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Toward a deeper understanding of 
the genetics of bipolar disorder
Berit Kerner *

Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, USA

Bipolar disorder is a common, complex psychiatric disorder characterized by mania and 
depression. The disease aggregates in families, but despite much effort, it has been 
difficult to delineate the basic genetic model or identify specific genetic risk factors.
Not only single gene Mendelian transmission and common variant hypotheses
but also multivariate threshold models and oligogenic quasi-Mendelian modes 
of inheritance have dominated the discussion at times. Almost complete sequence 
information of the human genome and falling sequencing costs now offer the opportunity 
to test these models in families in which the disorder is transmitted over several genera-
tions. Exome-wide sequencing studies have revealed an astonishing number of rare and 
potentially damaging mutations in brain-expressed genes that could have contributed 
to the disease manifestation. However, the statistical analysis of these data has been 
challenging, because genetic risk factors displayed a high degree of dissimilarity across 
families. This scenario is not unique to bipolar disorder, but similar results have also been 
found in schizophrenia, a potentially related psychiatric disorder. Recently, our group 
has published data which supported an oligogenic genetic model of transmission in a 
family with bipolar disorder. In this family, three affected siblings shared rare, damaging 
mutations in multiple genes, which were linked to stress response pathways. These
pathways are also the target for drugs frequently used to treat bipolar disorder. This 
article discusses these findings in the context of previously proclaimed disease models 
and suggests future research directions, including biological confirmation and phenotype 
stratification as an approach to disease heterogeneity.
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introduction

“Manic-depressive illness magnifies common human experiences to larger-than-life proportions” 
(1). This opening sentence to Goodwin and Jamison’s acclaimed and comprehensive book on bipolar 
disorder places the often extreme and strange-appearing symptoms of mania and depression in a 
more comprehensible framework of shared human experiences. Bipolar disorder is a severe, complex 
psychiatric disorder, but still, it is so common that most people likely know a friend, a neighbor, or 
even a family member affected with this disease. After all, with an estimated prevalence rate of 2.4% 
(2) and a world population of 7 billion people, it is expected that several million patients might suffer 
from bipolar disorder worldwide. The core symptoms of bipolar disorder are episodes of abnor-
mally elevated, expansive, and irritable mood accompanied by inflated self-esteem and grandiosity. 
Decreased need for sleep, increased talkativeness, and flight of ideas, could also be present, in addition 
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to excessive goal-directed activity and extreme involvement in 
pleasurable activities, which frequently are associated with a 
high potential for painful consequences (3). To meet diagnostic 
criteria, the symptoms must have caused marked impairment in 
social and occupational functioning or required hospitalization 
to prevent harm to oneself or others. Symptoms of depression can 
precede or follow manic episodes, and sometimes even accom-
pany manic episodes, although they are not required for making 
the diagnosis. Psychotic symptoms, such as hallucinations and/or 
delusions, occur in about 50% of bipolar disorder patients, sug-
gesting some symptomatic and even pathophysiological overlap 
with schizophrenia (4). For many patients, the mood symptoms 
can be so agonizing that suicide seems to be the only escape (2). 
Bipolar disorder appears to have strong genetic risk factors. 
Twin studies have suggested a monozygotic concordance rate of 
0.43, and population-based family risk studies have estimated a 
heritability rate of about 58% (5, 6). Environmental risk factors, 
such as trauma (7, 8), infection, and inflammation (9), have been 
found to contribute to a lesser degree. Despite the widespread 
occurrence, the cause of the disease remains elusive.

early Models of disease Transmission and 
Heritability in Bipolar disorder

In some families, bipolar disorder has been transmitted over 
several generations, closely resembling a Mendelian disorder 
(10, 11). This observation had originally inspired researchers 
to study rare, large multi-generational pedigrees under the 
assumption of a single gene with large effect size and autosomal 
dominant, recessive, or X-linked inheritance (12, 13). After initial 
enthusiasm supported by strong genetic linkage signals, it was 

quickly discovered that these results could not be replicated 
(14). Incomplete penetrance, etiological heterogeneity, and 
recombination events might have contributed to the replication 
failure. However, it was also likely that the underlying disease 
model was not supported by the data. After all, not all segregation 
studies had supported a disease model built on a single major 
disease locus (15–18). The high frequency in the population of 
bipolar disorder also clearly distinguished the disease from rare 
Mendelian disorders. As a consequence, the idea of a single major 
risk locus was quickly rejected (19, 20).

why is Bipolar disorder so  
common in the Population?

The question of why and how severe and debilitating disorders, 
such as bipolar disorder, could have persisted in the population 
at a relatively high rate of about 2–4% is among the leading 
questions of evolutionary epidemiology (21, 22). According to 
Darwinian Theory, common, positively selected traits provided 
an evolutionary advantage, but in the case of some traits, left 
almost all members of a population vulnerable to the disease 
(Figure 1) (23). Supporting evidence has come from comparisons 
of the human genome to the genome of the chimpanzee, which 
revealed evidence for positive selection in the opioid receptor 
genes (24) and immune response genes (25, 26). These studies 
provided support for a link between entire genes or even gene 
families and common human traits, such as creativity and novelty 
seeking, which might have not only provided an evolutionary 
advantage but also made all humankind susceptible to addiction 
and other psychiatric disorders (27).

On the other hand, diseases are thought to be subject to negative 
selection. Only in rare cases has evolutionary selection seemed to 
have led to the accumulation of Mendelian disorders. An often 
cited text-book example for a disease with evolutionary advantage 
is sickle cell anemia, a Mendelian disorder with a population 
frequency of up to 0.16% in African Americans. Heterozygous 
mutations in a single disease-causing gene have provided a pro-
tective effect against malaria, a common environmental threat in 
Africa, leading to higher allele frequencies for the protective allele 
than expected based on mutation rates alone (28–30). However, 
examples of other disorders have not supported the theory of 
evolutionary advantages of common variants. The Mendelian 
disorder cystic fibrosis has reached relatively high prevalence in 

FiGuRe 1 | evolution-based hypothesis about traits and diseases.

KeY coNcePT 4 | Genetic risk factors
The genetic code contains information about the structure, function, and 
timely expression of proteins, which are the basic building blocks of the 
cell machinery. Changes in the base-pair sequence of this code (mutations) 
could lead to disease-causing changes in the structure and/or function of the 
encoded proteins. The protein expression level or timing might also be altered.

KeY coNcePT 1 | single gene Mendelian transmission
Many rare, Mendelian disorders, such as cystic fibrosis, are caused by muta-
tions in one or a few genes. The disease manifests if one allele (dominant 
inheritance) or both alleles (recessive inheritance) of a gene carry the mutation 
and environmental influences are of minor importance.

KeY coNcePT 3 | oligogenic quasi-Mendelian mode of inheritance
This genetic model conceptualizes disorders as being influenced by a 
small number of genetic mutations in genes that are potentially related to a 
specific biological function. A disorder occurs if the interacting mutations are 
present and environmental factors are considered of minor importance. The 
inheritance pattern of the disease follows Mendelian rules if all mutations are 
inherited jointly.

KeY coNcePT 2 | Multivariate threshold model
This genetic model is concerned with quantitative traits that are conceptuali-
zed as being normally distributed in the population. A change in the phenotype 
occurs if a threshold of genetic or environmental influences has been reached. 
The relationship between traits and disease is often unclear.
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the population, but increased vulnerability to mutation at a spe-
cific location in the disease-causing gene, and not evolutionary 
advantage, likely contributed to the increased allele frequency of 
the disease-causing CFTRΔF508 mutation (31). Since more than 
1,000 rare mutations in other parts of the gene have been identified 
as disease-causing alleles, an evolutionary advantage of a single 
mutation appears to be less likely. Last, but not least, population 
bottleneck could have resulted in disease aggregation in certain 
populations. For example, Tay–Sachs disease is a genetically 
heterogeneous Mendelian disorder with an increased prevalence 
of 0.04% in the Jewish population (32). The disease is caused by 
more than 30 different mutated alleles, but because of population 
isolation and selective mating, the disease could increase in preva-
lence. These examples demonstrate that disease-causing alleles 
are relatively rare, even in relatively common diseases and that, 
with  a few exceptions, evolutionary advantages do not explain the 
increased population prevalence of severe disorders.

The “common disease–common variant” 
Hypothesis

Even though the rare nature of disease-causing mutations had 
been well accepted by Mendelian geneticists, genetic epidemiolo-
gists had been puzzled by the frequent occurrence of common 
disorders in the population, and also by the discovery of millions 
of common genetic polymorphisms across the genome that 
were not well explained by Darwinian Theory. It was tempt-
ing to claim that common genetic polymorphisms could be 
linked to common complex disorders (33). In addition, it had 
been noticed that association analyses in population samples 
provided increased statistical power over family based linkage 
analysis (34). Technical advantages in array-based approaches 
finally paved the way for genome-wide genotyping of common 
single-nucleotide polymorphisms (SNPs) and association testing 
with disease. Genome-wide association studies were widely dis-
seminated across clinical and statistical fields, and thousands of 
publications followed without further questioning the biological 
foundation of the common disease-common variant hypothesis. 
Overall, these studies have revealed a complex genetic structure 
influencing almost all examined traits and disorders, including 
bipolar disorder (35–38), but the functional consequences of the 
common variants remained mostly elusive (39, 40). Overall, the 
results of these studies have not supported the assumption of a 
common genetic disease-causing risk factor in bipolar disorder 
or a link to positive adaptation. Instead, evidence is accumulating 
that founder effects and drift, but not Darwinian selection, might 
have caused common allele frequency variability, and a causal 
link between common variants and common disorders has not 
been substantiated for most disorders (21, 41, 42).

Alternatives to the common disease–
common variant Hypothesis

While a model of non-random, natural selection had dominated 
the search for genetic risk factors in traits that might have been 
related to psychiatric disorders, alternative explanations had also 
been considered (Figure 2). One hypothesis that had gained atten-
tion proposed a more complex polygenic, or even multifactorial, 
model of transmission (43). An example of polygenic transmission 
is eye color, which seems to be a purely genetic trait. According 
to this model, random mutations in many genes, some of which 
with a dominant effect, influence the expression of the trait in the 
population (44, 45). On the other hand, height is a trait that is 
influenced by a complex interplay of genetic and environmental 
factors (46). An adaptation of this model to psychiatric disorders 
was the liability threshold model (47). According to this theory, 
liability to psychiatric disorders or “traits” related to susceptibility 
follows a continuous distribution in the population. However, 
this model was contradicted by the finding that family risk did not 
follow this pattern (48–50). Furthermore, in many families, the 
disease was transmitted through the paternal and the maternal 
lineage. This pattern of transmission, also known as assortative 
mating, contributed to the aggregation of risk factors in a few 
families with multiple affected family members, whereas in most 
families the risk was low (51). In general, family studies have not 
supported a multifactorial threshold model of disease for bipolar 
disorder (52, 53). Instead, mathematical model fitting in families 
with bipolar disorder suggested an oligogenic, quasi-Mendelian 
mode of inheritance with significant locus heterogeneity (54).

closing the circle or is it a spiral?

In 1990s, when large, multi-generational families were first 
studied, neither the analytical tools nor the biological knowledge 
were available to solve the problem of a complex, oligogenic 
inheritance. However, with almost complete information on the 
human genome available and rapidly falling sequencing costs, the 
time seemed to be right to revisit disease models proposed more 
than 20 years ago. Since bipolar disorder is inherited in families, 
pedigrees seemed to be a natural choice to test the hypothesis 
of a quasi-Mendelian, oligogenic model of disease transmis-
sion (Figure  3). According to this model, it was expected that 

KeY coNcePT 5 | common complex disorders
Some common medical conditions, such as diabetes or high-blood pressure, 
are believed to be caused by genetic and environmental factors. Therefore, 
the transmission in families might not follow a simple Mendelian mode of 
transmission. According to this model, an individual might not manifest the 
disease, even though he or she carries a risk mutation, if the environmental 
exposure has not occurred.
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a few rare and likely functional variants were shared among the 
affected family members with both parents contributing to the 
disease risk. Likewise, unaffected family members would not 
carry the damaging variants. Not only to avoid biases that could 
be introduced by selection of candidate genes but also to keep the 
focus on gene-coding regions for which functional information 
was available, we favored an exome-wide sequencing approach 
(55). The results of our study suggested that multiple, very rare, 
and likely protein-damaging mutations in highly conserved gene 
regions had affected genes that were linked in a single pathophysi-
ological pathway regulated by MAP kinases. All mutations in this 
family had likely affected a specific signaling pathway known to 
be involved in the response to mood stabilizing medications. This 
finding supported the oligogenic hypothesis of genetic risk in 
bipolar disorder. While a statistical proof of disease association will 
require larger data sets, these results, nevertheless, point to genes 
and signaling pathways in which the functional consequences of 
the mutations could be tested in cell culture and animal models 
(Figure 3). Since the data have been published, several groups 
have completed candidate gene sequencing in population and 
family samples, and exome-wide sequencing in Old Order Amish 
families (40, 56–58). These studies have found significant haplo-
type and locus heterogeneity, and further rejected the hypothesis 
of a single major risk gene for bipolar disorder.

While exome-wide and genome-wide sequencing studies 
in bipolar disorder are still rare, we have tried to find further 
support for our hypothesis in studies on a potentially related 
psychiatric disorder, schizophrenia. These studies have revealed 
a high degree of de novo mutations and rare protein-damaging 
genomic variants in patients with schizophrenia (59–69). The 
largest exome-wide study available to date is a population-based 
Swedish study of 5,079 cases and controls (70, 71). The results 
of this study supported the hypothesis of significant locus 
heterogeneity in schizophrenia. Despite an increased burden of 
potentially damaging rare mutations in cases, no locus-specific 
associations reached genome-wide statistical significance. The 
apparent controversy that bipolar disorder appears to be quasi-
Mendelian in families, but still very common in the population, 
could be due to rare mutations in hundreds or thousands of 
contributing genes, a disease model that has become apparent 

in intellectual disability and autism (72). Therefore, it will be 
essential to collect and annotate all identified genetic variants 
in psychiatric patients and to create a comprehensive searchable 
database to facilitate genetic testing and personalized genomic 
medicine (73).

where to go from Here?

In bipolar disorder and schizophrenia, increasing evidence 
supports the role of rare, disease-causing mutations in brain-
expressed genes. As a single major risk gene has become highly 
unlikely, the need for new analytical and statistical approaches 
has grown. Locus heterogeneity and private mutations challenge 
hypothesis testing with established statistical methods. However, 
even for statistically significant associations, the translation into 
clinical applications will ultimately require the demonstration 
of biological significance. So far, genome-wide approaches have 
only scratched the surface of genomic variability. Rare muta-
tions in gene-coding regions certainly constitute only the tip 
of the iceberg and do not capture the full spectrum of potential 
disease-causing genomic changes. For example, researchers have 
only begun to explore the vast functional diversity of non-coding 
DNA. Functional exploration of micro RNAs (miRNAs), small 
nuclear RNAs (snoRNAs), and long non-coding RNAs (lncRNAs) 
could reveal their role in pathway regulation and other cellular 
processes (74). Furthermore, a growing number of investigators 
have requested a balanced approach to DNA-based and protein-
based studies (75). The field of proteomics has already uncovered 
the complexities of context-specific and cell-type-specific 
protein function in a complex network of potential interactions. 
Posttranslational modifications and their consequences on the 
structure, function, and intracellular location of the modified 
proteins provide ever increasing possibilities of variability and 
interaction. Disease mechanisms might also involve cell-derived 
membrane vesicles (CVM), which play a role in cell–cell com-
munication. Interdisciplinary approaches will be necessary to 
clearly elucidate the functional consequences of mutations and 
protein modifications in the context of intracellular events and 
pathways, as well as cell networks and developmental processes.

summary and Recommendations

To tackle the complexity of psychiatric disorders, we will need a 
balanced and broad approach to biological and social risk factors 
in which competing and complementary ideas could receive equal 
financial support. In a scientific culture that is reflected in phrases, 
such as “Go big or go home,” the focus is on large heterogeneous 
population-based samples. While this approach might be useful 
for studying common traits that are shared by most members 
of a population, it is less suitable for diseases that are transmit-
ted in families and in which each family may carry a unique 
combination of susceptibility genes. Rare genomic risk factors 
with moderately strong effect could be best approached through 
exome-wide or genome-wide sequencing of multi-generational 
families in which the disease is transmitted in a Mendelian or 
“quasi-Mendelian” mode. Based on recent results, it should be 
recognized that these approaches are at least complementary in 
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studies of schizophrenia and other neuropsychiatric disorders. 
Rigorous hypothesis testing and rejection of unsupported ideas, 
as well as transparency and replication of results, will ultimately 
lead to progress in our understanding of disease processes and 
risk factors. Reporting of positive, as well as negative, results will 
increase transparency and reduce redundancy of efforts.

Acknowledgments

This study was supported by National Institutes of Health (NIH) 
grant R01 MH085744 and a NARSAD Young Investigator 
award to BK. I would like to thank Jacob Carpenter for editorial 
assistance.

References

 1. Goodwin FK, Jamison KR. Manic-Depressive Illness. New York, NY: Oxford 
University Press (1990).

 2. Merikangas KR, Jin R, He J, Kessler RC, Lee S, Sampson NA, et al. Prevalence 
and correlates of bipolar spectrum disorder in the World Mental Health 
Survey Initiative. Arch Gen Psychiatry (2011) 68(3):241–51. doi:10.1001/
archgenpsychiatry.2011.12 

 3. American Psychiatric Association. Diagnostic and Statistical Manual of 
Mental Disorders (DSM-5®). 5th ed. Washington, DC: American Psychiatric 
Association (2013). doi:10.1176/appi.books.9780890425596

 4. Coryell W, Leon AC, Turvey C, Akiskal HS, Mueller T, Endicott J. The sig-
nificance of psychotic features in manic episodes: a report from the NIMH 
collaborative study. J Affect Disord (2001) 67(1–3):79–88. doi:10.1016/
S0165-0327(99)00024-5 

 5. Kieseppä T, Partonen T, Haukka J, Kaprio J, Lönnqvist J. High concordance 
of bipolar I disorder in a nationwide sample of twins. Am J Psychiatry (2004) 
161:1814–21. doi:10.1176/appi.ajp.161.10.1814 

 6. Song J, Bergen SE, Kuja-Halkola R, Larsson H, Landén M, Lichtenstein P. 
Bipolar disorder and its relation to major psychiatric disorders: a family-based 
study in the Swedish population. Bipolar Disord (2015) 17(2):184–93. 
doi:10.1111/bdi.12242 

 7. Etain B, Aas M, Andreassen OA, Lorentzen S, Dieset I, Gard S, et al. Childhood 
trauma is associated with severe clinical characteristics of bipolar disorders.  
J Clin Psychiatry (2013) 74(10):991–8. doi:10.4088/JCP.13m08353 

 8. Bratlien U, Øie M, Haug E, Møller P, Andreassen OA, Lien L, et  al. 
Environmental factors during adolescence associated with later development 
of psychotic disorders  –  a nested case-control study. Psychiatry Res (2014) 
215(3):579–85. doi:10.1016/j.psychres.2013.12.048 

 9. Severance EG, Gressitt KL, Yang S, Stallings CR, Origoni AE, Vaughan C, 
et  al. Seroreactive marker for inflammatory bowel disease and associations 
with antibodies to dietary proteins in bipolar disorder. Bipolar Disord (2014) 
16(3):230–40. doi:10.1111/bdi.12159 

 10. Rice J, Reich T, Andreasen NC, Endicott J, Van Eerdewegh M, Fishman R, 
et al. The familial transmission of bipolar illness. Arch Gen Psychiatry (1987) 
44(5):441–7. doi:10.1001/archpsyc.1987.01800170063009 

 11. Spence MA, Flodman PL, Sadovnick AD, Bailey-Wilson JE, Ameli H, Remick 
RA. Bipolar disorder: evidence for a major locus. Am J Med Genet (1995) 
60(5):370–6. doi:10.1002/ajmg.1320600505 

 12. Egeland JA, Gerhard DS, Pauls DL, Sussex JN, Kidd KK, Allen CR, et  al. 
Bipolar affective disorders linked to DNA markers on chromosome 11. Nature 
(1987) 325(6107):783–7. doi:10.1038/325783a0 

 13. Hodgkinson S, Sherrington R, Gurling H, Marchbanks R, Reeders S, Mallet 
J, et  al. Molecular genetic evidence for heterogeneity in manic depression. 
Nature (1987) 325(6107):805–6. doi:10.1038/325805a0 

 14. Risch N, Botstein D. A manic depressive history. Editorial. Nat Genet (1996) 
12:351–3. doi:10.1038/ng0496-351 

 15. Rüdin E. Zur Vererbung und Neuentstehung der Dementia praecox. Berlin: 
Springer Verlag OHG (1916).

 16. Sham PC, Morton NE, Rice JP. Segregation analysis of the NIMH Collaborative 
study. Family data on bipolar disorder. Psychiatr Genet (1991) 2:175–84. 
doi:10.1097/00041444-199203000-00002 

 17. Bucher KD, Elston RC, Green R, Whybrow P, Helzer J, Reich T, et  al. 
The transmission of manic depressive illness  –  II. Segregation anal-
ysis of three sets of family data. J Psychiatr Res (1981) 16(1):65–78. 
doi:10.1016/0022-3956(81)90014-5 

 18. Goldin LR, Gershon ES, Targum SD, Sparkes RS, McGinniss M. Segregation 
and linkage analyses in families of patients with bipolar, unipolar, and schi-
zoaffective mood disorders. Am J Hum Genet (1983) 35(2):274–87. 

 19. Akiskal HS. The bipolar spectrum: research and clinical perspectives. 
Encephalocele (1995) 6:3–11. 

 20. Craddock N, Van Eerdewegh P, Reich T. Single major locus models for 
bipolar disorder are implausible. Am J Med Genet (1997) 74:18. doi:10.1002/
(SICI)1096-8628(19970221)74:1<18::AID-AJMG4>3.0.CO;2-R 

 21. Wilson DR. Evolutionary epidemiology and manic depression. Br J Med 
Psychol (1998) 71(Pt 4):375–95. doi:10.1111/j.2044-8341.1998.tb00999.x 

 22. Wilson DR. Evolutionary epidemiology. Acta Biotheor (1992) 40:87–90. 
doi:10.1007/BF00046552 

 23. Wilson E. Sociobiology: The New Synthesis. Cambridge, MA: Belknap/Harvard 
University Press (1975).

 24. Cruz-Gordillo P, Fedrigo O, Wray GA, Babbitt CC. Extensive changes in the 
expression of the opioid genes between humans and chimpanzees. Brain Behav 
Evol (2010) 76(2):154–62. doi:10.1159/000320968 

 25. Grossman SR, Andersen KG, Shlyakhter I, Tabrizi S, Winnicki S, Yen A, 
et al. Identifying recent adaptations in large-scale genomic data. Cell (2013) 
152(4):703–13. doi:10.1016/j.cell.2013.01.035 

 26. Ye CJ, Feng T, Kwon HK, Raj T, Wilson MT, Asinovski N, et al. Intersection of 
population variation and autoimmunity genetics in human T cell activation. 
Science (2014) 345(6202):1254665. doi:10.1126/science.1254665 

 27. Jamison KR. Great wits and madness: more near allied? Br J Psychiatry (2011) 
199(5):351–2. doi:10.1192/bjp.bp.111.100586 

 28. Lynch M. Rate, molecular spectrum, and consequences of human mutation. 
Proc Natl Acad Sci U S A (2010) 107(3):961–8. doi:10.1073/pnas.0912629107 

 29. Livingstone FB. The wave of advance of an advantageous gene: the sickle cell 
gene in Liberia. Hum Biol (1960) 32:197–202. 

 30. Piel FB, Patil AP, Howes RE, Nyangiri OA, Gething PW, Williams TN, et al. 
Global distribution of the sickle cell gene and geographical confirmation of the 
malaria hypothesis. Nat Commun (2010) 1:104. doi:10.1038/ncomms1104 

 31. Collins F. Cystic fibrosis: molecular biology and therapeutic implication. 
Science (1992) 256:774–80. doi:10.1126/science.1375392 

 32. Bray SM, Mulle JG, Dodd AF, Pulver AE, Wooding S, Warren ST. Signatures 
of founder effects, admixture, and selection in the Ashkenazi Jewish 
population. Proc Natl Acad Sci U S A (2010) 107(37):16222–7. doi:10.1073/
pnas.1004381107 

 33. Lander ES. The new genomics: global views of biology. Science (1996) 
274(5287):536–9. doi:10.1126/science.274.5287.536 

 34. Risch N, Merikangas K. The future of genetic studies of complex human dis-
eases. Science (1996) 273(5281):1516–7. doi:10.1126/science.273.5281.1516 

 35. Ferreira MA, O’Donovan MC, Meng YA, Jones IR, Ruderfer DM, Jones L, et al. 
Collaborative genome-wide association analysis supports a role for ANK3 and 
CACNA1C in bipolar disorder. Nat Genet (2008) 40(9):1056–8. doi:10.1038/
ng.209 

 36. Kloiber S, Czamara D, Karbalai N, Müller-Myhsok B, Hennings J, Holsboer 
F, et al. ANK3 and CACNA1C – missing genetic link for bipolar disorder and 
major depressive disorder in two German case-control samples. J Psychiatr Res 
(2012) 46(8):973–9. doi:10.1016/j.jpsychires.2012.04.017 

 37. Hattori E, Toyota T, Ishitsuka Y, Iwayama Y, Yamada K, Ujike H, et  al. 
Preliminary genome-wide association study of bipolar disorder in the Japanese 
population. Am J Med Genet B Neuropsychiatr Genet (2009) 150B(8):1110–7. 
doi:10.1002/ajmg.b.30941 

 38. Kuo PH, Chuang LC, Liu JR, Liu CM, Huang MC, Lin SK, et al. Identification 
of novel loci for bipolar I disorder in a multi-stage genome-wide associa-
tion study. Prog Neuropsychopharmacol Biol Psychiatry (2014) 51:58–64. 
doi:10.1016/j.pnpbp.2014.01.003 

 39. Doyle GA, Lai AT, Chou AD, Wang MJ, Gai X, Rappaport EF, et  al. 
Re-sequencing of ankyrin 3 exon 48 and case-control association analysis of 
rare variants in bipolar disorder type I. Bipolar Disord (2012) 14(8):809–21. 
doi:10.1111/bdi.12002 

http://www.frontiersin.org/Psychiatry/archive
http://www.frontiersin.org/Psychiatry/
www.frontiersin.org
http://dx.doi.org/10.1001/archgenpsychiatry.2011.12
http://dx.doi.org/10.1001/archgenpsychiatry.2011.12
http://dx.doi.org/10.1176/appi.books.9780890425596
http://dx.doi.org/10.1016/S0165-0327(99)00024-5
http://dx.doi.org/10.1016/S0165-0327(99)00024-5
http://dx.doi.org/10.1176/appi.ajp.161.10.1814
http://dx.doi.org/10.1111/bdi.12242
http://dx.doi.org/10.4088/JCP.13m08353
http://dx.doi.org/10.1016/j.psychres.2013.12.048
http://dx.doi.org/10.1111/bdi.12159
http://dx.doi.org/10.1001/archpsyc.1987.01800170063009
http://dx.doi.org/10.1002/ajmg.1320600505
http://dx.doi.org/10.1038/325783a0
http://dx.doi.org/10.1038/325805a0
http://dx.doi.org/10.1038/ng0496-351
http://dx.doi.org/10.1097/00041444-199203000-00002
http://dx.doi.org/10.1016/0022-3956(81)90014-5
http://dx.doi.org/10.1002/(SICI)1096-8628(19970221)74:1 < 18::AID-AJMG4 > 3.0.CO;2-R
http://dx.doi.org/10.1002/(SICI)1096-8628(19970221)74:1 < 18::AID-AJMG4 > 3.0.CO;2-R
http://dx.doi.org/10.1111/j.2044-8341.1998.tb00999.x
http://dx.doi.org/10.1007/BF00046552
http://dx.doi.org/10.1159/000320968
http://dx.doi.org/10.1016/j.cell.2013.01.035
http://dx.doi.org/10.1126/science.1254665
http://dx.doi.org/10.1192/bjp.bp.111.100586
http://dx.doi.org/10.1073/pnas.0912629107
http://dx.doi.org/10.1038/ncomms1104
http://dx.doi.org/10.1126/science.1375392
http://dx.doi.org/10.1073/pnas.1004381107
http://dx.doi.org/10.1073/pnas.1004381107
http://dx.doi.org/10.1126/science.274.5287.536
http://dx.doi.org/10.1126/science.273.5281.1516
http://dx.doi.org/10.1038/ng.209
http://dx.doi.org/10.1038/ng.209
http://dx.doi.org/10.1016/j.jpsychires.2012.04.017
http://dx.doi.org/10.1002/ajmg.b.30941
http://dx.doi.org/10.1016/j.pnpbp.2014.01.003
http://dx.doi.org/10.1111/bdi.12002


August 2015 | Volume 6 | Article 1056

Kerner Genetic models of bipolar disorder

Frontiers in Psychiatry | www.frontiersin.org

 40. Fiorentino A, O’Brien NL, Locke DP, McQuillin A, Jarram A, Anjorin A, et al. 
Analysis of ANK3 and CACNA1C variants identified in bipolar disorder whole 
genome sequence data. Bipolar Disord (2014) 16(6):583–91. doi:10.1111/
bdi.12203 

 41. Nesse RM. Ten questions for evolutionary studies of disease vulnerability. Evol 
Appl (2011) 4(2):264–77. doi:10.1111/j.1752-4571.2010.00181.x 

 42. Kimura M. Stochastic processes and distribution of gene frequencies in natu-
ral selection. Cold Spring Harb Symp Quant Biol (1955) 22:33–53. doi:10.1101/
SQB.1955.020.01.006 

 43. Smeraldi E, Negri F, Heimbuch RC, Kidd KK. Familial patterns and possible 
modes of inheritance of primary affective disorders. J Affect Disord (1981) 
3(2):173–82. doi:10.1016/0165-0327(81)90042-2 

 44. Sturm RA, Larsson M. Genetics of human iris colour and patterns. Pigment Cell 
Melanoma Res (2009) 22(5):544–62. doi:10.1111/j.1755-148X.2009.00606.x 

 45. White D, Rabago-Smith M. Genotype-phenotype associations and human eye 
color. J Hum Genet (2011) 56(1):5–7. doi:10.1038/jhg.2010.126 

 46. Dubois L, Ohm Kyvik K, Girard M, Tatone-Tokuda F, Pérusse D, Hjelmborg 
J, et al. Genetic and environmental contributions to weight, height, and BMI 
from birth to 19 years of age: an international study of over 12,000 twin pairs. 
PLoS One (2012) 7(2):e30153. doi:10.1371/journal.pone.0030153 

 47. Falconer DS. The inheritance of liability to certain diseases, estimated from 
the incidence among relatives. Ann Hum Genet (1965) 29:51–76. doi:10.111
1/j.1469-1809.1965.tb00500.x 

 48. Rosenthal D, editor. The Genain Quadruplets. New York, NY: Basic Books 
(1963).

 49. Gottesman II, Shields J, (with the assistance of D. R. Hanson). Schizophrenia: 
The Epigenetic Puzzle. Cambridge, MA: Cambridge University Press (1982).

 50. Gottesman II, McGuffin P, Farmer AE. Clinical genetics as clues to the “real” 
genetics of schizophrenia (a decade of modest gains while playing for time). 
Schizophr Bull (1987) 13(1):23–47. doi:10.1093/schbul/13.1.23 

 51. Mathews CA, Reus VI. Assortative mating in the affective disorders: a sys-
tematic review and meta-analysis. Compr Psychiatry (2001) 42(4):257–62. 
doi:10.1053/comp.2001.24575 

 52. Baron M, Klotz J, Mendlewicz J, Rainer J. Multiple-threshold transmission 
of affective disorders. Arch Gen Psychiatry (1981) 38(1):79–84. doi:10.1001/
archpsyc.1981.01780260081009 

 53. Price RA, Kidd KK, Pauls DL, Gershon ES, Prusoff BA, Weissman MM, 
et  al. Multiple threshold models for the affective disorders: the Yale-
NIMH collaborative family study. J Psychiatr Res (1985) 19(4):533–46. 
doi:10.1016/0022-3956(85)90071-8 

 54. Craddock N, Khodel V, Van Eerdewegh P, Reich T. Mathematical limits of 
multilocus models: the genetic transmission of bipolar disorder. Am J Hum 
Genet (1995) 57:690–702. 

 55. Kerner B, Rao AR, Christensen B, Dandekar S, Yourshaw M, Nelson SF. 
Rare genomic variants link bipolar disorder with anxiety disorders to CREB-
regulated intracellular signaling pathways. Front Psychiatry (2013) 4:154. 
doi:10.3389/fpsyt.2013.00154 

 56. Georgi B, Craig D, Kember RL, Liu W, Lindquist I, Nasser S, et al. Genomic 
view of bipolar disorder revealed by whole genome sequencing in a genetic 
isolate. PLoS Genet (2014) 10(3):e1004229. doi:10.1371/journal.pgen.1004229 

 57. Strauss KA, Markx S, Georgi B, Paul SM, Jinks RN, Hoshi T, et al. A popula-
tion-based study of KCNH7 p.Arg394His and bipolar spectrum disorder. Hum 
Mol Genet (2014) 23(23):6395–406. doi:10.1093/hmg/ddu335 

 58. Ament SA, Szelinger S, Glusman G, Ashworth J, Hou L, Akula N, et al. Rare 
variants in neuronal excitability genes influence risk for bipolar disorder. Proc 
Natl Acad Sci U S A (2015) 112(11):3576–81. doi:10.1073/pnas.1424958112 

 59. Need AC, McEvoy JP, Gennarelli M, Heinzen EL, Ge D, Maia JM, et al. Exome 
sequencing followed by large-scale genotyping suggests a limited role for 
moderately rare risk factors of strong effect in schizophrenia. Am J Hum Genet 
(2012) 91(2):303–12. doi:10.1016/j.ajhg.2012.06.018 

 60. Girard SL, Gauthier J, Noreau A, Xiong L, Zhou S, Jouan L, et al. Increased 
exonic de novo mutation rate in individuals with schizophrenia. Nat Genet 
(2011) 43(9):860–3. doi:10.1038/ng.886 

 61. Xu B, Roos JL, Dexheimer P, Boone B, Plummer B, Levy S, et  al. Exome 
sequencing supports a de novo mutational paradigm for schizophrenia. Nat 
Genet (2011) 43(9):864–8. doi:10.1038/ng.902 

 62. Xu B, Ionita-Laza I, Roos JL, Boone B, Woodrick S, Sun Y, et al. De novo gene 
mutations highlight patterns of genetic and neural complexity in schizophre-
nia. Nat Genet (2012) 44(12):1365–9. doi:10.1038/ng.2446 

 63. Takata A, Xu B, Ionita-Laza I, Roos JL, Gogos JA, Karayiorgou M. 
Loss-of-function variants in schizophrenia risk and SETD1A as a can-
didate susceptibility gene. Neuron (2014) 82(4):773–80. doi:10.1016/j.
neuron.2014.04.043 

 64. Guipponi M, Santoni FA, Setola V, Gehrig C, Rotharmel M, Cuenca M, et al. 
Exome sequencing in 53 sporadic cases of schizophrenia identifies 18 puta-
tive candidate genes. PLoS One (2014) 9(11):e112745. doi:10.1371/journal.
pone.0112745 

 65. Ionita-Laza I, Xu B, Makarov V, Buxbaum JD, Roos JL, Gogos JA, et al. Scan 
statistic-based analysis of exome sequencing data identifies FAN1 at 15q13.3 
as a susceptibility gene for schizophrenia and autism. Proc Natl Acad Sci U S A 
(2014) 111(1):343–8. doi:10.1073/pnas.1309475110 

 66. McCarthy SE, Gillis J, Kramer M, Lihm J, Yoon S, Berstein Y, et al. De novo 
mutations in schizophrenia implicate chromatin remodeling and support a 
genetic overlap with autism and intellectual disability. Mol Psychiatry (2014) 
19(6):652–8. doi:10.1038/mp.2014.29 

 67. Gulsuner S, Walsh T, Watts AC, Lee MK, Thornton AM, Casadei S, et  al. 
Spatial and temporal mapping of de novo mutations in schizophrenia to a 
fetal prefrontal cortical network. Cell (2013) 154(3):518–29. doi:10.1016/j.
cell.2013.06.049 

 68. Timms AE, Dorschner MO, Wechsler J, Choi KY, Kirkwood R, Girirajan S, 
et al. Support for the N-methyl-D-aspartate receptor hypofunction hypoth-
esis of schizophrenia from exome sequencing in multiplex families. JAMA 
Psychiatry (2013) 70(6):582–90. doi:10.1001/jamapsychiatry.2013.1195 

 69. Fromer M, Pocklington AJ, Kavanagh DH, Williams HJ, Dwyer S, Gormley P, 
et al. De novo mutations in schizophrenia implicate synaptic networks. Nature 
(2014) 506(7487):179–84. doi:10.1038/nature12929 

 70. Purcell SM, Moran JL, Fromer M, Ruderfer D, Solovieff N, Roussos P, et al.  
A polygenic burden of rare disruptive mutations in schizophrenia. Nature 
(2014) 506(7487):185–90. doi:10.1038/nature12975 

 71. Ruderfer DM, Lim ET, Genovese G, Moran JL, Hultman CM, Sullivan PF, 
et al. No evidence for rare recessive and compound heterozygous disruptive 
variants in schizophrenia. Eur J Hum Genet (2015) 23(4):555–7. doi:10.1038/
ejhg.2014.228 

 72. Samocha KE, Robinson EB, Sanders SJ, Stevens C, Sabo A, McGrath LM, et al. 
A framework for the interpretation of de novo mutation in human disease. Nat 
Genet (2014) 46(9):944–50. doi:10.1038/ng.3050 

 73. Stenson PD, Mort M, Ball EV, Shaw K, Phillips A, Cooper DN. The human 
gene mutation database: building a comprehensive mutation repository for 
clinical and molecular genetics, diagnostic testing and personalized genomic 
medicine. Hum Genet (2014) 133(1):1–9. doi:10.1007/s00439-013-1358-4 

 74. Geaghan M, Cairns MJ. MicroRNA and posttranscriptional dysregu-
lation in psychiatry. Biol Psychiatry (2015) 78(4):231–9. doi:10.1016/j.
biopsych.2014.12.009 

 75. Giulivi C. Grand challenges in cellular biochemistry: the “next-gen” biochem-
istry. Front Chem (2014) 2:22. doi:10.3389/fchem.2014.00022 

Conflict of Interest Statement: The author declares that the research was con-
ducted in the absence of any commercial or financial relationships that could be 
construed as a potential conflict of interest.

Copyright © 2015 Kerner. This is an open-access article distributed under the terms 
of the Creative Commons Attribution License (CC BY). The use, distribution or 
reproduction in other forums is permitted, provided the original author(s) or licensor 
are credited and that the original publication in this journal is cited, in accordance 
with accepted academic practice. No use, distribution or reproduction is permitted 
which does not comply with these terms.

http://www.frontiersin.org/Psychiatry/archive
http://www.frontiersin.org/Psychiatry/
www.frontiersin.org
http://dx.doi.org/10.1111/bdi.12203
http://dx.doi.org/10.1111/bdi.12203
http://dx.doi.org/10.1111/j.1752-4571.2010.00181.x
http://dx.doi.org/10.1101/SQB.1955.020.01.006
http://dx.doi.org/10.1101/SQB.1955.020.01.006
http://dx.doi.org/10.1016/0165-0327(81)90042-2
http://dx.doi.org/10.1111/j.1755-148X.2009.00606.x
http://dx.doi.org/10.1038/jhg.2010.126
http://dx.doi.org/10.1371/journal.pone.0030153
http://dx.doi.org/10.1111/j.1469-1809.1965.tb00500.x
http://dx.doi.org/10.1111/j.1469-1809.1965.tb00500.x
http://dx.doi.org/10.1093/schbul/13.1.23
http://dx.doi.org/10.1053/comp.2001.24575
http://dx.doi.org/10.1001/archpsyc.1981.01780260081009
http://dx.doi.org/10.1001/archpsyc.1981.01780260081009
http://dx.doi.org/10.1016/0022-3956(85)90071-8
http://dx.doi.org/10.3389/fpsyt.2013.00154
http://dx.doi.org/10.1371/journal.pgen.1004229
http://dx.doi.org/10.1093/hmg/ddu335
http://dx.doi.org/10.1073/pnas.1424958112
http://dx.doi.org/10.1016/j.ajhg.2012.06.018
http://dx.doi.org/10.1038/ng.886
http://dx.doi.org/10.1038/ng.902
http://dx.doi.org/10.1038/ng.2446
http://dx.doi.org/10.1016/j.neuron.2014.04.043
http://dx.doi.org/10.1016/j.neuron.2014.04.043
http://dx.doi.org/10.1371/journal.pone.0112745
http://dx.doi.org/10.1371/journal.pone.0112745
http://dx.doi.org/10.1073/pnas.1309475110
http://dx.doi.org/10.1038/mp.2014.29
http://dx.doi.org/10.1016/j.cell.2013.06.049
http://dx.doi.org/10.1016/j.cell.2013.06.049
http://dx.doi.org/10.1001/jamapsychiatry.2013.1195
http://dx.doi.org/10.1038/nature12929
http://dx.doi.org/10.1038/nature12975
http://dx.doi.org/10.1038/ejhg.2014.228
http://dx.doi.org/10.1038/ejhg.2014.228
http://dx.doi.org/10.1038/ng.3050
http://dx.doi.org/10.1007/s00439-013-1358-4
http://dx.doi.org/10.1016/j.biopsych.2014.12.009
http://dx.doi.org/10.1016/j.biopsych.2014.12.009
http://dx.doi.org/10.3389/fchem.2014.00022
http://creativecommons.org/licenses/by/4.0/

	Toward a deeper understanding of the genetics of bipolar disorder
	Introduction
	Early Models of Disease Transmission and Heritability in Bipolar Disorder
	Why is Bipolar Disorder so 
Common in the Population?
	The “Common Disease–Common Variant” Hypothesis
	Alternatives to the Common Disease–Common Variant Hypothesis
	Closing the Circle or is it a Spiral?
	Where to go from Here?
	Summary and Recommendations
	Acknowledgments
	References


