function
screening algorithm. This includes fasting morning labs of lactate,
pyruvate, carnitine (free and total), acyl carnitine panel, quanti-
tative plasma amino acids, ubiquinone, ammonia, CK, AST/ALT,
CO2, and glucose (44). The interpretation of such a panel and the
indications for specific treatments has not yet been established.

METHYLATION
The methylation pathway provides methyl groups for many func-
tions, including the methylation of genes, which can result in
the epigenetic changes of turning genes on and off (Table 4).
This transfer occurs when S-adenosylmethionine (SAM) donates
a methyl group and is transformed to S-adenosylhomocysteine
(SAH). SAH can be transferred to homocysteine, which can either
be re-methylated to methionine or be transferred by the sulfu-
ration pathway to cysteine to create glutathione. With increased
oxidative stress, SAH might be diverted away from the methylation
pathway to the sulfuration pathway in order to make more glu-
tathione. This will result in less methionine and less methylation
ability.

Impaired methylation may reflect the effects of toxic exposure
on sulfur metabolism. Oxidative stress initiated by environmental
factors in genetically vulnerable individuals, can lead to impaired
methylation and neurological deficits (49) both of which may
contribute to the manifestation of autism (71).

A marker of methylation dysfunction is decreased SAM/SAH
ratio in patients with ASD. Fasting plasma methionine decreases
since through SAM it is the main methyl donor. Fasting plasma cys-
teine, a sulfur containing amino acid is the rate-limiting step in the
production of glutathione and is significantly decreased. Plasma
sulfate is decreased, which may impair detoxification pathways.
Homocysteine is generally increased, but the studies are mixed
(66). Vitamin B12 and folate are required for the methylation path-
way. The MTHFR genetic SNP is reported to heavily influence the
methylation pathway (66).

IMMUNE DYSREGULATION
Cytokine evaluation
Chronic inflammation and microglia cell activation is present
in autopsied brains of people with ASD (101, 102) (Table 5).
Factors that increase the risk of activating brain microglia
include traumatic brain injury (TBI) (103) reactive oxygen
species (104) and a dysfunctional blood brain barrier (105).

Table 4 | Methylation biomarkers in ASD (see text for references).

S-adenosylmethionine (SAM)/S-adenosylhomocysteine (SAH)

Homocysteine

MTHFR

Table 5 | Immune biomarkers in ASD (see text for references).

Subjects with ASD

TGF-beta

CCL 2

CCL 5

IGM

IgG

Th1/Th2

Neopterin

S110B protein

Anti ganglioside M1 antibodies

Antineronal antibodies

Serum anti-nuclear antibodies

BDNF

Mothers of subjects with ASD

IFN-Y

Il-4

Il-5

Il-6

The blood brain barrier can be compromised by oxidative
stress (106), acutely stressful situations (107), elevated homocys-
teine (108), diabetes (109), and hyperglycemia (110). Cytokines
can pass through a permeable blood brain barrier and start
this process (111). Hence, cytokines can serve as a marker
of the immune dysregulation, which can further compli-
cate ASD.

Irregular cytokines profiles are found in ASD (112, 113) and
elevations in plasma cytokines are reportedly correlated with
regressive onset and severity of autistic and behavioral symptoms
(113). Altered pro-inflammatory cytokines, complement proteins,
chemokines, adhesion molecules, and growth factors are corre-
lated with ASD. More specifically, altered TGF-beta, CCL2, and
CCL5, IgM and IgG classes of immunoglobulin circulating levels
are linked with a worsening of behavioral scores (114). An imbal-
ance in Th1/Th2 has are found as well, which may play a role in
the pathogenesis of autism (115).

Neopertin as a urine marker of immune dysfunction and activa-
tion. Neopterin is associated with increased production of reactive
oxygen systems and can be considered as a measurement of the
oxidative stress elicited by the immune system. Neopterin levels
are found to be significantly higher in children with autism than
in the comparison subjects (116).

Increased S100B protein, a calcium binding protein produced
primarily by astrocytes, is a biomarker reflecting neurologi-
cal/brain damage found elevated in ASD and correlated to autistic
severity (117).
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AUTOIMMUNITY AND MATERNAL ANTIBODIES
Autoimmune autistic disorder is proposed as a major subset
of autism (118), and autoimmunity may play a role in the
pathogenesis of language and social developmental abnormali-
ties in a subset of children with these disorders (119). There are
many autoantibodies found in the nervous system of children with
ASD who have a high level of brain antibodies (120, 121). These
can be measured as biomarkers in this subset of ASD patients.
The anti ganglioside M1 antibodies (122), antineuronal antibodies
(123), and serum anti-nuclear antibodies (123, 124) correlate with
the severity of autism. Other autoantibodies postulated to play
a pathological role in autism include: anti neuron-axon filament
protein (anti-NAFP) and glial fibrillary acidic protein (anti-GFAP)
(125), antibodies to brain endothelial cells and nuclei (119), anti-
bodies against myelin basic protein (126, 127), and anti myelin
associated glycoprotein, an index for autoimmunity in the brain
(128). BDNF antibodies were found higher in ASD (129), and low
BDNF levels may be involved in the pathophysiology of ASD (130).

Antibodies in patients with autism are found to cells in the
caudate nucleus (131), cerebellum (132, 133), hypothalamus and
thalamus (121), the cingulate gyrus (134), and to cerebral folate
receptors (135). Children with cerebellar autoantibodies had lower
adaptive and cognitive function as well as increased aberrant
behaviors compared to children without these antibodies (132).

MOTHER’S IMMUNE STATUS
Research studies indicate an association between viral or bacter-
ial infections in expectant mothers and their ASD offspring (136,
137). Maternal antibodies cross the underdeveloped blood brain
barrier of the fetus (138) leading to impaired fetal neurodevel-
opment and long-term neurodegeneration, neurobehavioral, and
cognitive difficulties (139).

A maternal infection or immune response includes cytokines,
which affect aspects of fetal neurogenesis, neuronal migration
(140), synaptic plasticity, and stem cell fate (141). Elevated serum
IFN-γ, IL-4, and IL-5 were more common in women who gave
birth to a child subsequently diagnosed with ASD (142). Fetal
IL-6 exposure, especially in late pregnancy, leads abnormalities of
hippocampal structural and morphology, and decreased learning
during adulthood (139).

Some of the antibodies that cross the fetal developing blood
brain barrier recognize and attack the brain (138). The presence of
fetal brain protein antibodies in ASD can result in an inappropriate
approach to unfamiliar peers (143).

Braunschweig et al. developed a panel of clinically signif-
icant maternal autoantibody-related autoantibody biomarkers
with over 99% specificity for autism risk (144). This panel is
suggested to lead to an early diagnosis of maternal autoantibody-
related autism, allow for interventions that limit fetal exposure to
these antibodies and allow for early behavioral intervention.

DYSBIOSIS
When the gut becomes inflamed, it breaks down and becomes per-
meable, sometimes referred to as dysbiosis. Dysbiosis is reported to
be an upstream contributing factor to autoimmune conditions and
inflammation. Markers under consideration include circulating
antibodies against tight junction proteins, LPS, actomyosin (145)

Table 6 | Other potential biomarkers in ASD.

Glutamate

GABA

BDNF

RBC fatty acids

calprotectin (146), and lactoferrin (147). Dysbiosis was found in
25.6% of patients with ASD (148). It is proposed to have a direct
effect on the brain as it is a hypothesized source of inflamma-
tion (149–151) and autoimmunity (152, 153), possibly through
molecular mimicry (154). Diet is one source of dysbiosis (155).

AMINO ACIDS AND NEUROPEPTIDES
Platelet hyperserotonemia is considered one of the most consis-
tent neuromodulator findings in patients with ASD (Table 6). As
for other neuropeptides, a recent review reported approximately
15 components that are altered in ASD compared to controls (53).
Among them, interesting research has been done on glutamate,
GABA, BDNF, and dopamine and noradrenaline systems. A recent
study reported a positive correlation between severity of clinical
symptoms and plasma GABA levels in patients with ASD, support-
ing the idea of a disrupted GABAergic system (156). Additionally, a
similar grouping of substances measured in the urine is suggested
as a more convenient and less invasive way to draw information
on these patients (41).

FATTY ACID ANALYSIS
Abnormal fatty acid metabolism may play a role in the pathogene-
sis of ASD and may suggest some metabolic or dietary abnormali-
ties in the regressive form of autism (42, 157). There is evidence of a
relationship between changes in brain lipid profiles and the occur-
rence of ASD-like behaviors using a rodent model of autism (42).
Hyperactivity in patients was inversely related to the fluidity of the
erythrocyte membrane and membrane polyunsaturated fatty acid
(PUFA) levels (158). Imbalances of membrane fatty acid composi-
tion and PUFA loss can affect ion channels and opiate, adrenergic,
insulin receptors (159) and the modulation of (Na+K)-ATPase
activity (160). Analysis of red blood cell membrane fatty acids is
a very sensitive indicator of tissue status and may reflect the brain
fatty acid composition (161).

Seventeen percent of children with ASD manifest biomarkers
of abnormal mitochondrial fatty acid metabolism, the majority of
which are not accounted for by genetic mechanisms (162). Patients
with ASD had reduced percentages of highly unsaturated fatty
acids (163) and an increase in ω6/ω3 ratio (158).

ENVIRONMENTAL TOXICANTS
For environmental toxicant biomarkers, it is difficult to interpret
abnormal levels in ASD. For instance, a high burden of aluminum,
cadmium, lead, mercury, and arsenic was found in a subgroup
of a sample of over 500 patients with ASD (164). Other studies
have described decreased levels of some of these heavy metals in
urine and in hair samples, which may imply that the body is not
excreting the heavy metals adequately (41).

A systematic review of toxicant-related studies in ASD found
that pesticides, phthalates, PCBs, solvents, toxic waste sites, air
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pollutants, and heavy metals were implicated in ASD, with the
strongest evidence found for air pollutants and pesticides (165).

BRAIN FOCUSED BIOMARKERS
MAGNETIC RESONANCE IMAGING
Like other areas in psychiatry, new approaches are being devised
to tackle ASD in a “bottom-up paradigm” – that is, identifying
genetic or biological alterations, which are associated with the clin-
ical manifestations of symptoms. In neuroimaging, much progress
has been made toward understanding the condition, but only very
few observed biomarkers have sufficient evidence to suggest that
they might hold diagnostic or treatment significance.

One of the best-replicated brain findings from subjects with
ASD is an early-accelerated brain volume growth. The increase is
usually around 10%, peaking between 2 and 4 years of age fol-
lowed by a plateau (166). Head circumference (HC), an adequate
proxy for brain size, is being investigated for diagnostic relevance
for ASD (167). However, recent findings on HC in ASD show that
there might be an unrelated growth in HC in both patients and
controls. Thus, the abnormal overgrowth observed in older studies
might be because of a biased Center for Disease Control (CDC)
HC norm, which is commonly used as the control group (168).

Gray matter thickness and surface areas and white matter
integrity are also being studied. A general trend demonstrat-
ing increased gray matter thickness in subjects with ASD com-
pared to controls is observed with an age-dependent effect (166).
Even though there are studies correlating symptom severity with
altered thickness there are several limitations such as using a
cross-sectional approach and a small number of subjects that hin-
der clinical application (169). Likewise, diffusion tensor imaging
(DTI) studies on white matter connectivity are not yet conclusive
across studies.

Early studies using functional magnetic resonance imaging
(fMRI) focus on task specific cognitive networks (e.g., face recog-
nition, theory of mind, imitation, language processing, and proxies
for receptive behavior) (166). In these cognitive network studies,
individuals with ASD and controls perform a task while the fMRI
is monitored. More recently, researchers are investigating the con-
nectivity between these network and resting-state methods where
fMRI is obtained while a subject is at rest and not performing a
task. These more recent studies reveal a pattern that suggests less
activity in the brain areas that typically perform executive func-
tion tasks (such as organization or planning). This combination of
activity patterns in ASD is often called a “high noise-information
ratio,” supporting an excitatory/inhibitory imbalance theory of
ASD (170). Conversely, even though all these fMRI findings shed
light on the pathophysiology of ASD, they also are not mature
enough to translate into a reliable biomarker that can be used in
clinical practice.

ELECTROENCEPHALOGRAPHY
Aligned with the notion that ASD is an abnormal connectiv-
ity disorder, studies using electroencephalography (EEG) have
explored local changes in signal complexities in patients (171).
Some studies were able to detect abnormalities as early as 6 months
of age, suggesting an important tool for early detection and risk
group assessment (172). However, despite findings like multi-scale

entropy differences being proposed as an early diagnostic bio-
marker, EEG has not yet been established as a reliable tool for
diagnosis or to document clinical changes (173).

NEUROCHEMISTRY
Neuroimaging techniques also are used to monitor in vivo concen-
tration of substances in the brain, and include positron emission
tomography (PET), single photon emission tomography (SPECT),
and magnetic resonance spectroscopy (MRS). So far, the major-
ity of studies report abnormalities in several of neurotransmitter
networks and their respective metabolites (e.g., dopamine, GABA,
serotonin, glutamate, and N -acetyl-aspartate), varying from syn-
thesis, transport, and receptor activity in different regions of
the brain in the glutamate–glutamine system, in particular, there
appears to be either hyper (174) or hypoglutamatergic (175) states
depending on the brain region, which could be interpreted as
an excitatory increase relative to inhibition in key neural circuits
(176). In addition, studies pointing toward GABA alterations also
are accumulating, with findings of reduced levels of GABA in the
frontal lobes of subjects with ASD. Using MRS (177), corroborated
the histopathologic research on altered density and distribution of
the GABA receptors (178).

BIOMEDICAL INTERVENTIONS
There are no published studies of interventions for ASD that
use neuroimaging or genetic biomarkers in a prospective man-
ner to guide treatment. Biomedical interventions based on body
fluid/product biomarkers have been used in a small but grow-
ing numbers of well designed, published studies. Several recent
reviews summarize these (179–181).

FUTURE RESEARCH DIRECTIONS
A common feature of all prior studies of these putative biomarkers
is that most consist of small samples of patients, and therefore, do
not grasp the heterogeneity that characterizes ASD. Also, since they
mainly compare subjects with ASD to typically developing con-
trols, it is uncertain whether these biomarker profiles are unique to
ASD – they may be present in other neurodevelopmental disorders.
A promising new method that is designed to increase specificity of
biomarkers in ASD is the multiplex immunoassay, a method that
analyzes sets of biomarkers to create a diagnostic profile (182, 183).
Furthermore, advances in chromatographic and proteomic tech-
niques are also contributing to the progress of the field, allowing
easier assessment of several substances (184, 185).

Thus far, numerous studies examining a diverse set of potential
biomarkers have found a large number of genetic, imaging, and
metabolic tests that are abnormal in children with ASD compared
to control subjects. For most of these measures, it is not yet clear
if the abnormal biomarker is a contributing factor to the devel-
opment of ASD or a result of another underlying abnormality
(i.e., causal or merely associated). Not surprisingly, the conclusion
is that more studies are needed to further explore these possible
mechanisms individually. However, the future in the ASD research
might involve a broader view of these biomarkers, which might
hold more value in combination than in isolation. As a result of
new technological advances, it is possible to use a machine learn-
ing technique that is trained to identify complex patterns of data
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that can be applied to new individuals to make predictions (186).
A recent study pooled regional white and gray matter volumes
of whole-brain MRI scans in ASD subjects using this computer
algorithm program, known as super vector machine. As a result,
they could classify a new patient as having an ASD diagnosis or
not with a high true positive rate (187). Although exemplified
with neuroimaging, this approach could be generalized to other
biomarkers (53, 188). In other words, individually insignificant
biomarkers when analyzed together might generate a pattern of
clinical relevance like diagnosis, severity staging, or response to
treatment. These techniques might also be able to identify the most
relevant or most predictive biomarkers among the many candidate
biomarkers described above.

Although the maxim that “further studies are needed” still
holds, ASDs may be witnessing the emergence of clinically relevant
biomarkers in the near future.
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