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Background: Clinical and preclinical studies have established that the hippocampus 
is hyperactive in schizophrenia, making it a possible biomarker for drug development. 
Increased hippocampal connectivity, which can be studied conveniently with resting state 
imaging, has been proposed as a readily accessible corollary of hippocampal hyperactivity. 
Here, we tested the hypothesis that hippocampal activity and connectivity are increased 
in patients with schizophrenia.

Methods: Sixty-three schizophrenia patients and 71 healthy control subjects completed 
a resting state functional magnetic resonance imaging scan. We assessed hippocampal 
activity with the amplitude of low frequency fluctuations. We analyzed hippocampal 
functional connectivity with the default mode network using three common methods: group 
and single subject level independent component analysis, and seed-based functional 
connectivity.

results: In patients with schizophrenia, we observed increased amplitude of low frequency 
fluctuations but normal hippocampal connectivity using independent component and 
seed-based analyses.

conclusion: Our results indicate that although intrinsic hippocampal activity may be 
increased in schizophrenia, this finding does not extend to functional connectivity. 
Neuroimaging methods that directly assess hippocampal activity may be more promising 
for the identification of a biomarker for schizophrenia.

Keywords: schizophrenia, hippocampus, connectivity, biomarkers, neuroimaging, fMri

introduction

Neuroimaging and postmortem studies indicate that function and structure of the hippocampus 
are abnormal in schizophrenia (1). Current models posit that NMDA-receptor hypofunction (2, 3) 
or a deficit of GABAergic interneurons (4, 5) leads to a hyperactive hippocampus in schizophrenia 
(1, 5, 6). The most compelling evidence for hippocampal hyperactivity in schizophrenia comes from 
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studies of absolute brain activity, measured in vivo using cerebral 
blood flow (CBF) and cerebral blood volume (CBV) methods 
(7–13). The degree of hippocampal hyperactivity has been linked 
to overall psychopathology (14) and positive symptoms (15, 16), 
and resolves with antipsychotic treatment (17). This has led to the 
proposal that hippocampal hyperactivity is a biomarker that can 
guide the development of new treatments for schizophrenia (6).

Resting state fMRI (RS-fMRI) has been used to support the 
proposal that hippocampal hyperactivity may be a biomarker for 
schizophrenia. RS-fMRI measures spontaneous temporal changes 
in the blood oxygen level dependent (BOLD) response. RS-fMRI 
has been most commonly used to examine intrinsic functional 
connectivity, the strength of co-activation between different 
brain regions over time, rather than activity within a region 
per se. Tregellas and colleagues (12) recently identified increased 
functional connectivity between the hippocampus and other brain 
regions, particularly those in the default mode network. The hip-
pocampus is an accessory component of the default mode network 
and is most often associated with episodic memory and prospective 
mental scene construction (18). Both hippocampal hyperactivity 
and default mode network dysconnectivity have been linked to 
memory deficits and positive symptoms in schizophrenia (1, 19).

While intriguing, there are several issues that warrant additional 
exploration. First, in the analysis used by Tregellas et al., estimation 
of individual subject connectivity relies on back reconstruction 
from group level results (20). Hippocampal connectivity or activity 
can become a surrogate endpoint in clinical trials only if it can be 
measured at the individual subject level. Second, although increased 
functional connectivity was reported by one other study (21), 
more studies have reported decreased (22, 23) or normal (24–29) 
functional connectivity of the hippocampus in schizophrenia. The 
conflicting results may be due to variable methodology used across 
studies [data driven independent component analysis (ICA) versus 
hypothesis-driven seed-based analyses]. Finally, functional con-
nectivity differences can be due to abnormal activation of multiple 
brain regions. To test for functional connectivity differences due 
to hippocampal hyperactivity, it is necessary to study intrinsic 
activity within the hippocampus itself, such as the amplitude 
of low frequency fluctuations (ALFF) (30). ALFF is correlated 
with task-related activation in task positive regions and with  
task-related deactivation in regions of the default mode network 
(31, 32). Thus, it serves as a useful marker of intrinsic brain activity. 
Two recent studies have found increased hippocampal ALFF in 
schizophrenia (33, 34).

Taken together, the evidence for hippocampal hyperactivity 
in schizophrenia is compelling (6), but the finding of increased 
intrinsic hippocampal functional connectivity in chronic schizo-
phrenia (12) requires confirmation. The current study had two 
goals: (1) to determine whether increased hippocampal activity 
and connectivity could be replicated in a large sample with the same 
methodology used in previous studies (12, 33) and (2) to examine 
whether hippocampal hyperconnectivity is present using measures 
of intrinsic connectivity better suited to analysis at the individual 
subject level. We measured BOLD signal fluctuations within the 
hippocampus using ALFF and fractional ALFF. Fractional ALFF 
was included because it may be less sensitive to physiological noise 
than ALFF (35). Two types of ICA were performed in which mean 

independent component value was extracted from hippocampal 
regions of interest. Group level ICA was used to determine if the 
previous finding of hippocampal hyperconnectivity in schizo-
phrenia (12) was replicated in our data. Although other methods 
may be superior for group ICA (36), such methods still derive 
connectivity information for individual subjects from group 
level data. We therefore also measured individual subject ICA, 
which allows direct assessment of connectivity at the individual 
level and avoids the estimation of individual subject connectivity 
using back reconstruction that is required for group level ICA 
(20). Additionally, we carried out seed-based connectivity analysis 
between the hippocampus and several key nodes of the default 
mode network.

Materials and Methods

Participants
Sixty-three patients with chronic schizophrenia and 71 healthy 
controls participated in the study (Table 1). Patients were recruited 
from the psychiatric inpatient and outpatient clinics of the 
Vanderbilt University Psychotic Disorders Program as part of an 
ongoing study of the neurobiology of psychosis. Age- and gender-
matched healthy controls were recruited from the surrounding 
community using email advertisements. All participants were 
assessed with the Structured Clinical Interview for DSM-IV (37) 
and the Wechsler Test of Adult Reading (38) to estimate premorbid 
IQ. Participants were excluded for significant medical and neuro-
logical illness, head injury, estimated premorbid IQ <70 or alcohol, 
or substance abuse within the past 1 month. Control participants 
were further excluded for psychotropic drug use, psychiatric ill-
ness, or a first-degree relative with a history of psychotic illness. 
Parental education was available on a subset of 56 patients and 
53 controls. Patients and controls did not differ with respect to 
age, race, gender, or parental education, but control participants 
had higher premorbid IQ and there were more smokers in the 
patient group (Table 1). However, tobacco use did not interact with 
group in any of the primary measures of hippocampal connectiv-
ity or ALFF (Group X Smoking Status ANOVAs, all p’s > 0.05). 
Antipsychotic dosage (CPZ equivalents) was not associated with 

TaBle 1 | Participant demographic and clinical characteristics.

schizophrenia 
n = 63

control 
n = 71

p-Value

Age (years) 37.29 (11.57) 35.21 (10.84) 0.29
Gender (female/male) 27/36 33/38 0.67
Race (white/black/other) 35/23/5 46/21/4 0.54
Parental education (years a) 13.51 (2.73) 13.87 (2.45) 0.47
Handedness (right/left) 53/10 64/7 0.30
Premorbid IQ – WTAR 97.46 (14.34) 108.79 (12.69) <0.001
PANSS
 Positive subscale 20.30 (6.88)
 Negative subscale 14.95 (6.88)
 General subscale 32.81 (8.06)
Chlorpromazine equivalents b 566.41 (265.39)
Smokers/non-smokers 37/26 14/57 <0.001

All values are mean (SD) unless otherwise specified.
a Parental education levels were available for 56 patients and 53 controls.
b Chlorpromazine equivalents were available for 59 patients.
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primary measures of hippocampal connectivity or ALFF (Pearson 
correlations, all p’s > 0.05). The Vanderbilt University Institutional 
Review Board approved the study. All participants provided written 
informed consent and were compensated financially for their time.

fMri Data acquisition
Structural and functional scans were acquired on a 3T Philips 
Achieva scanner (Philips Healthcare, Inc., Best, The Netherlands). 
High-resolution structural images were acquired with a 3D 
T1-weighted sequence [echo time (TE)  =  3.7  ms; repetition 
time (TR) = 8.0 ms; field of view (FOV) = 256 mm2; number of 
slices = 170; slice thickness = 1.0 mm; gap thickness = 0.0 mm]. 
For the resting state scan, participants were instructed to remain 
quiet with their eyes closed but to not fall asleep. An experimenter 
verbally confirmed that participants stayed awake immediately 
following the resting state scan. Two hundred and three func-
tional images were collected using a T2*-weighted EPI sequence 
(TE = 35 ms; TR = 2000 ms; flip angle = 79°; FOV = 240 mm2; 
in-plane resolution  =  3.0  mm2; slice thickness  =  4.0  mm; gap 
thickness = 0.4 mm; number of slices = 28).

structural and Functional Mri Data analysis
Structural and functional data were preprocessed using SPM81 and 
Matlab (The MathWorks, Inc., Natick, MA, USA). Structural data 
were segmented into gray matter, white matter, and cerebrospinal 
fluid using the Voxel-Based Morphometry Toolbox2 (Version 8.0). 
Functional images were slice-time corrected, realigned to the mean 
image, co-registered with the native space structural data, and 
normalized to MNI space. These preprocessed images were used as 
input to the independent component and seed-based connectivity 
analyses.

Region of Interest Definition
Regions of interest (ROIs) were defined for use in the independ-
ent component and seed-based connectivity analyses described 
below. ROIs for the default mode network were taken from the 
Wake Forest University PickAtlas [version 2.4; (39)] and included 
the bilateral hippocampus, precuneus/posterior cingulate cortex, 
lateral parietal cortex (angular gyrus), and medial prefrontal cortex 
(including superior frontal gyrus and medial orbital gyrus). The 
default mode ROIs were merged into a single network template 
mask for use in the independent component analyses. For the seed-
based connectivity and ALFF analyses, participant-specific manu-
ally traced hippocampal ROIs were used instead of the PickAtlas 
ROI. Bilateral hippocampal ROIs were manually traced on each 
participant’s native space T1-weighted structural image (40) and 
normalized to MNI space using each subject’s warping parameters 
derived from the anatomical normalization step described above. 
Default mode seed ROIs were the same as those used for ICA.

ALFF Analysis
Voxelwise amplitude of low frequency fluctuation analysis was 
carried out with AFNI’s 3dRSFC (41). The ALFF for each voxel 

1 http://www.fil.ion.ucl.ac.uk/spm
2 http://dbm.neuro.uni-jena.de/vbm

was calculated by first removing linear and quadratic trends from 
the time-series, band-pass filtering the time-series (0.01–0.1 Hz), 
converting to the power spectrum using a fast Fourier transform, 
and taking the average of the square root of the power in the range 
0.01–0.1 Hz. This value was divided by the global within-brain 
mean ALFF. Because ALFF may be influenced by physiological 
noise, we also examined fractional ALFF [fALFF, (35)]. fALFF was 
calculated in 3dRSFC as the ratio of the power in the low frequency 
range relative to the whole frequency range. fALFF for each voxel 
was divided by global within-brain mean fALFF. The mean ALFF 
and fALFF values were extracted from each hippocampal ROI and 
analyzed using two-tailed, Welch’s unpaired t-tests.

independent component analysis – group level
Group specific ICA was carried out to determine whether we 
could replicate previous findings with identical methods (12). This 
analysis used GIFT software3 (Group ICA of fMRI Toolbox). Time 
series were scaled to a mean of 100 on a voxel-wise basis. Each 
subject’s full spatiotemporal data set (time by voxel matrix) was 
reduced to 35 principal components. These were concatenated 
within each group (control or patient) and a second reduction 
to 20, 30, or 40 components was performed for each group 
matrix. Component ordering was tracked so that subject-specific 
component images could be back-reconstructed from the group 
independent components (20). Candidates for the default mode 
network component were identified for each group by computing 
the correlation between each independent component spatial map 
and the network template mask. The voxel values of the default 
mode network component were averaged across the entire 
hippocampus in each subject-specific component image. These 
average hippocampal default mode network loadings were then 
compared between groups for the three analyses (having 20, 30, 
or 40 independent components).

Independent Component Analysis – Individual 
Subjects
Single-session ICA was performed using FEAT (fMRI Expert 
Analysis Tool, version 6.0) and MELODIC [Multivariate Exploratory 
Linear Decomposition into Independent Components, version 
3.12; (42)] as part of FSL4 (FMRIB’s Software Library). The following 
steps were applied to the preprocessed fMRI time-series before ICA: 
grand-mean intensity normalization, high-pass temporal filtering 
(sigma = 50.0 s), voxel-wise de-meaning, and variance normaliza-
tion. Single-session ICA was carried out on each participant’s fMRI 
time-series multiple times: once with the number of components 
automatically estimated using Bayesian model selection and then 
with the number of components specified at 20, 30, 40, 50, 60, or 
70 (42, 43). To identify the default mode network component for 
each participant, we selected the unthresholded component map 
with the highest correlation to the default mode network mask. 
The mean independent component value was extracted from the 
hippocampal ROIs (referred to as hippocampal connectivity) and 
analyzed using R (44). Our primary analysis was of hippocampal 

3 http://mialab.mrn.org/software/gift/index.html
4 http://www.fmrib.ox.ac.uk/fsl
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TaBle 2 | Means and sDs of alFF and falFF for the hippocampus in 
each group.

hemisphere Method schizophrenia control

Left ALFF 1.19 (0.27) 1.02 (0.24)
fALFF 0.89 (0.07) 0.87 (0.07)

Right ALFF 1.12 (0.22) 1.06 (0.21)
fALFF 0.90 (0.07) 0.88 (0.07)
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connectivity determined with an automatically estimated num-
ber of components and was analyzed with two-tailed, Welch’s 
unpaired t-tests. The follow-up analysis of the effect of number of 
components was analyzed using repeated measures ANOVAs with 
Group as a between subject factor and Hemisphere and Number 
of Independent Components as a within subject factor. Degrees 
of freedom were Greenhouse-Geisser corrected for violations of 
sphericity. Significant interactions were further examined with pair-
wise Welch’s t-tests Bonferroni-corrected for multiple comparisons.

Seed-Based Connectivity Analysis
ROI–ROI functional connectivity analyses were conducted with 
the CONN-fMRI toolbox [version 13p; (45)]. Participant-specific 
temporal confounds, including the realignment parameters derived 
from motion correction, and their first temporal derivatives, and 
the white matter and cerebrospinal fluid signals, were removed 
from the preprocessed fMRI time series. Importantly, nuisance 
regressors for white matter and CSF were derived from each 
subject’s white matter and CSF segmentations using the anatomi-
cal component-based noise reduction method (aCompCor), as 
implemented in the CONN-fMRI toolbox. The aCompCor method 
has been shown to be effective at reducing the effects of head move-
ment on functional connectivity estimates (46). Finally, the result-
ing time-series was band-pass filtered (0.01–0.1 Hz). ROI–ROI 
connectivity for each participant was calculated as the bivariate 
correlation between the mean time courses of each hippocampal 
ROI (left and right) and each default mode ROI (medial prefrontal 
cortex, posterior cingulate/precuneus, lateral parietal cortex) 
and analyzed using R (44). Correlation values were converted to 
z-statistics using Fisher’s z transform. Connectivity with the default 
mode network was calculated separately for each hippocampal ROI 
as the mean z-statistic between the hippocampus and the default 
mode network ROIs. Group analyses of mean connectivity were 
carried out for each hippocampal ROI using two-tailed, Welch’s 
unpaired t-tests with an alpha of 0.05.

results

We tested the hypothesis of hippocampal hyperactivity in schizo-
phrenia with four complementary methods: ALFF, group ICA, 
single subject ICA, and seed-based connectivity.

alFF analysis
Schizophrenia patients had significantly increased ALFF in the left 
hippocampus (t1,126.68 = 3.72, p = 0.0003, Figure 1, Table 2) and at 
trend level in the right hippocampus (t1,129.25 = 1.88, p = 0.06). We 
confirmed this finding with fALFF (left: t1,131.85 = 1.98, p = 0.05; right: 
t1,129.60 = 1.27, p = 0.21). We further analyzed Z-standardized ALFF 
and fALFF in order to control the effects of inter-individual differ-
ences in head motion (47). The finding of greater left hippocampal 
ALFF and fALFF in schizophrenia patients remained significant 
(ALFF: t1,126.10 = 3.60, p = 0.0005; fALFF: t1,131.66 = 2.00, p = 0.05).

independent component analysis – group level
We used group ICA to study intrinsic hippocampal connectivity 
in patients relative to controls (Figure 2A). At least two independ-
ent components were reasonable candidates for the default mode 

Figure 1 | Patients with schizophrenia have increased amplitude of 
low frequency fluctuations in the left hippocampus. The boxplots show 
the median, interquartile range, and outliers. The whiskers extend to the 
lowest value within 1.5 times the quartiles.

network based on the correlation between their spatial maps and 
the template (Table  3). The best matching component varied 
between one characteristic of the typical default mode network, 
with weighting in the anterior medial frontal lobe and the lateral 
parietal lobe and a component heavily weighted to posterior 
cingulate and precuneus.

We did not find clear evidence of hippocampal hyperconnectiv-
ity in schizophrenia patients using group ICA (Figure 3). Different 
processing choices yielded all possible results: no difference in con-
nectivity between patients and controls (e.g., component 1 from 
the 20 component ICA), greater connectivity for patients (e.g., 
component 2 from the 30 component ICA), or greater connectivity 
in controls (e.g., component 1 from the 40 component ICA).

independent component analysis –  
individual subjects
We conducted an ICA in which the number of components in 
the data was automatically identified in a data-driven manner 
[Figure  2B (42)]. Contrary to our hypothesis, schizophrenia 
patients did not exhibit hippocampal hyperconnectivity (Figure 4; 
left: t132 = -0.33, p = 0.74; right: t129 = 0.28, p = 0.78).

In secondary analyses, we examined whether varying the 
number of independent components would affect the observed 
results. We found that the number of components influenced 
which group exhibited greater hippocampal connectivity at a trend 
level [Figure 5; Group X Hemisphere X Number of Components 
interaction: F(3.9, 514.8) = 2.29, p = 0.06]. We carried out follow-up 
unpaired t-tests separately for the left and right hippocampus 
at each model order (20–60 components). All tests failed to 
meet significance after correction for multiple comparisons (all 
p’s > 0.008). However, there was a trend for controls to have greater 
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Figure 3 | group ica-derived left hippocampal hyperconnectivity 
depends on analysis parameters. The boxplots show the median, 
interquartile range, and outliers. The whiskers extend to the lowest value 
within 1.5 times the quartiles.

TaBle 3 | correlation of independent component (ic) maps from group 
ica analysis with default mode network template.

number of ics in 
analysis

ic map schizophrenia control

20 1 0.40 0.31
2 0.27 0.30

30 1 0.36 0.32
2 0.34 0.32

40 1 0.35 0.34
2 0.29 0.22

Figure 2 | hippocampal connectivity with the default mode network in schizophrenia patients and healthy controls. (a) Results from group level ICA 20 
component analysis. (B) Results from individual subject level ICA analysis with automatically determined number of components. Statistical maps displayed at 
p < 0.001, uncorrected.
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hippocampal connectivity than patients with 60 independent 
components (t125 = 2.18, p = 0.03).

seed-Based connectivity analysis
We examined whether schizophrenia is associated with hyper-
connectivity of the hippocampus and the default mode network 
using seed ROI–ROI functional connectivity. We found no 
evidence of hyperconnectivity in the schizophrenia group in the 
left (t120.30 = -0.49, p = 0.62) or right (t122.19 = 0.16, p = 0.88) hip-
pocampus (Figure 6). Connectivity results were unchanged after 
controlling for median framewise displacement (left: F1,31 = 0.25, 
p = 0.62; right: F1,31 = 0.13, p = 0.71).

Discussion

We tested the hypothesis that schizophrenia patients exhibit increased 
intrinsic hippocampal activity (6, 12). Patients had greater amplitude 
of low-frequency fluctuations (ALFF) in the left hippocampus. Our 
result is consistent with the hypothesis of hippocampal hyperactivity 
in schizophrenia. This finding adds to the growing body of evidence 
for greater hippocampal ALFF in chronic schizophrenia (33, 34) and 
fits with results from contrast-enhanced imaging (7–9, 11, 13, 16). 
However, we did not find evidence that this extends to hypercon-
nectivity using either ICA or seed-based analyses.

The finding of increased hippocampal ALFF contrasts with the 
absence of group differences in intrinsic hippocampal connectivity 
in our study. The evidence for increased intrinsic hippocampal con-
nectivity in schizophrenia is mixed. A small number of studies have 
shown increased (12, 21) or decreased (22, 23) connectivity, but the 
majority have observed normal hippocampal connectivity (19, 24, 
25, 27–29). ALFF is correlated with baseline CBF (48) and measures 
the amplitude of BOLD signal fluctuations in a single voxel, rather 
than the association between activation of voxels in different brain 
regions. It is therefore possible that connectivity between the hip-
pocampus and other brain regions remains intact despite elevated 
hippocampal activity in patients. Both previous positive findings 
identified greater intrinsic hippocampal functional connectivity 
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Figure 6 | seed-based functional connectivity with the default mode 
network does not differ between schizophrenia patients and controls 
in the left or right hippocampus. The boxplots show the median, 
interquartile range, and outliers. The whiskers extend to the lowest value 
within 1.5 times the quartiles.

Figure 5 | The number of independent components specified during 
single subject ica influences apparent group differences in functional 
connectivity between the hippocampus and the default mode 
network. Error bars indicate 95% confidence interval of the between group 
difference in connectivity.

Figure 4 | Functional connectivity with the default mode network 
from single subject level ica with automatic component estimation 
does not differ between schizophrenia patients and healthy controls 
in the left or right hippocampus. The boxplots show the median, 
interquartile range, and outliers. The whiskers extend to the lowest value 
within 1.5 times the quartiles.
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with the default mode network (12, 21). The hippocampus, however, 
is not always strongly connected with all regions in this network 
(18). The dissociation between ALFF and connectivity may result 
from weak overall hippocampal connectivity with the default mode 
network. Indeed, one recent study found that hippocampal-default 
mode network connectivity in schizophrenia patients was altered 
only with the precuneus (49). Our finding does not preclude hip-
pocampal involvement in schizophrenia pathology. For example, 
hippocampal dysfunction has been linked to memory deficits 
in the disease (5). Alternatively, the hyperconnectivity observed 
in previous studies may have been driven by increased activity in 
other areas of the default mode network, not the hippocampus. 
Methodological differences may also have contributed to the failure 

to replicate increased hippocampal connectivity in schizophrenia. 
We instructed subjects to keep their eyes closed during the rest-
ing state scan, while the studies that found increased connectivity 
scanned subjects with eyes opened. Because connectivity is stronger 
when subjects have their eyes open (50), it is possible that this 
contributed to the different finding. However, it is unclear why this 
would differentially affect the patient and control groups.

Our findings support the hypothesis of increased intrinsic 
hippocampal activity in schizophrenia and are consistent with 
a translational study showing increased hippocampal CBV in 
patients and a mouse model of psychosis (11). Increased hip-
pocampal ALFF is associated with a greater number of interictal 
epileptiform discharges in medial temporal lobe epilepsy (51), 
suggesting that ALFF is sensitive to the changes in glutamatergic 
and GABAergic signaling thought to drive hippocampal hyperac-
tivity in schizophrenia (2–5). Although we did not find evidence 
that increased hippocampal ALFF impacts default mode network 
function, an intriguing alternative possibility is that increased 
hippocampal ALFF may lead to functional changes within the 
mesolimbic dopamine system. It has been proposed that elevated 
hippocampal activity drives positive symptoms of psychosis by 
increasing midbrain dopamine release through a loop involving 
the nucleus accumbens and ventral pallidum (52). One recent 
study found that altered connectivity between these regions in 
unmedicated schizophrenia patients was restored following anti-
psychotic treatment (53). Future work should examine whether 
increased hippocampal ALFF is associated with dysconnectivity 
of this system and the corresponding link to psychotic symptoms.

We did not find evidence of increased hippocampal connectivity 
by varying the number of independent components identified in 
an analysis. Indeed, there was a trend for greater connectivity in 
controls compared to patients when using 60 components. One 
possible reason for the difference at a higher number of compo-
nents could be greater resolution of data. The DMN component 
at 60 ICs may represent a subnetwork with a more specific hip-
pocampal region than lower IC analyses (54). Although ICA and 
seed-based connectivity produce similar maps of the default mode 
network (55), the hippocampus may have the greatest connectiv-
ity with subregions of the default mode network, including the 
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ventromedial prefrontal, parahippocampal, and posterior inferior 
parietal cortices rather than the core midline areas (18, 56, 57). It is 
possible that our 60-component analysis more correctly identified 
the medial temporal lobe subnetwork of the default mode network.

We conclude that inferences drawn from group ICA studies 
need to be viewed with caution. In group ICA, the entire group 
contributes to the estimated individual subject component maps, 
causing a violation of the assumption of independence and possibly 
a resulting error in statistical tests. Bootstrap or permutation meth-
ods applied before the ICA (i.e., re-computing the ICA for each 
bootstrap or permutation sample) may be required for accurate 
statistics. Different choices of which and how many independent 
components to use in the analysis resulted in different findings, 
raising doubts about the validity of this method to test the hypoth-
esis of hippocampal hyperconnectivity in schizophrenia (58, 59). 
For component selection, automated methods that rely on template 
matching may need manual validation.

Given the limitations of post hoc, data-driven approaches, we 
also used a hypothesis-driven, seed-based approach that examined 
functional connectivity between the hippocampus and a priori 
defined DMN regions. This analysis yielded similar results; hip-
pocampal connectivity with the DMN in schizophrenia patients 
was virtually identical to healthy control subjects. To our knowl-
edge, this is the first time hippocampal functional connectivity 
in schizophrenia has been examined using both ICA (including 
group and individual ICA) and seed-based approaches. The 
convergence of findings across methods strongly argues against 
hippocampal hyperconnectivity, measured with RS-fMRI, as a 
biomarker for schizophrenia, and raises concerns about the 
usefulness of this method as an endpoint in clinical trials.

Although the primary aim of our study was the replication of 
previous findings (12, 33), assessment of chronic schizophrenia 
patients was a limitation of the present study. Hippocampal 

hyperactivity normalizes with treatment (17) and may have limited 
our ability to observe a difference in connectivity between patients 
and controls. However, it is unclear why treatment effects would 
influence connectivity and not ALFF. Future work should focus 
on examining hippocampal connectivity in the early stages of 
psychosis to minimize the influence of medication on activity 
and connectivity. While outside the scope of the current study, 
examination of hippocampal connectivity with individual brain 
regions rather than a broad system such as the default mode net-
work may be a fruitful direction for future research. Hyperactivity 
of specific hippocampal subfields such as CA1 (16) or CA3 (3) may 
explain cognitive deficits in schizophrenia (1, 12). The resolution 
of our data was lower than that used in contrast-enhanced imag-
ing studies and is not suitable to test subfield-specific hypotheses. 
Future studies should examine hippocampal activity using higher 
resolution imaging methods to identify the source of specific 
cognitive deficits in schizophrenia.

In summary, we found greater hippocampal ALFF but normal 
intrinsic hippocampal connectivity in chronic schizophrenia 
patients. Additionally, our data show that results of ICA studies 
can depend critically on algorithmic parameters. We conclude 
that ALFF may be a better marker than functional connectivity 
to identify individual and group differences in hippocampal 
function in schizophrenia.
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