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Major depressive disorder (MDD) is a multifactorial and polygenic disorder, where multiple
and partially overlapping sets of susceptibility genes interact each other and with the
environment, predisposing individuals to the development of the illness. Thus, MDD
results from a complex interplay of vulnerability genes and environmental factors that act
cumulatively throughout individual’s lifetime. Among these environmental factors, stressful
life experiences, especially those occurring early in life, have been suggested to exert
a crucial impact on brain development, leading to permanent functional changes that
may contribute to lifelong risk for mental health outcomes. In this review, we will discuss
how genetic variants (polymorphisms, SNPs) within genes operating in neurobiological
systems that mediate stress response and synaptic plasticity, can impact, by themselves,
the vulnerability risk for MDD; we will also consider how this MDD risk can be further
modulated when gene× environment interaction is taken into account. Finally, we will
discuss the role of epigenetic mechanisms, and in particular of DNA methylation and
miRNAs expression changes, in mediating the effect of the stress on the vulnerability
risk to develop MDD. Taken together, we aim to underlie the role of genetic and
epigenetic processes involved in stress- and neuroplasticity-related biological systems
on the development of MDD after exposure to early life stress, thereby building the basis
for future research and clinical interventions.

Keywords: vulnerability genes, stressful life events, DNA methylation, miRNAs, depression

Background

Major depressive disorder (MDD) is a leading cause of disability and disease affecting millions
of individuals worldwide (1, 2). MDD includes alterations in mood, neurovegetative functions,
cognition, and psychomotor activity, and it represents a major public health concern because of
the short- and long-term detrimental effects to the patients and for the co-morbidities to prevalent
health outcomes, such as cardiovascular disease and metabolic syndrome. The lifetime prevalence
is estimated to be approximately 10–15%, and the World Health Organization has predicted that,
by the year 2030, MDD will account for the 13% of the total global burden of disease replacing

Frontiers in Psychiatry | www.frontiersin.org May 2015 | Volume 6 | Article 681

http://www.frontiersin.org/Psychiatry/
http://www.frontiersin.org/Psychiatry/editorialboard
http://www.frontiersin.org/Psychiatry/editorialboard
http://dx.doi.org/10.3389/fpsyt.2015.00068
https://creativecommons.org/licenses/by/4.0/
mailto:annamaria.cattaneo@kcl.ac.uk
mailto:acattaneo@fatebenefratelli.it
http://dx.doi.org/10.3389/fpsyt.2015.00068
http://www.frontiersin.org/Journal/10.3389/fpsyt.2015.00068/abstract
http://www.frontiersin.org/Journal/10.3389/fpsyt.2015.00068/abstract
http://www.frontiersin.org/Journal/10.3389/fpsyt.2015.00068/abstract
http://www.frontiersin.org/Journal/10.3389/fpsyt.2015.00068/abstract
http://loop.frontiersin.org/people/202815/overview
http://loop.frontiersin.org/people/95091/overview
http://loop.frontiersin.org/people/222250/overview
http://loop.frontiersin.org/people/181031/overview
http://loop.frontiersin.org/people/201670/overview
http://loop.frontiersin.org/people/14856/overview
http://loop.frontiersin.org/people/155218/overview
http://loop.frontiersin.org/people/96224/overview
http://www.frontiersin.org/Psychiatry/
http://www.frontiersin.org
http://www.frontiersin.org/Psychiatry/archive


Lopizzo et al. Genetic and epigenetic mechanisms in major depression

cardiovascular disorders (3). Due to the heterogeneity of the dis-
order, the diagnosis requires the presence of several symptoms
including mood changes, loss of interest or pleasure, significant
loss of appetite and weight, insomnia/hypersomnia, psychomotor
agitation/slowing, fatigue/loss of energy, feelings of worthless-
ness/inappropriate guilt, inability to concentrate/indecisiveness,
recurrent thoughts of death/suicide with negative consequences
on work, and social relations (4, 5).

Although the etiopathogenesis of the disease is not fully under-
stood yet, a genetic component has been recognized as exerting
an important impact (6, 7). Indeed, several genetic vulnerability
factors are associated with an increased risk to develop MDD,
as indicated by family, twin, and adoption studies (8, 9). In
particular, these studies indicate that there is a two to threefold
increase in lifetime risk of developing MDD among first-degree
relatives, with a heritability risk that is estimated to be around the
0.37 (95% confidence interval 0.31–0.42) based on meta-analysis
data (10–12).

However, the genetic vulnerability background is not able to
explain by itself the disease development. This is mainly because
MDD is a complex disorder where no single gene is sufficient to
cause MDD; on the contrary, each susceptibility gene contributes
to a small fraction of the total genetic risk. Moreover, to make
things even more complicated, MDD is known to be character-
ized by a complex genetic heterogeneity, meaning that multi-
ple and partially overlapping sets of susceptibility genes interact
each other and with the environment, predisposing individuals to
mood disorders (7).

Genetic Vulnerability Risk Factors for
Major Depression

To date, as part of a concerted effort to understand the genetic
contribution to major mental illnesses, many genetic association
studies based on candidate genes or genome-wide approaches
have been performed with the aim to identify susceptibility loci
for MDD. However, a recent meta-analysis of genetic associ-
ation studies on MDD (13) clearly concluded that candidate
genes-based studies have provided only little support for the
identification of vulnerability genes. Indeed, although a signif-
icant association between MDD and several genes, including
apolipoprotein E (APOE) (14–16), piccolo presynaptic cytoma-
trix protein (PCLO) (17–19), translocase of outer mitochon-
drial membrane 40 homolog (TOMM40) (20, 21), guanine
nucleotide binding protein (G protein) beta polypeptide 3 (GNB3)
(22–24), methylenetetrahydrofolate reductase (MTHFR) (25, 26),
and solute carrier family 6 (neurotransmitter transporter) mem-
ber 4 (SLC6A4) (27–29) have been found in several studies, a
difficulty to confirm such associations in independent samples has
been also reported (30–33).

Over the past years, genome-wide association studies (GWAS),
which test simultaneously common SNPs and copy number vari-
ations (CNVs), have quickly substituted the candidate genes asso-
ciation studies. However, they have not been able as well to clearly
identify gene variants associated with MDD vulnerability (34).
One of the first largest GWAS study was performed by Sulli-
van et al. (17) in 1,738 MDD cases and 1,802 controls, which

allowed the identification of 11 signals localized to a 167 kb region
overlapping the gene piccolo (PCLO). However, when they under-
took validations of these SNPs in five independent samples, they
were not able to replicate the findings. Subsequent GWAS and
meta-analysis studies of MDD were equally unsuccessful in val-
idating SNPs previously associated with MDD vulnerability (31,
35–37). Recently, also the largest Psychiatric GWAS Consortium
study onMDD,where 9,500 cases were taken into account, has not
been able to detect any significant genome-wide association (38).

The failure of GWAS analyses to provide robust evidence for
loci that exceed genome-wide significance is compatible with a
paradigm where MDD results from the combined action of mul-
tiple loci of small effect together with a variety of environmental
factors. In line with this, when researchers started to look at
the interaction between genes of vulnerability for MDD and the
environment they found more robust results.

The studies above reported have been summarized in Table 1.

Gene–Environment Interaction in Major
Depression

Gene–environment interactions reflect a causalmechanismwhere
one or more genetic variants and one or more environmental
factors contribute to the causation of a condition in the same indi-
vidual with genetic factors influencing the sensitivity to environ-
mental exposures (50). A number of environmental factors have
been found to contribute to depression vulnerability, including
in utero exposure to infection, lack of nutrients, maternal stress,
perinatal complications, social disadvantage, urban upbringing,
ethnic minority status, childhood maltreatment, bullying, trau-
matic events, cannabis use, and exposure to stress (51–55). Among
these environmental factors, stressful life experiences, especially
those occurring early in life, have been suggested to exert a crucial
impact on brain development leading to permanent functional
changes that may contribute to lifelong risk for mental health
outcomes (56–58). Indeed, during periods of heightened neural
plasticity throughout development, brain regions involved in the
regulation of emotion and in the mediation of the stress response
appear to be particularly sensitive to the effects of stressful events.
Such experience-dependent plasticity may produce altered neural
circuits and maladaptive responsiveness to the environment that,
ultimately, lead to an enhanced risk for depression (59).

This also suggests that genes and environment start to inter-
act early during the development and that higher liability to
psychopathology may originate when environmental challenges
do occur in the pre-perinatal period. This situation may result
in a variety of outcomes based on the severity of both genetic
and environmental profiles for a particular disorder, and also on
the presence or absence of other protective factors, which may
modulate the risk for subsequent psychopathology (60). Stressful
experiences during early childhood can thus significantly under-
mine the development of adaptive mechanisms required to deal
with challenges in the adulthood and may also contribute for
unhealthy lifestyles, negative interpersonal relationship, and poor
health outcomes (61–63).

The mechanisms that mediate the impact of early life adversi-
ties on depression risk have been object of studies over decades.
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TABLE 1 | Genetic approach for gene–environment interaction.

Reference Approach Disorder Findings

Matsumoto et al. (28) rs8076005 (SLC6A4) MDD rs8076005 AA genotype and A allele associated with changes in response rate in an
antidepressant group

McFarquhar et al. (20) rs2075650 (TOMM40) MDD rs2075650 G allele could be a risk factor for lifetime depression

Hu et al. (23) C825T (GNB3) MDD C825T polymorphisms may be correlated with the efficacy of antidepressants in the
treatment of MDD

Wang et al. (26) Val158Met (COMT)
C677T (MTHFR)

MDD Interaction of COMT Val158Met and MTHFR C677T may be associated with cognitive
function

Comasco et al. (39) 5-HTTLPR (SLC6A4)
Val66Met (BDNF)

MDD Positive association of depressive symptoms and early life events in carriers of ss/sl+Val/Val
or the ll+Met

Namekawa et al. (16) Aβ40/Aβ42 (APOE) MDD Serum Aβ40/Aβ42 ratio higher in patients with both early- and late-onset MDD than in
controls

Verbeek et al. (18) rs2522833 (PCLO) MDD rs2522833 in the PCLO gene is likely to be the causal variant in a MDD cohort

Woudstra et al. (19) GWAS MDD A positive role of PCLO in symptom maintenance in MDD

Baba et al. (15) Aβ40/Aβ42 (APOE) MDD Serum Aβ40/Aβ42 ratio higher in MDD patients than controls in all age groups

Hayden et al. (21) ′523 (TOMM40) AD Associations between ′523 and cognitive domains of memory and executive control in
early-stage AD

Appel et al. (40) rs1360780 (FKBP5) MDD Interactions between physical abuse and rs1360780, confirming its role in depression
susceptibility

Zimmermann et al. (41) rs1360780, rs3800373,
rs9296158, rs9470080,
rs4713916 (FKBP5)

Trauma Interactions between FKBP5’s SNPs and traumatic events, with stronger effects for severe
trauma

Vinberg et al. (42) Val66Met (BDNF) Affective dis. Familiar risk of affective disorder and met allele associated with higher BDNF and evening
cortisol levels

Aguilera et al. (43) Val66Met (BDNF)
5-HTTLPR (SLC6A4)

MDD Impact of childhood adversity on depressive symptoms in Met allele carriers and in S carriers

Bet et al. (44) 9β, ER22/23EK (GR) MDD Interaction between 22/23EK, 9β and childhood adversity resulted in an increased risk of
depression

Sullivan et al. (17) GWAS MDD In a genome-wide study of SNPs in MDD, 11 signals localized to a 167 kb region
overlapping PCLO

Ising et al. (45) rs4713916, rs1360780,
rs3800737 (FKBP5)

Stress Homozygous for any variants displayed an incomplete normalization of the stress cortisol
secretion

Binder et al. (46) rs9296158, rs3800373,
rs1360780, rs9470080

PTSD 4 SNPs significantly interacted with the severity of child abuse to predict level of adult PTSD
symptoms

Kumsta et al. (47) ER22/23EK, N363S,
BcII, 9β (GR)

Stress Sex specific associations between GR gene polymorphisms and HPA axis responses to
psychosocial stress

Cao et al. (22) 5-HTTLPR (SLC6A4)
and C825T (GNB3)

MDD Both 5-HTTLPR S and GNB3 C825T alleles had a risk of MDD higher than single 5-HTTLPR
S or GNB3 825T

Dorado et al. (27) 5-HTTLPR, CYP2C9*3
(SLC6A4)

MDD The frequency of subjects with 5-HTTLPR-S and CYP2C9*3 alleles was higher in MDD than
in controls

Munafo et al. (33) 5HTTLPR (SLC6A4) MDD 5HTT-LPR genotype significantly associated with neuroticism and lifetime major depression

Wüst et al. (48) BcII RFLP, N363S,
ER22/23EK (GR)

Stress Impact of GR gene polymorphisms on cortisol (and ACTH) responses to psychosocial stress

Caspi et al. (49) 5-HTTLPR (SLC6A4) MDD After life events, 33% of individuals with an s allele, as compared to the 17% of l/l subjects
became depressed

Holmes et al. (14) rs7412 (APOE2) MDD, AD ApoE E2 (rs7412) allele in AD is found to be highly associated with depressive
symptomatology

Arinami et al. (25) C677T (MTHFR) Schizo, MDD Homozygous for the C677T allele frequently observed in schizophrenics and MDD patients

Chapman et al. (64) reported a dose–response relationship
between the severity of experienced childhood adversities and the
presence of a depressive episode or lifetime chronic depression.
The experience of any childhood adversity has been indeed asso-
ciatedwith an increased risk of suicide attempts in different period
of life including childhood, adolescence, and also adulthood (65).

In addition to maltreatment, parental loss due to death or sepa-
ration or an adverse family environment characterized by poor
paternal relationships or maternal overprotection has been also
associated with increased risk for depressive disorders (66–69).
However, it is important tomention that, although early life stress-
ful experiences have an impact onMDD vulnerability, they do not
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lead to psychiatric disorders in all the exposed individuals, since
the outcome is highly dependent on the individual genetic back-
ground, which, in turn, can regulate/influence the mechanisms of
coping to stressful stimuli (70, 71).

On these bases, a large body of research has thus focused
on identifying genetic variations that interact with early life
adversities in predicting current or lifetime MDD diagnosis, or
symptom severity. Here below, we discuss how genes involved
in stress response and neuroplasticity interact with the environ-
ment, in particular with stressful experiences, modulating the risk
for MDD.

Caspi et al. (49) were the first showing the effect of gene
and environment interaction in modulating the risk for depres-
sion development. They focused on the role of a common func-
tional 43 bp insertion/deletion polymorphism (5-HTTLPR) in the
promoter region of the serotonin transporter gene (SLC6A4 or
SERT). This polymorphism is known to involve either short (s)
or long (l) alleles, with the short allele variant being associated
with lower promoter transcriptional efficiency (59). The authors,
studying the Dunedin Birth Cohort of New Zealand, showed
that 5-HTTLPR interacts with stressful life events, in particular
childhoodmaltreatment, to predict current and lifetime diagnoses
of MDD as well as suicide attempts. They reported that, in the
context of exposure to stressful life events, subjects’ homozygotes
(s/s) or heterozygotes (s/l) for the short allele exhibited more
depressive symptoms, diagnosable depression, and increased sui-
cide behavior compared to individuals homozygous for the long
allele (l). In particular, if exposed to stressful experiences during
life, the 33% of individuals with an s allele, as compared to the 17%
of l/l homozygotes subjects became depressed (49).

Other similar studies have been then performed to investigate
the role of 5-HTTLPR short variant in increasing the vulner-
ability for depression development upon exposure to environ-
mental adversity, providing both replications and failures of the
original finding (72–76). Recent meta-analysis indicated, how-
ever, an absence of a clear association: indeed, although 17 pos-
itive replication studies were reported, also 8 partial replications
(interaction only in females or only with one of several types of
adversity) and 9 non-replications (no interaction or an interac-
tion in the opposite direction) were indicated (74, 77, 78). The
possible causes of such discrepancies could be due to potential
sources of this heterogeneity,mainly stemming frommethodolog-
ical differences between studies (77). For example, the method
of assessing early life stressful experiences, as well as the type
and timing of ELS, appear to be important modifiers (75). In
addition, the definition of the outcome variable seems to exert
a particular influence. Furthermore, it has now been reported
that the interaction between 5-HTTLPR and ELS in predict-
ing depression is moderated by other polymorphisms in other
genes (39, 79).

Another gene that may modulate the impact of stress on
depression vulnerability is the brain-derived neurotrophic factor
(BDNF). BDNF is a neurotrophin widely expressed in the brain
where it is implicated in neuronal growth, synaptic plasticity, and
neuronal survival, and it plays important roles in structural brain
abnormalities observed in depressed individuals, such as reduced
hippocampal volume or cognitive deficits (80–83).

A functional SNP (rs6265) within the BDNF gene promoter,
which causes a valine to methionine substitution at codon 66
in the BDNF gene (Val66Met), has been shown to influence the
activity of the BDNF protein (84–86). Moreover, the Met allele
of the BDNF Val66Met polymorphism has been found associated
with a reduced BDNF activity (87), memory impairment (84),
harm avoidance (88), brain volume reduction, and has been also
shown to affect intracellular trafficking (89). Moreover, individ-
uals, which are heterozygotes or homozygotes for the Met allele,
have elevated evening cortisol levels, suggesting an altered HPA
axis functionality (42). Interestingly, still in the context of stress,
interaction between this polymorphism and childhood sexual
abuse in the prediction of adult depression has been demonstrated
(43). Several studies have further provided evidence that the
BDNF Val66Met polymorphism interact with ELS in predicting
depression (59, 90) and a recent meta-analyses, which combined
the results from22 different studies, supported the idea that BDNF
Val66Met polymorphism significantly moderates the relationship
between life stress and depression (91).

The regulating effects of stress on brain and behavior are medi-
ated by the binding of the stress hormone, cortisol, to specific
receptors: the high-affinity mineralocorticoid receptors (MR),
which exert tonic inhibitory effects on basal HPA axis activity,
and the high-affinity glucocorticoid receptors (GR), which are
critical in regulating stress responses characterized by elevated
cortisol levels. The GR is kept at cytosolic level in an inactive
state by the binding with FK506 binding protein 51 (FKBP5), a
co-chaperone of hsp90, which prevents its translocation to the
nucleus. When cortisol binds the GR-hsp90 complex, FKBP-5
acquires a reduced affinity for the complex and it is substituted
by another co-chaperone named FKBP4 that, on the contrary,
facilitates nuclearGR translocation leading to transcription ofGR-
dependent genes. An alteration in GR functionality, also known
as GR resistance, is a well-characterized feature of depression
and it has been associated with HPA axis hyperactivity. Given
the important role of GR in regulating stress responses and the
evidence for GR resistance in depression, polymorphisms within
GR or FKBP5 genes have been studied as possible genetic factors
for depression vulnerability. To this regard, Wüst et al. (48) have
shown an impact of polymorphisms within GR gene on corti-
sol and ACTH responses to psychosocial stress. Specifically, 112
healthymaleswere studied to estimate the impact of threeGRgene
polymorphisms (BclI RFLP, N363S, ER22/23EK) on cortisol and
ACTH responses to psychosocial stress (Trier social stress test)
with the conclusion of a strong association (48).

Moreover, a strong gene× environment interaction involving
functional polymorphisms within GR gene has also been shown
by Bet et al. (44). In particular, the authors investigated the GR
22/23EK and 9β polymorphisms showing how they do predict
the development of clinically relevant depression by interacting
with environmental adversities during adolescence and childhood
including war experiences, sexual abuse, parental loss, or physical
illness (44). This evidence has been supported by Kumsta and
colleagues, which showed a significant sex specific association
between GR gene polymorphisms in 9β and BclI and HPA axis
responses to psychosocial stress as well as GC sensitivity (47).
These findings support the relevance of GR gene polymorphisms
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inHPA axis regulation and suggest that theymight represent a risk
factor in the development of stress-related disorders like MDD.

Also, variants within the FKBP5 gene have been shown to
modulate the risk of developingMDD in relation to stressful expe-
riences (92). For example, Appel et al. (40) reported a significant
gene× environment interaction by investigating the effect of a
functional SNP within FKBP5 gene (rs1360780) on depression
development in more than 2,000 German people. In particular,
they found that TT subjects with a history of physical abuse had
an enhanced risk for depression development when compared
to CC/CT individuals. This interaction between the rs1360780
and traumatic life events in predicting the onset of MDD was
confirmed by another study performed in 884 adolescent and
young adult individuals characterized for traumatic life events
(UK environmental risk longitudinal twin study) (41). Subse-
quently, the same SNPs within the FKBP5 gene have been associ-
ated also with peritraumatic dissociation among injured children
(93), with recovery from psychosocial stress in normal controls
(45), and also with the association between childhood abuse and
the development of post-traumatic stress disorder (46). Another
evidence that supports the role of FKBP5 as mediator of stress
exposure comes from a study where a particular FKBP5 haplotype
of four SNPs (rs3800373, rs9296158, rs1360780, rs9470080) was
found associated with an increased risk of suicide attempts but
only in individuals with a history of childhood trauma (94).

These results, taken together, strongly support a role of the
FKBP5 gene in the pathogenesis of stress-related depression,
likely mediated through the influence of individual level of GR
resistance and, consequently, glucocorticoid signaling.

Epigenetic Mechanisms as Mediators of
the Effect of the Environment on the
Genome: Focus on DNA Methylation and
miRNAs

The term “epigenetics” refers to the potentially heritable, but
environmentally modifiable, regulation of genetic function and
expression (95). Among epigenetic processes, DNA methylation
is one of the major epigenetic processes studied in the context of
early life adversities as a potential mechanism to explain the long-
term effects on gene transcription (96–98). DNA methylation is a
covalent modification of the cytosine residues that are located pri-
marily at CpG dinucleotide sequences in mammals; methylation
changes within promoter and enhancer regions of the gene are
particularly important as they reduce the access of transcription
factors to regulatory elements and promote silencing of gene
expression (99). The contribution of DNA methylation has been
extensively investigated especially in the context of pathologies
related to exposure to stressful life events (especially those occur-
ring early in life, ELS) including depression or post-traumatic
stress disorder (73, 95, 98, 100, 101).

Studies conducted both in animal models and in humans
have shown that ELS can leave persistent epigenetic marks on
the genome, which can influence neurobiological substrates until
adulthood (56). Indeed, early-life exposures can disrupt epigenetic
programing in the brain, with long-lasting consequences for gene
expression and behavior (102).

Altered DNA methylation profiles in response to ELS have
been observed not only in specific candidate genes, both at cen-
tral or peripheral level (103, 104), but also on a genome-wide
level (105, 106). Recently, Nagy and colleagues found differen-
tially methylated regions of DNA in astrocytes, which are glial
cells specific to the CNS, of human prefrontal cortex between
cases (depressed patients) and control subjects, revealing reduced
methylation levels in cases (107). Indeed, emerging evidence has
suggested that ELS can induce structural brain changes through
epigenetic mechanisms (108). These alterations include a loss of
dendritic spines and synapses, a reduced dendritic arborization
together with diminished glial cells and have been widely found
in the hippocampus of MDD subjects (109). Interestingly, antide-
pressant treatment can reverse stress-induced structural changes
augmenting dendritic arborization and synaptogenesis (109).

Another quite new area in epigenetic research is represented
by small RNAs, in particular microRNAs (miRNAs), which are
small non-coding RNAs (20–22 nt) that play a major role in
post-transcriptional regulation of gene expression. miRNAs are
predicted to influence the expression of more than 60% of all the
protein-coding genes through a post-transcriptional mechanism
by base-pairing to target mRNAs. Generally, miRNAs inhibit
protein synthesis either by repressing translation or by inducing
deadenylation and degradation of target mRNAs, but were also
reported to activate translation (110, 111). Individual miRNAs
have the potential to target hundreds of different mRNAs, and a
single gene could be modulated by several different miRNAs, thus
implying a coordinate and fine-tuned expression of proteins in a
cell and even, in particular, cell compartments (112, 113).

It is also known that environmental factors may modify
gene expression through the regulation of miRNA synthesis
(114), and there is evidence for a bilateral interaction between
miRNA expression and other biological processes modulated by
environment including DNA methylation or histone modifica-
tions (95, 115–117).

Examples of the effect of environmental factors on miRNAs
come from preclinical data, where rats exposed to chronic stress
showed an increased expression of miR-186 and miR-381 and a
down-regulation of miR-709; interestingly, such alterations per-
sisted over time as miR-709 alterations were still present also after
2 weeks of recovery from stress, suggesting that miRNAs changes
can persist over time and can mediate altered stress-induced
behaviors (118). Moreover, a maternal separation paradigm was
able to up-regulate the expression of miR-132 and miR-124 in
the prefrontal cortex of 14-day-old pups, an effect that, again,
can be observed also in adult rats (119). These long-lasting mod-
ifications of miRNAs may also result from epigenetic changes
since a recent human study identified miRNAs possible target of
genomemethylation after childhood abuse exposure (120). In this
study, the authors were able to demonstrate an abuse-associated
hypermethylation in 31 miRNAs in a sample of adult males
exposed to childhood abuse and, at least for 6 of thesemiRNAs, the
hypermethylated state was consistent with the hypomethylation of
their gene targets (120).

Here below, we now report some examples of epigenetic pro-
cesses (DNA methylation and miRNAs changes) as modulators of
target genes involved in neuroplasticity, serotoninergic transmis-
sion, and GR functionality and, in particular, we will focus on the
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same genes we have already discussed in previous paragraphs as
involved in gene× environment interaction.

The neurotrophin BDNF is a molecule highly sensible to stress,
and its expression is reduced in key brain regions of animal
models of depression (121–123) and also in the blood of depressed
patients (124–126). In order to better understand the possible
mechanisms underlying these changes, researchers investigated
the role of DNA methylation within BDNF promoter regions.
For example, adult rats exposed to early maltreatment showed
reduced BDNFmRNA levels in the prefrontal cortex, as a result of
an increase in the methylation of CpG sites within the promoter
region of the BDNF exon IV. These changes persisted through
adolescence and were maintained up to adulthood. Moreover,
alterations in the methylation pattern at BDNF IV exon was also
found in the offspring of females that had previously experienced
the maltreatment regimen, indicating that these epigenetic pro-
cesses can be perpetuated from one generation to the next (127).

These data have been supported by human studies. Fuchikami
and collaborators examined the methylation profile of two CpG
islands localized within two promoter regions (I and IV) of the
BDNF gene in peripheral blood from depressed patients and
controls reporting a significant difference at the promoter of
exon I between the two groups (128). In another study, Kang
and colleagues (129) found a significant increase of BDNF gene
methylation in depressed patients with suicidal attempt history,
(129). Moreover, an increased methylation of BDNF exon IV
promoter was associated with decreased BDNF mRNA levels in
brain Wernicke’s area from suicide victims who were affected by
MDD (130).

Alterations of miRNAs expression may also contribute to
BDNF dysregulation. Interestingly, Li et al. (131) showed that
reduced serum BDNF levels in depressed patients was accompa-
nied by an up-regulation of two miRNAs (miR-132, miR-182),
which have been previously described to regulate BDNF (132).
Moreover, a reduction of BDNF expression in the brain of animals
exposed to maternal deprivation was significantly associated with
an up-regulation of miR-16 levels (86).

Also, the SLC6A4 (or SERT) gene has been widely studied for
changes in its epigenetic status, especially in relation to stressful
life events exposure or in relation to MDD. Several in vivo and
in vitro studies found site-specific methylation changes within
SLC6A4 gene, which were associated with decreased levels of
the SERT mRNA. Moreover, Philibert and colleagues showed, by
using lymphoblast cell lines, that this effect was shown only when
the 5-HTTLPR genotype was taken into account (133). Higher
SERT promoter methylation status was significantly associated
with childhood adversities, family history of depression, higher
perceived stress, and more severe psychopathology (129). There
is also evidence for reduced SERT mRNA levels in individuals
exposed to maternal prenatal stress or childhood maltreatment,
observed by an inverse correlation between SERT mRNA lev-
els and the magnitude of prenatal/early adversity (56). Maternal
separation has been associated with lower SERT mRNA levels in
rodents and decreased SERT availability in non-human primates
(134). Rhesusmacaques exposed tomaternal aggression displayed
a reduced SERT mRNA levels in peripheral blood cells, indicat-
ing that stress-induced changes of SERT expression may not be
limited to the brain (135).

SERT expression can also be influenced by specific miRNAs.
Interestingly, it has been shown that miR-16, which targets BDNF,
is also involved in the modulation of SERT both in human and
rat tissues (136), suggesting that the interaction between BDNF
and the serotonergic system may be due to the action of common
regulatory miRNAs (137). Interestingly, Baudry and colleagues
reported that a chronic treatment with the selective serotonin
reuptake inhibitors (SSRI) fluoxetine increases miR-16 levels in
serotonergic raphe nuclei, and that this increase is accompanied
by a reduction of SERT expression and in BDNF modulation,
suggesting a role for miR-16 in the therapeutic action of SSRI
antidepressants (138).

Epigenetic mechanisms have been also proposed as linking
bridges between environmental factors and genes involved in
the HPA axis functionality (139). In rodents, increased maternal
care, such as pup licking and grooming (LG) and arched-back
nursing (ABN), has been associated with long-lasting changes in
DNA methylation within the exon 17 in the promoter region of
the glucocorticoid receptor GR gene. In particular, the NGFI-A
binding site in the GR promoter 17 was highly methylated in the
offspring of low caring mothers, resulting in reduced expression
of GR exon 17.

Similar studies have been performed in humans in order to
investigate alterations in theGR 1F promoter, the human homolog
of the rat exon 17 NR3C1 promoter, in relationship with early
life adverse events. To this regard, McGowan et al. (103) have
found that the methylation levels of the GR 1F promoter were
significantly increased in the hippocampus from suicide victims
with a history of childhood abuse, as compared with those from
suicide victims with no childhood abuse or with control samples,
suggesting an effect of child abuse, independent from suicide, on
GR methylation status and gene expression.

Epigenetic changes on human GR promoter as consequence of
early environmental factors have also been reported by Oberlan-
der et al. (140), which showed that prenatal exposure to maternal
depressed/anxious mood led to increased methylation levels of
the NR3C1 promoter in cord blood of newborns and that this
methylation pattern was also associated with increased salivary
cortisol in response to stress (140). Childhood maltreatment was
also associated with increased methylation of NR3C1 promoter
in the blood of patients affected by psychiatric disorders includ-
ing MDD (139). Furthermore, the severity, the number, and
the type of maltreatments positively correlated with the level of
methylation (139). Interestingly, GR methylation marks might
be even transmitted to subsequent generations, suggesting that
the vulnerability risk of the offspring toward stress-related dis-
orders may be related to the induction of specific epigenetic
signatures (141–146).

For example, Radtke et al. (147) investigated whether intrauter-
ine exposure to maternal stress could affect the epigenetic pat-
terns beyond infancy. In particular, they analyzed the methy-
lation status of the NR3C1 gene both in mothers, subjected to
intimate partner violence during pregnancy, and also in their
adolescent children. The authors found an increased methyla-
tion of NR3C1 promoter in children exposed to prenatal stress,
confirming that epigenetic modifications could be transmitted
from one generation to another and could be established already
in utero.

Frontiers in Psychiatry | www.frontiersin.org May 2015 | Volume 6 | Article 686

http://www.frontiersin.org/Psychiatry/
http://www.frontiersin.org
http://www.frontiersin.org/Psychiatry/archive


Lopizzo et al. Genetic and epigenetic mechanisms in major depression

TABLE 2 | Correlation between epigenetic modification, stress, and genetics.

Reference Gene Epigenetic
modification

Findings

Kang et al. (129) BDNF DNA methylation A higher BDNF promoter methylation status was significantly associated with suicidal ideation

Li et al. (131) BDNF miRNA Reverse relationship between the serum BDNF levels and the miR-132/miR-182 levels in depression

Kang et al. (129) SLC6A4 DNA methylation Higher SLC6A4 promoter methylation status was significantly associated with childhood adversities

Moya et al. (136) SLC6A4 miRNA SERT expression is regulated additionally by miR-15a as well as miR-16 in human and rat tissues

Klengel et al. (104) FKBP5 DNA methylation FKBP5 methylation might increase the differential responsiveness of FKBP5 to GR activation, which
could remains stable over time

Fuchikami et al. (128) BDNF DNA methylation DNA methylation profiles of CpG I of the BDNF gene may be a valuable diagnostic biomarker for
major depression

Perroud (153) NR3C1 DNA methylation Childhood maltreatment associated with increased methylation of NR3C1 promoter in the blood of
psychiatric patients

Radtke et al. (147) GR DNA methylation Methylation status of the GR gene of adolescent children is influenced by their mother’s experience
of IPV during pregnancy

Haramati et al. (149) CRFR1 miRNA miR-34c was further confirmed to be up-regulated after acute and chronic stressful challenge

Keller et al. (130) BDNF DNA methylation BDNF promoter/exon IV is frequently hypermethylated in the Wernicke area of the postmortem brain
of suicide subjects

Baudry et al. (138) SLC6A4 miRNA miR-16 contributes to the therapeutic action of SSRI antidepressants in monoaminergic neurons

Lee et al. (148) FKBP5 DNA methylation After chronic exposure to CORT, 2.4-fold increase in Fkbp5 expression and a decrease in DNA
methylation

Kawashima et al. (151) GR, BDNF miRNA An excess glucocorticoid exposure results in a decrease in the BDNF-dependent neuronal function
via suppressing miR-132 expression

Roth et al. (127) BDNF DNA methylation Early maltreatment produced changes in methylation of BDNF that caused altered BDNF gene
expression in the adult prefrontal cortex

McGowan et al. (103) NR3C1 DNA methylation Methylation levels of the GR 1F promoter increased in the hippocampus from suicide victims with a
history of childhood abuse

Cheng et al. (152) SOX9 miRNA miR-124-mediated repression of Sox9 is important for progression along the SVZ stem cell lineage
to neurons

Oberlander et al. (140) NR3C1 DNA methylation Methylation status of the human NR3C1 gene in newborns is sensitive to prenatal maternal mood

Also, the GR co-chaperonine, FKBP5, has been widely inves-
tigated in term of epigenetic changes induced by ELS, because
of its role in modulating the stress response and its relationship
to stress-related neuropsychiatric disorders, such as MDD. For
example, a transient decreased methylation status accompanied
by an increased expression of FKBP5 has been shown in the
hippocampus, hypothalamus, and in the blood of mice after pro-
longed exposure to glucocorticoids (148). Reduced methylation
levels of FKBP5 gene within regions containing functional gluco-
corticoid responsive elements were observed also in the blood of
individuals exposed to childhood abuse when compared to sub-
jects without any childhood trauma (104). The authors suggested
that changes in FKBP5methylationmight increase the differential
responsiveness of FKBP5 to GR activation that, if installed during
developmentally critical periods, then can remain stable over time.

Recent evidences suggest that, above to DNA methylation,
also miRNAs can persistently influence HPA axis responsive-
ness. For example, an increase of miR-18a levels, which targets
the GR, was found in the hypothalamus of a stress-sensitive rat
strain, while miR-34c was found markedly up-regulated after
acute and chronic stress in mice (149). Differential modifications
in miRNAs expression were demonstrated in relation to normal
(non-learned helplessness) versus aberrant (learned helplessness)
response to a repeated shock paradigm in rats (150). It was also

suggested that stress-inducible cognitive impairments could be
attributable to cholinergic-mediated induction of miR-132 in hip-
pocampus. Interestingly, excess in glucocorticoids was shown to
interfere with the BDNF/miR-132 cascade (151). Another GR-
targeting miRNA is miR-124a, which has been suggested to be
critical for maintaining GR expression at permissive levels to
neurogenesis (152).

We summarized the above-mentioned studies on epigenetics in
Table 2.

Overall, these evidences suggest that a GR functionality deficit
due to changes in DNA methylation or miRNAs expression could
lead to long-term changes in stress hormone system regulation, to
alterations of neuronal circuits and other glucocorticoid receptor
responsive systems, resulting in a higher risk for the development
of stress-related psychiatric disorders.

Conclusion

Despite the relative importance of genetic risk factors in the patho-
genesis of MDD, gene association studies have identified, to date,
only a very small number of candidate vulnerability genes that,
however, can explain little of the variance. This is known also as
“missing heritability” and it could be accounted by several factors
including the evidence that each susceptibility gene contributes to
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a small fraction of the total genetic risk forMDD, and thatmultiple
and partially overlapping sets of susceptibility genes interact each
other and with the environment, modulating the individual risk
to MDD.

Among environmental factors, a prominent role has been rec-
ognized for ELS. However, not all the individuals exposed to ELS
develop MDD or other psychiatric illnesses, and this is mainly
because the mental outcome is dependent, once again, on the
individual genetic background. Thus, the best paradigm to predict
the MDD risk and MDD onset is explained by gene–environment
interactions, which reflect causal mechanisms, where one or more
genetic variants and one or more environmental factors con-
tribute to the causation of a condition in the same individual with
the genetic factors influencing the sensitivity to environmental
exposures.

Epigenetic mechanisms, and in particular DNA methylation
and miRNAs expression changes, have been widely identified as
processes that could play an important role in the pathogenesis
of MDD as they represent the main mediators of the effect of the
environment in enhancing the vulnerability risk to developMDD.
Interestingly, epigenetic changes can be transmitted fromone gen-
eration to another and this is an interesting aspect, as it could also
explain the transmission of MDD vulnerability across families.
In addition, ELS has been also found to act, still through epige-
netic mechanism, directly on brain connections and structure by
reducing the number of glial cells in the brain.

Taken together, we underlie the role of genetic and epigenetic
processes involved in stress and neuroplasticity-related biological
systems on development of MDD after exposure to ELS, thereby
building the basis for future research and clinical interventions.
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