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The progress of developing effective interventions against psychiatric disorders has been
limited due to a lack of understanding of the underlying cellular and functional mechanisms.
Recent research findings focused on exploring novel causes of psychiatric disorders have
highlighted the importance of the axonal initial segment (AIS), a highly specialized neu-
ronal structure critical for spike initiation of the action potential. In particular, the role of
voltage-gated sodium channels, and their interactions with other protein partners in a tightly
regulated macromolecular complex has been emphasized as a key component in the reg-
ulation of neuronal excitability. Deficits and excesses of excitability have been linked to
the pathogenesis of brain disorders. Identification of the factors and regulatory pathways
involved in proper AIS function, or its disruption, can lead to the development of novel inter-
ventions that target these mechanistic interactions, increasing treatment efficacy while
reducing deleterious off-target effects for psychiatric disorders.

Keywords: axonal initial segment, psychiatric disorder, neuronal excitability, neuroplasticity, signaling pathways,
RDoC

DISORDERS OF THE BRAIN
The human brain is known for its incredible complexity and het-
erogeneity. As such, it is susceptible to disorder and dysfunction,
which in and of themselves are vastly diverse, ranging from frank
physical lesions and trauma to complex changes in intracellu-
lar pathways (1). This extensive spectrum of brain disorders can
generally be divided into two categories: neurologic and psychi-
atric. Neurologic disorders are those with a focal cause: an isolated
traumatic, ischemic, neoplastic, or other insults. These include
conditions such as ischemic strokes and epilepsy, and are char-
acterized by a broadly robust understanding of the cause, if not
the probable treatments. Psychiatric disorders, on the other hand,
have classically been defined by the absence of an “organic lesion.”
Several of the major mood disorders such as depression, schiz-
ophrenia, and bipolar disorders fall under this category (2, 3).
Importantly, for much of the history of psychiatry, treatments for
such disorders have relied on empirical evidence. Physicians first
tried treatment that had“worked in the past,”and resorted to alter-
natives, also based on poorly generalizable empirical evidence, if
that treatment failed.

Current widely used treatments against psychiatric disorders
are fraught with mixed efficacy, poor patient tolerability, and high
rates of relapse. The Sequenced Treatment Alternatives to Relieve
Depression (STAR*D) study (4, 5), one of the largest studies of
treatment-resistant depression to date, reported that less than
half of the enrolled patients achieved remission with a level 1
treatment protocol. More troubling yet, patients who progressed

through later stages suffered progressively worse remission rates,
and a substantial minority remained resistant to all conventionally
used antidepressant treatments. For bipolar depression with psy-
chosis, a particularly difficult form of depression to combat, treat-
ment remains elusive. Conventional antidepressant medications,
as demonstrated in the systematic treatment enhancement pro-
gram for bipolar disorder (STEP-BD) study, can actually worsen
outcomes and induce shifts to manic/hypomanic states (6). Fur-
thermore, as demonstrated in the clinical antipsychotic trials of
intervention effectiveness (CATIE) study (7), even current effec-
tive frontline treatments for disorders such as schizophrenia come
with a myriad of side effects. These include significant weight gain,
suicidal ideation, changes in sex drive, and gynecomastia, leading
to a discontinuation rate of 74% in phase 1 of patient trials (8).

These observations and other small-scale clinical trials high-
light the need for new approaches to develop medications against
psychiatric disorders. The difficulty of managing treatment-
resistant depression, along with the severe side effects of conven-
tional psychiatric medications, underscores a need to understand
their underlying fundamental molecular and cellular mechanisms
of dysregulation, to allow the development of more targeted
interventions (9, 10).

FINDING MECHANISMS OF BRAIN DISORDERS AT THE
SINGLE NEURON LEVEL
The enduring shift away from conceptualizing mental disorders
as simple alterations of chemistry or receptor dysregulation, into
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a more global picture of combined genetic predisposition and
dysregulated signaling, has identified new opportunities for early
intervention (2, 3, 11). Genome-wide association studies (GWAS)
looking for highly heritable genes for mental disorders, as well as
monozygotic twin studies have provided researchers with sets of
candidate genes that could be used as springboards for further
in-depth studies (12). Advancement in biological tools, especially
in the fields of high-throughput screening and next-generation
sequencing, offers methods to rapidly filter thousands or even mil-
lions of candidate genes, compounds, or variants, vastly expanding
the repertoire of data at researchers’ disposal. In addition, ambi-
tious projects such as the NIH Brain Initiative and Human Con-
nectome Project (10) aim to develop tools to generate and visualize
such datasets, applying “big data” analytics to datasets far beyond
those typically studied in the laboratory.

That said, these top–down initiatives stress the need to under-
stand the mechanisms of psychiatric disorders from a bottom-up
perspective. Despite the advances made in identifying heritable
risks and genetic targets of psychiatric disorders, we currently
lack a fundamental understanding of their pathophysiology (13).
The need to transition from treatments focused on clinical symp-
toms (the “low-hanging fruit” of psychiatry) into treatments that
address their fundamental pathophysiology is urgent (2). There-
fore, we need an in-depth understanding of the neuron, its critical
components, and how their dysregulation can lead to psychiatric
disorders.

ROLE OF LARGE-SCALE GENETIC AND PROTEOMICS DATA IN
IDENTIFYING NEW TARGETS RELEVANT FOR PSYCHIATRIC
DISORDERS
The completion of the human genome map (14) was an important
milestone in scientific history because it enabled the association of
genetic variations with disease and the generation of technologies
such as transcriptomics and proteomics. Recently, several GWAS
investigating risk factors for a number of psychiatric disorders
have identified several significantly dysregulated genes encoding
proteins at the axonal initial segment (AIS) of neurons (15–18).
These novel findings emphasize the need to understand the phys-
iological function of the AIS, and the implications of AIS disorder
and dysfunction. Recent advances in human genetic research are
essential for the advancement of psychiatric research, but may
not be sufficient to understand every aspect of complex disease
spectrums (19, 20). New methods to integrate gene activity and
proteomic datasets, derived from biobank samples with associated
clinical metadata, promise to provide the field with powerful tools
to more precisely define the molecular phenotypes of psychiatric
illnesses (21). These new methods have already been applied to
neurodegenerative disorders such as Alzheimer’s disease (20). Fur-
thermore, systematic comparison between molecular and imaging
data represents a new and powerful approach that is expected to
define novel therapeutic targets and biomarkers of disease, and
drug response (22, 23). However, applying large-scale genetic and
proteomic approaches to psychiatric disorders requires bridging
the knowledge gaps that exist in our understanding of the roles
of AIS proteins at a single-cell level. The following sections will
detail the role of the AIS in normal, as well as dysregulated,
neurons.

MOLECULAR COMPOSITION OF THE AIS
In neurons, the AIS serves as a nexus, integrating information
received from dendrites and converting it to an electrical output
(Figure 1A). This highly regulated site, proximal to the soma and
delineating the beginning of the neuronal axon, is characterized
primarily by a high density of voltage-gated sodium (Nav) and
potassium (Kv) channels. These channels drive the initiation and
propagation of the action potential (AP), and interact with several
scaffolding and regulatory proteins to maintain electrical signaling
(24, 25). Through the expression of specific scaffolding proteins
and post-translational modification targeting, the AIS serves as
a diffusion barrier to maintain the asymmetric distribution of
axonal and dendritic proteins, ensuring that the neuron maintains
cellular and electrical polarity (26–29). Due to this critical role in
enforcing electrical signal directionality, disruptions or dysregula-
tion of the molecular composition of the AIS is severely deleterious
for proper neuronal function (30–32).

The AIS is highly enriched with several different isotypes of
Nav and Kv channels, including the isoforms Nav1.1, 1.2, and
1.6 (33). Nav channels are transmembrane proteins comprising
a large α subunit necessary and sufficient for Na+ conduction,
and regulatory β subunits that can alter gating properties and
localization (34). There are nine identifiable α-subunits, which
are composed of four domains, each with six membrane-spanning
segments (S1–S6), and multiple intracellular segments engaged in
protein–protein interactions (PPI). In the AIS, these α-subunits
exhibit distinct patterns of spatial and functional segregation (24,
35). The selective passage of Na+ into the cell is regulated via
voltage-dependent switching between open, closed, and inacti-
vated conformations. In contrast, Kv channels allow the outward
flow of potassium, producing a hyperpolarizing effect; they are
highly diverse, residing in 12 distinct classes and dozens of identi-
fiable isoforms (36). Similar to Nav, Kv channels exhibit voltage-
dependent conformational states that allow a regulated flux of K+

out of cells.
Many accessory proteins play a critical role in regulating both

the trafficking and function of Nav and Kv channels at the AIS
(Figure 2). One of the key scaffolding proteins that regulates local-
ization of Nav and Kv channels to the AIS is ankyrin-G, one of a
family of proteins that associate with several ion channels as well
as integral membrane proteins (37–39). Ankyrin-G interacts with
a cytoplasmic loop between domains II and III on Nav channels,
and C3, a C-terminal domain containing an ankyrin-G binding
loop on KCNQ2/3 Kv channels. Downregulation of ankyrin-G
expression through siRNA blocks the clustering of Na+ and K+

channels at the AIS (39–43). In addition, ankyrin-G recruits the
critical scaffolding protein β-IV-spectrin, a process dependent on
interactions between ankyrin-G and the spectrin repeat 15 (44),
which stabilizes the clustering of Nav at the AIS (45) and plays an
important role in the development of the nodes of Ranvier (46).
Ankyrin-G also associates with one of the L1CAM family of cell
adhesion molecules, neurofascin, which is alternatively spliced into
several biologically relevant isoforms, including NF186, NF180,
NF166, and NF155 (39). Crucially, the NF186 isoform is strongly
enriched at the AIS and nodes of Ranvier, where it interacts with
and stabilizes the Nav/ankyrin-G complex (47). FGF14, a mem-
ber of the intracellular FGFs (iFGF; FGF11-13), is a non-secreted
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FIGURE 1 | Anatomy of the neuron. The brain comprised functional units
called neurons, which process information both through electrical and
chemical signals. Communication between neurons occurs through release
of chemical mediators called neurotransmitters from synaptic boutons
located distally on presynaptic inputs, which diffuses through a microscopic
gap (the synapse) to receptors on the receiving (postsynaptic) neuron.
Neurons display both functional and spatial polarity, with multiple dendrites
receiving signals and typically a single axon for sending signals, both
emerging from a central soma or cell body. In contrast, communication
within a neuron occurs through transient changes in membrane voltages
(the action potential), which are generated primarily through movement of

ions through voltage-gated sodium (Nav) and potassium (Kv) channels.
These channels are highly enriched at the axonal initial segment (AIS), a
protein-dense region that functions as the site of action potential initiation.
Ion channels are also found in high concentrations at the nodes of Ranvier,
gaps in the insulating myelin sheath surrounding the axon that allow for
rapid, or salutatory propagation of action potentials. (A) Schematic of the
neuron. Excitatory postsynaptic potential (EPSP) and action potential (AP)
shown in red, at the synaptic bouton and the axon initial segment,
respectively. (B) Confocal microscopy of a primary rat hippocampal neuron,
labeled with anti-PanNav (red) and anti-MAP2 (blue) antibody visualizing
axonal and somatodendritic compartments, respectively.

neuronal protein (48, 49) and an integral component of the AIS
(50, 51). Through a direct interaction with the C-terminal tail of
the Nav channel α subunit, FGF14 controls channel gating and Nav
channel expression at the AIS. Loss of FGF14 function decreases
Na+ currents, reduces the expression of Nav channels at the AIS,
and impairs neuronal excitability, and deletion of the fgf14 gene in
rodents impairs excitability and neuroplasticity (52–54). In addi-
tion, postsynaptic density-93 (PSD-93) functions as a scaffolding
protein that mediates K+ channel clustering at the AIS. Knock-
down of PSD-93 in hippocampal neurons, as well as silencing
in PSD-93−/− mice, disrupts Kv1 channel clustering at the AIS
(55).

Additionally, several different kinases have been described to
localize or exert control at the AIS. Protein kinase casein kinase
2 (CK2), a serine–threonine kinase expressed early in neuronal
development (56), is highly enriched near the ankyrin-binding
motif of Nav1.2 channels, where its phosphorylation of several
serine residues (S1112, S1124, and S1126) is critical for interaction
with ankyrin-G (57). Knockdown of CK2 impaired its own clus-
tering at the AIS, as well as concentrations of ankyrin-G, pIκBα,
and Nav channels, suggesting a role for CK2 in axonal development
(58). Calmodulin-dependent kinase (CaMKII), a serine/threonine
kinase with diverse regulatory functions in ion transporter func-
tion, transcription, and cell death, is targeted to the AIS through
interaction with the CaMKII-binding motif of β-IV-spectrin. A C-
terminal truncation of β-IV-spectrin resulted in aberrant targeting
of CaMKII, while localization of ankyrin-G and spectrin at the

AIS was normal (59). Cyclin-dependent kinase (Cdk)-dependent
phosphorylation of the Kv2β subunit inhibits the interaction of
Kv2β with microtubule proteins. Inhibition of Cdk with the phar-
macological inhibitor roscovitine, enriched Kvβ2, Kv1, and the
microtubule plus end-tracking protein EB1 at the AIS (60). Addi-
tionally, glycogen synthase kinase-3 (GSK-3), a multifunctional
kinase important for neuronal survival and cellular response to
stress (61), establishes neuronal polarity through signaling into
pathways responsible for cytoskeletal organization and micro-
tubule stabilization (62). It has also been implicated in the devel-
opment of mood disorders including bipolar disorder, depression,
and schizophrenia (63, 64). In fact lithium, one of the first psy-
chotropic drugs identified and confirmed through clinical trials
to be effective against bipolar disorder, does so in part through
inhibition of GSK-3 (65–67). Although this mechanism is only
one of many that underlie lithium’s therapeutic potential, selec-
tive GSK-3 inhibitors, largely ATP competitors, have been reported
to have an antidepressant-like effect in mice (68–71), with mod-
ulation of the upstream PI3K–Akt–GSK-3 pathway also playing a
critical role (72, 73). Recently, it has been shown that inhibition of
GSK-3 reduces interactions between FGF14 and Nav channels, and
in hippocampal neurons, it induces redistribution of the FGF14–
Nav complex, causing a reversal of axo-dendritic polarity (74).
These observations suggest the existence of a GSK-3-dependent
signaling pathway in the maintenance of basal neuronal polar-
ity; a pathway that might be impaired or modified in psychiatric
disorders (75).
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FIGURE 2 | Schematic of the Nav macromolecular complex at the axonal initial segment (AIS). Voltage-gated sodium channels form a tightly regulated
complex with several critical regulatory and scaffolding proteins, including ankyrin-G, β4-spectrin, neurofascin, and intracellular fibroblast growth factors. PPI,
protein–protein interactions.

FUNCTIONAL ROLE OF THE AIS
There are several theories under consideration to explain why AIS
is the site of AP initiation. Initial studies identified the AIS as a site
of enrichment of Nav and Kv channels (76). However, later studies
suggest that the more hyperpolarized voltage-dependence of Nav
channels at the AIS better explains the low threshold of activation
than channel density (35, 77, 78). Other variable properties such
as gating kinetics and ion channel post-translational modification
may also underlie the low initiation threshold of the AIS through
alteration of open channel probabilities (79).

The heterogeneous composition of the AIS is main-
tained through segregation of ion channel subtypes into dis-
tinct microdomains with consequences for neuronal function.
Immunofluorescence experiments with Nav specific and Pan–
Nav antibodies have revealed three distinct domains of the AIS:
a proximal portion of the AIS enriched in Nav1.1 and 1.2 channel
subtypes, a medial portion with high levels of Kv1.2 channels, and
a long distal portion enriched in lower-threshold Nav1.6 chan-
nels (35, 80). This segregation might underlie the mechanism

behind the two forms of AP propagation: forward transmis-
sion through the action of Nav1.6 channels, and backpropaga-
tion through Nav1.2 channels. Confirming this hypothesis, the
removal of Nav1.2 channels from the AIS region abrogated AP
backpropagation (35).

The relative position of the AIS is cell type dependent and may
be an important player in functional heterogeneity among various
types of neurons (25, 81). Chronic depolarization of hippocampal
neurons with high extracellular potassium has been observed to
shift the components of the AIS, including Nav,β-IV-spectrin,neu-
rofascin, and FGF14, distally from the soma with a corresponding
decrease in firing rate (82). Furthermore, this shift was replicated
via photostimulation of channelrhodopsin-2 transfected neurons
and was reversible as well as frequency, interval, and Ca2+ depen-
dent (82). These observations suggest that the relative position of
the AIS along the axon may modulate neuronal excitability.

In summary, the diversity of AIS composition and localiza-
tion may contribute to the diversity and specialization of function
among different neuronal types. Disruption of AIS organization,
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due to injury, disease, or aging, can have profound effects for ner-
vous system function, and may explain the pathophysiology of a
variety of psychiatric disorders.

FUNCTIONAL RELEVANCE OF THE AIS FOR PSYCHIATRIC
DISORDERS
The AIS is undoubtedly a crucial hub for neuronal function. Thus,
dysfunction or dysregulation of AIS components predicts impor-
tant consequences for neuronal function and has been identified
as a causative component for many psychiatric and neurological
disorders (Table 1).

Mutations of Nav have been linked with various neurological
and psychiatric disorders. Dravet Syndrome is a form of severe
myoclonic childhood-onset encephalopathy caused by de novo
heterozygous mutations in Nav1.1 in which numerous epileptic
phenotypes are seen including febrile, absence, myoclonic, and

Table 1 | A selection of human disorders associated with

dysregulation of key AIS components.

Class Gene Associated disorders

Voltage-

gated

sodium

channels

SCN1A Dravet syndrome (severe myoclonic epilepsy

of infancy) (83, 86)

Sporadic autism and familial autism (92)

Autism spectrum disorders (93)

Familial hemiplegic migraine (95)

Mesial temporal sclerosis (96)

SCN1B Possibly linked to Dravet syndrome (86)

SCN2A Ohtahara syndrome (infantile epileptic

encephalopathy) (89)

Autism spectrum disorders (92)

Ankyrins ANK3 Bipolar disorder (16, 97, 98)

Schizophrenia (99, 101–103)

Post-traumatic stress disorder (99)

Late-onset Alzheimer’s disease (104)

Spectrins All Aging and Alzheimer’s (108, 109)

SPTAN1 West syndrome (infantile spasm) (112)

SPTBN2 Spinocerebellar ataxia type 5 (160)

SPTBN4 Combined spherocytosis and autism (106)

Auditory and motor neuropathies (107)

L1 family

IgSFs

NFASC Multiple sclerosis (116–118)

Central and peripheral demyelination disorder

(116–118)

CHL1 Schizophrenia (120)

Mental retardation (122–124)

Intracellular

FGFs

FGF14 Spinocerebellar ataxia type 27 (50, 130, 131)

Paroxysmal dystonia (137)

Cognitive impairment (138)

Major depressive disorder (133)

atonic seizures (83). A mouse model with a C-terminal trun-
cation of Nav1.1 reproduced severe ataxia, seizures, and prema-
ture death (84), and heterozygotes exhibited substantially reduced
sodium current density in GABAergic inhibitory neurons (85).
Thus, decreased GABAergic inhibition may result in increased
seizurogenic currents, resulting in the severe seizures seen in
myoclonic childhood-onset encephalopathy. In addition, gener-
alized epilepsy with febrile seizures plus (GEFS+), a large set
of autosomal dominant disorders that includes Dravet, encom-
pass various mutations in SCN1A and SCN1B as well as genes
encoding GABA receptors and calcium channels. Unlike patients
with Dravet, who predominantly display truncation and mis-
sense mutations in the SCN1A gene, patients with GEFS+ display
a much more variable clinical presentation (86). Additionally,
missense Nav1.1 (87, 88), Nav1.2 (89), and Nav1.6 (90) muta-
tions have been implicated in various forms of genetic epilep-
sies, and in fact Nav1.1 testing for genetic epilepsies is used
in the clinic (91). Dysfunction of Nav has also been linked to
autism. Early studies identified 38 significant SNPs in SCN1A,
SCN2A, and SCN3A in a cohort of 117 families with a history
of genetic autism (92). More recently, genome sequencing of
individuals with autism spectrum disorder have revealed multi-
ple independent de novo SNP variants of Nav1.2 that are highly
associated (93) and another group has identified a highly inter-
connected protein interaction network of de novo mutations,
including disruptions in Nav1.1 in sporadic autism (94). Also,
mutations of Nav1.1 have been observed in patients with familial
hemiplegic migraine and epileptic phenotypes (95), and may be
associated with hippocampal sclerosis (96). Due to the range of
polymorphisms identified for Nav channels, further investigation
into their relevance to the development of psychiatric disorders
is needed.

In addition to Nav, dysfunction of the scaffolding protein
ankyrin-G has been implicated in a number of psychiatric dis-
orders. Ankyrin-G has been identified in GWAS as a poten-
tial risk gene for bipolar disorder with significantly associated
SNPs in ANK3 as well as other bipolar disorder candidate genes
(16, 97), including one that maps to a non-conservative amino
acid change (98). Supporting the association of ANK3 with
stress-related behaviors, a recent study has linked ANK3 SNPs
with both post-traumatic stress disorder and externalizing (a
measure identifying adult anti-sociality and substance abuse) in
a cohort of military veterans (99). In addition, RNAi downregu-
lation of ANK3 in the dentate gyrus of the mouse hippocampus
decreased anxiety-related behaviors and increased activity dur-
ing the light phase. These behaviors are consistent with increased
stress and mood episodes in BD (100). ANK3 polymorphisms
have also been associated with schizophrenia (101). Schizophrenic
patients with ANK3 polymorphisms exhibit reduced ankyrin-
G density in the superficial dorsolateral prefrontal cortex and
superior temporal gyrus compared with normal subjects. This
has important consequences for pyramidal neuron connectiv-
ity, and speech and emotional processing (102, 103). Addi-
tionally, genome-wide studies support an association between
ANK3 and late-onset Alzheimer’s disease in the LOD-1 link-
age region (104). In fact, vaccination with ankyrin-G in arcAβ

transgenic mice (a classic Alzheimer’s model) reduced β-amyloid
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pathology in the brain and increased soluble levels of Aβ. In
addition, hippocampal arcAβ neurons treated with monoclonal
anti-AnkG antibodies displayed a reduction in the loss of dendritic
spines (105).

Given the tight association between ankyrin-G and β-IV-
spectrin, dysregulation of spectrin expression or function can
also be expected to contribute to several psychiatric disorders.
Though research is currently lacking, the de novo microdele-
tion of a gene region containing β-IV-spectrin was observed in
a patient with a combined autism/spherocytosis phenotype (106).
In mice, truncation of β-IV-spectrin causes auditory as well as
motor neuropathies, resulting in the autosomal recessive quiver-
ing phenotype (107). More broadly, spectrin catabolism through
calpain-mediated cleavage, seen clinically in aged and patients with
Alzheimer’s disease (108, 109), has been associated with stimu-
lation of N -methyl-d-aspartate (NMDA) receptors. This results
in elevation of intracellular calcium levels as well as increased
levels of spectrin breakdown products. These contribute to neu-
ronal degeneration through disruption of intracellular transport
and calcium toxicity (110, 111). Both α- and β-spectrin dis-
ruptions have been implicated in nervous system dysfunction.
Heterozygous mutations in β-III-spectrin produce a slowly pro-
gressive, autosomal dominant spinocerebellar ataxia; a condition
that exhibits the degeneration of cerebellar Purkinje cells and asso-
ciated morphological abnormalities observed in a mouse knock-
out of β-III-spectrin. Mutations in α-spectrins are associated with
West Syndrome, an epilepsy disorder characterized by infantile
spasms, atrophy of the corpus callosum and cerebellar vermis,
and developmental regression (112). Further research is needed
to determine the pathophysiology behind these disorders and
identify the roles that non-β-IV spectrins may play in regulation
of the AIS.

In addition to Nav and spectrin, ankyrin-G also interacts with
L1CAM cell adhesion molecules. Isoforms of neurofascin and
NrCAM, important members of the L1CAM family, colocalize
with ankyrin-G at the AIS (113). Neurofascin plays a critical
role in stabilizing complexes of Nav channels and ankyrin-G
(47, 114), so defects in neurofascin will adversely affect neuronal
function. Knockdown of neurofascin in adult rat brain impairs
GABAergic expression at synapses localized at the AIS, which sug-
gests its function in modulating axo-axonal innervation (114).
Furthermore, inactivation of neuronal neurofascin (NF186) in
adult mice results in AIS degeneration, Purkinje cell dysfunction,
and impaired motor learning (115). In human patients, axonal
injury characteristic of multiple sclerosis (MS) and other demyeli-
nation disorders is associated with increased concentrations of
autoantibodies against both NF155 and NF186, which are present
in inflammation involving complement deposit, microglial acti-
vation, and ultimately axonal injury (116–118). More broadly,
defects in the L1 gene family, which encodes various cell adhe-
sion molecules including neurofascin (119), have been observed
in a variety of neurological and psychiatric disorders. SNPs in
CHL1 are associated with an increased risk of schizophrenia (120)
Postmortem analysis of hippocampus and amygdala from schizo-
phrenic patients revealed decreased polysialylated neural cell adhe-
sion molecule (PSA-NCAM) expression in parallel with decreased
GAD67 and increased VGLUT1 levels in white matter (121).

In addition, patients with chromosome 3p aberrations (which
include several brain-expressed genes including contactin and
CHL1) present clinically with mental retardation. A subset of those
also exhibit physical features such as skeletal defects and facial
dysmorphism (122–124). Supporting the role of CHL1 in men-
tal retardation, Chl1-heterozygote and homozygote mice exhibit a
gene dosing effect. Chl1−/− mice display altered exploratory pat-
terns in the Morris water maze test, increased sociality, and reduced
aggression (125), suggesting that processes involving cognition
and spatial memory are disrupted. In addition, phosphorylation
of L1 increases its association with doublecortin, which is impor-
tant for neuronal migration (126), and is downstream of MAP
kinase pathways (127). This suggests that ERK-dependent signal-
ing may promote neurite growth through downregulation of L1
and ankyrin binding (128, 129). These observations highlight the
diversity of the L1 gene family, and the need for more research
into how other components of the L1 family interact at the level
of the AIS.

Mutations of the intracellular fibroblast growth factor FGF14
have been associated with hereditary spinocerebellar ataxia (130,
131), a debilitating childhood-onset condition characterized by
postural tremor, slowly progressive ataxia, and cognitive deficits.
Specifically in SCA27, the FGF14F145S mutation decreased Nav
currents and reduced neuronal excitability in hippocampal neu-
rons by disrupting the FGF14:Nav interaction by a dominant
negative inhibition of the FGF14 wild-type form (50, 131). Further
analysis of the P149Q polymorphism on a closely related homolog,
FGF12, revealed a loss of pairwise specificity with the C-terminal
end of Nav1.1 and subsequent loss of Na+ channel function
modulation, suggesting that mutations in this region may dys-
regulate neuronal excitability (132). Additionally, a genome-wide
study performed on a Dutch major depressive disorder cohort
identified SNPs covering seven candidate genes including FGF14
(18). Previous studies have implicated extracellular FGF activity
in stress and major depressive disorder (133). In fact, increases
in hippocampal FGF activity may be one of the mechanisms of
antidepressants such as fluoxetine, desipramine, and mianserin
(134–136). In mice, targeted disruption of FGF14 produces severe
ataxia, paroxysmal dystonia, and cognitive impairment (137, 138),
with neurons that exhibit severe impairments in synaptic plasticity
(53) and neuronal excitability (52). Significantly, the assembly and
trafficking of FGF14 itself is controlled via a GSK-3-dependent
signaling pathway (74) that may critically regulate excitability
through PPI at the level of the Nav complex. Additionally, the
distribution of FGF14 is Nav channel dependent. Deletion of the
Nav1.6 α subunit in mouse Purkinje neurons markedly increases
FGF14 levels in the AIS, in parallel with increased expression
of Nav1.1 and β-IV-spectrin (139). As a result, through interac-
tions with macromolecular complexes at the AIS, FGF14 plays an
important and underappreciated role in the regulation of Na+
channel activity.

AIS TARGETING AS A PHARMACOLOGICAL STRATEGY
Given the association between defects at the level of AIS and
subsequent impairment of neuronal function that leads to the
development of several important neurological and mental disor-
ders, interventions directed at restoring AIS function may be more
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effective. Targeting AIS function would allow for the develop-
ment of highly specific, efficacious compounds with significantly
reduced off-target effects and enhanced clinical outcomes (13, 140,
141). Given the importance of the molecular composition of the
AIS to disease, selective targeting of PPI at the AIS may deliver a
new generation of treatments against psychiatric disorders.

IMPROVING DIVERSITY THROUGH PROTEIN–PROTEIN INTERACTIONS
Inhibition of PPI remains a novel and increasingly attractive
area of drug design. Although nascent, it has the potential to
tremendously expand the repertoire of targets available for the
pharmaceutical industry (142, 143). Through the engineering of
small molecules or peptidomimetics (144, 145) that interact with
and disrupt specific protein–protein interfaces, the effects of the
inhibitor on the signaling network of the cell would be restricted
from n edges (n= number of potential PPI between the targeted
protein and the entire proteome) to a single edge. This would vastly
increase the potential specificity without diminishing effective-
ness. In addition, selective targeting of protein surfaces prevents
global disruption of protein expression levels, which may upregu-
late alternative and compensatory pathways that reverse treatment
effects and replace critical “disease-promoting” factors, leading to
relapse (144). In the context of dysregulation at the AIS, this tar-
geted multi-protein approach has the potential to restore function
as a consequence of a specific deficiency while having a minimal
impact on other properly functioning pathways.

Approaches to discover PPI of interest are cooperative, and
include yeast two-hybrid systems, RNAi interference, protein
fragment complementation, mass spectrometry, and direct co-
immunoprecipitation. Large-scale studies using high-throughput
technologies in combination with algorithmic approaches have
identified hundreds of thousands of protein interactions based on
structural evidence and biochemical assays (146, 147). However,
the design of small molecules to exploit these PPI presents an
entirely new set of challenges, especially if the PPI are part of ion
channel complexes, as is the case at the AIS (143). Many studies
use computational modeling in conjunction with HTS approaches
to screen databases of “drug-like” compounds for molecules that
bind to “hot-spots”; regions within the protein near the protein–
protein interface. Alternative approaches could include the study
of allosteric PPI modulators, compounds that bind at a site distant
from the interaction interface that induce conformation changes
which alter the PPI, as well as fragment-based approaches that
involve searching two separate compounds joined by a linker to
better probe chemical space (148, 149). However, the difficulty
of translating biochemical assays to actual human therapies mani-
fests as concerns in stability, pharmacokinetics/bioavailability, and
toxicity, and poses a substantial barrier toward effective therapies
that target the PPI (144).

Nonetheless, therapeutic targeting of PPI is an intensive area of
interest in oncology, with preliminary studies in brain disorders.
A number of BCL-2/BH3 PPI inhibitors such as GX15-070 and
AT-101 are used in early clinical trials for a variety of solid tumors,
including lung carcinoma and GIST, with more expectation (150,
151). Utilizing a multiple ligand simultaneous docking (MLSD)
model, a group has identified raloxifene and bazedoxifene as
potent inhibitors of the IL-6/GP130 interface, a critical step in the

STAT3-mediated pathway of cancer progression (152). In the con-
text of cerebral ischemia and neuropathic pain, GABAB receptors
are often excessively upregulated (153, 154), and small peptides
interfering with GABA-interacting proteins such as 14–3–3 may
selectively restore normal GABA function without affecting the
GABA receptors not implicated in disease (155, 156). Disruption
of metabotropic glutamate receptor (mGluR7a) interaction with
proteins interacting with kinase 1 (PICK1) has been shown to
induce the absence of seizures in rodents, suggesting that small
molecules that stabilize this interaction could be potential ther-
apeutics against epilepsy (157). Additionally, interaction of the
serotonin 5HT2C receptor with multiple PDZ (MPDZ), a gene
found to be dysregulated in physiological drug dependence (158),
has been explored as a potential avenue of research in addiction
phenotypes, and small molecule inhibitors of the MPDZ–5HT2C
interaction have been developed (159).

These early successes highlight the potential for harnessing PPI
at the AIS as a novel approach toward better interventions against
psychiatric disorders. Through the engineering of novel therapeu-
tics that target dysregulation at the interaction level, versus the
protein level, there is much potential for greater specificity and
diversity in the design of useful psychiatric treatments.

CONCLUSION
Despite the immense challenges in treating patients with psy-
chiatric disorders, next-generation treatments based on rational
understanding of the underlying mechanisms of dysregulation
hold much promise. Early, top-down high-throughput studies to
identify focal points of dysfunction, as well as bottom-up reduc-
tionist studies of the core components of neurons, including the
AIS, will invariably lead to a better understanding of the patho-
physiology behind psychiatric disorders. Whether this new-found
understanding leads to concrete treatments for psychiatric disor-
ders – the middle-aged mom of two suffering from yet another
relapse of depression; the hard-working, successful executive crip-
pled by a decade-long struggle with schizophrenia; the college
freshman terrified by yet another manic episode – remains to
be seen, but the urgent need for more effective, less deleterious
treatments is undeniable.

METHODS
NEURONAL CULTURES AND CONFOCAL MICROSCOPY
Primary hippocampal cultures were obtained from E18 rat
embryos using Banker’s method and processed for immunoflu-
orescence as previously described (74). The image displayed in
Figure 1B was obtained using rabbit anti-PanNav and chicken
anti-microtubule-associated protein 2 (MAP2) primary antibod-
ies followed by incubation with appropriate Alexa-conjugated
secondary antibodies for immunofluorescence visualization. Con-
focal images were obtained at a magnification of 63× with a Zeiss
LSM-510 Meta confocal microscope.
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