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Autism spectrum disorder (ASD) involves a complex interplay of both genetic and 
environmental risk factors, with immune alterations and synaptic connection deficiency 
in early life. In the past decade, studies of ASD have substantially increased, in both 
humans and animal models. Immunological imbalance (including autoimmunity) has 
been proposed as a major etiological component in ASD, taking into account increased 
levels of pro-inflammatory cytokines observed in postmortem brain from patients, as 
well as autoantibody production. Also, epidemiological studies have established a 
correlation of ASD with family history of autoimmune diseases; associations with major 
histocompatibility complex haplotypes and abnormal levels of immunological markers 
in the blood. Moreover, the use of animal models to study ASD is providing increasing 
information on the relationship between the immune system and the pathophysiology of 
ASD. Herein, we will discuss the accumulating literature for ASD, giving special attention 
to the relevant aspects of factors that may be related to the neuroimmune interface in the 
development of ASD, including changes in neuroplasticity.
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History of asd studies

The first use of the term “autistic” was in 1911, by the Swiss psychiatrist Eugen Bleuler (1857–1939), 
referring to the limitation of human relationships and the loss of contact with reality presented 
by patients with schizophrenia (1). The term was then adopted by the Austrian pediatrician Hans 
Asperger (1906–1980) working at the University Children’s Hospital-Vienna, referring to “autistic 
psychopaths.” Asperger was investigating a form of autism spectrum disorder (ASD) now known 
as Asperger syndrome and not widely recognized as a separate diagnosis until 1981. In 1943, the 
Austrian-American psychiatrist Leo Kanner (1894–1981) used the term “autistic disturbances of 
affective contact” to describe 11 children with behavior marked by difficulties in establishing affective 
and interpersonal contact (2). He reported a form distinct from other diseases, such as schizophre-
nia, and that seemed to affect patients from the beginning of their lives. In the following year, Hans 
Asperger described cases exhibiting some characteristics similar to autism, which included difficulty 
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in social communication, but without cognitive loss. For further 
reading, see Ref. (3), in which Asperger’s 1944 manuscript was 
translated.

In 1980, the term “autism” was first inserted in the third edi-
tion of Diagnostic and Statistical Manual of Mental Disorders 
(DSM-III). In 1994, the fourth edition of the DSM included new 
criteria due to the need to identify subgroups of individuals with 
autism, for both practical purposes and research, considering the 
subdivisions: typical autism, pervasive developmental disorder 
not otherwise specified (PDD-NOS), and Asperger syndrome (4).

In the fifth edition, DSM considered instead of three domains 
of autism symptoms (social impairment, language/communica-
tion impairment, and repetitive/restricted behaviors), only 
two categories: (1) social communication impairment and (2) 
restricted interest/repetitive behaviors. Also, the new classifica-
tion eliminated the previously separate subcategories into the 
broad term ASD (5–7). To simplify reading, the term “autism” 
or “ASD” will be used throughout the text representing the entire 
spectrum.

As a developmental disorder, ASD includes different degrees 
of severity and males are more affected than females by a ratio 5:1 
approximately (8).

The number of cases in children increased by 23% between 
2006 and 2008, reaching 1:88 children under 8 years diagnosed 
with any of the spectrum subtypes, and increased by 78% when 
the 2008 data were compared with the data for 2002. The overall 
prevalence of ASD for 2010 in the United States of America 
was 1:68 children aged 8 years and there is a clear growth in the 
number of identified cases (8). This can be due to advances in 
the knowledge of the symptoms associated with improvement in 
diagnostic criteria, as well as increase of environmental risk fac-
tors (drugs, pollutants, stress, etc.), especially during pregnancy, 
which may be related to changes in lifestyle of the society (8). In 
any case, this high prevalence indicates that the subject requires 
emergency measures due to the high economic, social, and family 
cost. The Autism Speaks organization estimates in the USA that 
the current costs of ASD reach US$137 billion per year, a number 
that has increased more than threefold since 2006.

Clinical approach and Molecular 
phenotypes

There are two complementary issues in the clinical approach for 
autism. The first is the general management, including diagnosis 
and evaluation of the intensity level of eventual core behavioral 
symptoms (9). The second considers treatment options, such 
as psychopharmacotherapy and different types of non-medical 
treatments. It is important to consider that ASD symptoms 
usually change during the patient’s lifetime, and therefore, it is 
crucial for clinicians to be aware of age-related differences. Future 
perspectives in the treatment of ASD will probably include immu-
nomodulation, stem cell therapy, and other approaches, after 
careful randomized controlled trials attesting the corresponding 
efficiency of these various strategies.

Although a number of definitions and improvements have 
been made in ASD, the etiological aspects remain unclear. The 
growing number of publications, especially in the last decade, 

leaves no doubt of the multifactorial aspect of the spectrum and 
indicates a complex interplay between genetic/environmental 
factors and the immune system, including stimulation of immune 
cells, generation of autoantibodies, cytokine/chemokine imbal-
ance, and increased permeability of the blood–brain barrier 
(BBB) favoring leukocyte migration into the brain tissue (10).

In addition to clinical knowledge related to ASD, intense 
efforts have been directed toward identifying genes that spe-
cifically cause or increase the risk of developing autism, through 
both large genome-wide association studies and investigation 
of new candidate genes (11–16). It is estimated that 400–1000 
genes may be related to ASD and large-scale studies in ASD and 
respective families have allowed the identification of candidate 
genes that may be related to the development of this disorder. 
Single-gene polymorphisms have been associated with ASD 
(17, 18), including those affecting contactin-associated protein 
like 2 (CNTNAP2); SH3 and multiple ankyrin repeat domains 3 
(SHANK3); neuroligin 3 (NLGN3/4); copy-number variations 
and chromosomal abnormalities, such as the 15q11–q13 duplica-
tion and 16p11.2 deletions or duplications.

Other ASD candidate genes include forkhead box P2 
(FOXP2); suppression of tumorigenicity 7 (ST7); IMP2 inner 
mitochondrial membrane peptidase-like (IMMP2L); reelin 
(RELN) at 7q22–q33, gamma-amino butyric acid (GABA)A 
receptor subunit; and ubiquitin-protein ligase E3A (UBE3A) on 
chromosome 15q11–q13 (19).

Table  1 illustrates polymorphisms with correlation to gut–
brain axis abnormalities. The communication between these two 
systems needs to be further studied in order to identify possible 
key elements involved in ASD symptomatology. We mention 
a few examples as follows. The protein MET is a pleiotropic 
tyrosine-kinase receptor that functions in both brain develop-
ment and gastrointestinal repair. An important functional variant 
(rs1858830 allele “C”) of the gene encoding this protein has been 
demonstrated to be strongly associated with autism, as seen in a 
group of patients that also presented gastrointestinal disturbances 
(20) and altered immune response (21). Also, it was demon-
strated that MET protein levels were significantly decreased in 
the cerebral cortex from ASD cases, compared to healthy controls 
(22), suggesting a dysregulation of signaling that may contribute 

taBLe 1 | selected genes altered in asd, correlated with immune 
function.

Gene protein Function

MET Receptor tyrosine kinase (MET)

PTEN Phosphatase and tensin  
homolog (PTEN)

TSC1 Tuberous sclerosis complex-1 
(TSC1)

Promote IL-12 increase and 
M2-macrophage conversion

TSC2 Tuberous sclerosis complex-2 
(TSC2)

HLA-DRB4 Major histocompatibility  
complex type II (MHC-II)

MIF Macrophage migration inhibitory 
factor (MIF)

Guide and control of 
immune response

C4B Complement component 4B 
(C4B)
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to altered neural circuit formation and function. As the MET 
receptor plays important function in regulating immune respon-
siveness (21), it is conceivable that it has a simultaneous influence 
upon both brain development and gastrointestinal function.

Overall, these data indicate molecular phenotypes, genetic risk 
factors, and gastrointestinal abnormalities, with the gut–brain 
axis. This hypothesis emerges from the observation that MET 
expression is decreased in temporal cortex from postmortem 
ASD brains and that the endogenous MET ligand, hepatocyte 
growth factor (HGF) is decreased in the gastrointestinal tract 
from ASD patients (17).

In a second vein, specific haplotypes related to the polymor-
phism of the SLC6A4 serotonin transporter (SERT) gene correlate 
with hyperfunctioning of serotonin transporter SERT in brain, 
in circulating platelets, and in enterocytes (17), further indicat-
ing interconnections between genetic risk factors for autism 
and gastrointestinal abnormalities. The SLC64A gene is found 
on chromosome 17q11–12 and encodes one of the SERT genes. 
The 5-hydroxytryptamine-transporter length polymorphism 
(5HTTLPR) of the SLC64A gene has been considered to be asso-
ciated with abnormalities seen in serotonin transporter binding 
in ASD (17, 23, 24). Serotonin receptors have also been found 
in the gut mucous layer (25), indicating possible implications in 
ASD since drugs that alter serotonin levels are taken orally.

In future studies, it will be important to improve the under-
standing of the relationships between genetic variation and 
phenotype. In fact, the wide diversity of core features in ASD and 
a varied occurrence of comorbidities make diagnostic procedure 
and clinical management of the patient more difficult, presenting 
a complex range of brain alterations with important changes in 
the frontal cortex.

It should be pointed out that, in addition to genetic alterations, 
environmental risk factors (such as infections, and drug use) dur-
ing key periods of embryonic/fetal development may be associ-
ated with triggering ASD (26). It was demonstrated that modeling 
a situation of maternal infection (by maternal immune activation, 
MIA) in mice leads to permanent immune dysregulation in the 
progeny animals, together with autistic-like symptoms.

Cortical Connectivity dysfunction in asd

Although a consensus concerning structural and functional 
abnormalities in ASD remains difficult, a number of studies on 
these topics bring together important data, as shown in Table 2. 
Several abnormalities have been identified, which may have a 
relationship with neuroimmune changes during development. 
These include subtle defects in cortical architecture, aggravated 
perhaps by perturbed critical period activity-dependent remod-
eling of the network. Such changes lead to white matter defects 
and connectivity problems, which can, in some cases, be linked 
to behavioral abnormalities, as discussed below.

As previously mentioned, structural abnormalities are likely 
to be developmental in origin but may have diverse causes. Yet, 
before entering into this issue, it seemed worthwhile to describe 
normal cortical development (Box 1), also described in Ref. (56).

Environmental risk factors acting during cortical develop-
ment (in utero effects related to maternal infections, stress, other 

agents, such as pharmaceutics, alcohol and drugs of abuse, and 
postnatal experience-dependent activities), can, hence, have 
heterogeneous influences on the formation of cortical areas. For 
example, maternal autoimmunity, infection during pregnancy, 
maternal age and obesity, gestational diabetes, and the presence of 
maternal MET variant rs1858830 “C” allele have been associated 
with the triggering of ASD through maternal immune activation, 
which could manifests as changes in the maternal peripheral 
cytokine milieu, generation of immunoglobulin G (IgG) and 
autoantibodies reactive to fetal brain proteins in different areas, 
such as frontal cortex (59).

Increased brain size (“macrocephaly”) in the first years of 
life is now firmly associated with ASD (60, 61). This may have 
its origins in increased numbers of neurons in some brain areas 
(as the prefrontal) compared to normal individuals (28), or 
more prominently in increased cell size (soma, axonal tracts, 
and dendrites), or in combination of both, in localized regions. 
Accordingly, differences are observed in ASD patients in gray or 
white matter volumes, both identified in MRI studies (62, 63). 
These increased volumes in ASD are associated with aberrant 
connectivity, which may combine over and under-connectivity. 
As mentioned below, structural and functional data revealed a 
connectivity disturbance, affecting frontal, fronto-temporal, 
fronto-limbic, fronto-parietal, and inter-hemispheric connec-
tions (31, 64).

Concerning potential gray matter abnormalities during child-
hood, in postmortem studies, 79 and 29% more neurons were 
identified in dorsolateral and medial prefrontal regions, respec-
tively, in ASD (28). Furthermore, subtle defects in the radial 
organization and local densities of neurons (“minicolumns”) in 
different cortical areas, including the frontal cortex have been 
identified in brains from both ASD children and adults (65, 66), 
reviewed by Zikopoulos and Barbas (31). Occasionally, nodular 
subependymal heterotopia has been identified in ASD (33), sug-
gesting local progenitor or neuronal migration abnormalities, 
although this may be rare. In the adult, increased numbers of 
neurons are not obvious (31), although minicolumn changes, 
with subtle abnormal lamination have been identified occasion-
ally in certain areas (35, 67).

Increased dendritic spine densities have also been observed 
notably in layer 2 of lateral prefrontal association areas (36). 
Parvalbumin positive interneurons have been shown in post-
mortem studies to be less numerous in dorsolateral prefrontal 
regions (31). Blurred white and gray matter boundaries are also 
regularly observed in ASD (37, 65), and this has been suggested 
in other situations (e.g., schizophrenia) to be due to an excess 
of interstitial neurons in the white matter, which may have their 
origin in the subplate (68). Overall, several neuronal density and 
distribution alterations, localized to certain areas, are associated 
with ASD.

A number of changes in brain seem to be related to late 
prenatal or early postnatal periods. Transiently enlarged white 
matter volumes (related to abnormal axonal tracts) have been 
documented in ASD infants exhibiting enlarged head circumfer-
ences. White matter volumes in these individuals then increase 
less slowly during childhood compared to control individuals 
[reviewed by Cassina et al. (69)]. Axonal tracts have been studied 
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taBLe 2 | anatomical studies of brains from individual with asd.

phenotype Brain area Method studied age (autism) sex reference

Macrocephaly Head Head 
circumference

n = 208 probands, n = 147 parents, n = 149 siblings, 
and other controls

9.7 ± 5.4 years (3–47 years) 5.9M:1F (27)

Neuron number DL-PFC and M-PFC Postmortem n = 7 autistic, n = 6 control 2–16 years Male (28)

WM volume Head MRI 41 boys (13 autistic, 14 DLD, 14 normal control); 22  
girls (7 DLD, 15 normal controls)

9.0 0.9 years (autistic), 8.2 1.6 years 
(DLD), and 9.1 1.2 years (controls)

Males and females (29)

GM volume, Gyral 
thickness

Head-temporal and parietal lobes 
affected

MRI n = 17 autism, n = 14 controls 8–12 years Male (30)

PV interneurons DLPFC Postmortem n = 2 ASD n = 2 matched controls for age, sex, and 
hemisphere

30–44 years Male (31)

Minicolumns Prefrontal (area 9) and Temporal 
(areas 21, 22) lobe

Postmortem n = 9 autism brains and n = 4 and 5 controls 5–28 years – (32)

Neuron migration 
disorders

Brain Postmortem n = 13 autism, n = 14 controls 4–62 years 9 males 4 females (33)

Cell density cortical 
layers

ACC Postmortem n = 9 autism brains and controls (34)

Cortical layers PCC FFG Postmortem n = 8–9 autism, n = 7–8 control 19–54 years (PCC), 14–32 years  
(FFG)

Male (35)

Dendritic spines Frontal, temporal and parietal 
(layer II), layer V (temporal)

Postmortem 
Golgi

n = 10 autism; n = 10 and 5 controls 10–45 years Males (36)

Gray-white matter 
boundary

STG, DL-frontal, and DL-parietal n = 8 ASD, n = 8 control 10–45 years Males (37)

Axons ACC, OFC, LPFC Postmortem n = 5 autism, n = 4 control 30–44 years 4 male, 1 female (38)

Corpus callosum CC MRI n = 253 autism, n = 250 Meta-analysis (10 studies) Male >74% (39)

Corpus callosum CC MRI n = 17 autism, n = 17 control 16–54 years Males and females (3) (40)

Brain development White matter DTI (prospective, 
longitudinal)

n = 28 ASD, n = 64 control 6–24 months Males and females (41)

Brain White matter (CC) DTI (prospective, 
longitudinal)

n = 100 ASD, n = 56 controls 3–41 years Males (42)

Brain White matter (CC) DTI n = 43 autism (or PDD, or ASD); n = 34 controls 7–33 years Males (43)

Brain White matter and activation  
(ACC)

DTI and fMRI n = 12 ASD (autism), PDD or Asperger; n = 14  
control (6F)

20–40 years Males and females (2) (44)

Brain White matter (arcuate) DTI n = 13 autism; n = 13 siblings, n = 11 controls 6–13 years Males and females (2) (45)

Brain White matter (several areas) DTI n = 7 autism; n = 7 controls 11–18 years Males and females (1) (46)

Brain Theory of mind areas fMRI n = 12 high functioning autism; n = 12 control (6F) 15–35 years Males and females (2) (47)

Brain Several areas MRI/DTI n = 18 autism; n = 18 control 6–12 years Males and females (2) (48)

Brain Language and spatial fMRI n = 12 autism; n = 13 control Mean 22.5 years Males and females (1) (47)

(Continued)
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BoX 1 | General features of normal cortical development.

During early steps of cortical development, stem cells and progenitor cells 
divide in zones close to the cerebral ventricles before giving rise to neurons, 
which migrate long distances to reach the developing cortical plate. Future 
principal and inhibitory neurons are derived mainly from dorsal and ventral 
telencephalic regions, respectively. Critically timed neuronal activity is essential 
for circuit development, both intrinsic activity and sensory derived, affecting 
synaptogenesis and remodeling. Synaptic pruning removes unused and 
unwanted connections to refine the synaptic patterns. Timing is critical and 
activity-dependent processes contribute to spine turnover and maturation 
(57). Excitatory synapses are generally formed first, followed by inhibitory 
synapses. The temporal regulation of synaptogenesis is likely to be highly 
regulated for a correct excitatory: inhibitory balance. Myelination of mature 
neurons is another critical process ensuring correct functional connectivity in a 
timely fashion between neurons. In the primate, it has been shown that cortical 
areas take different amounts of time to form (58).
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by confocal and electron microscopy in postmortem tissue (38), 
showing fewer large axons in the deep white matter of the anterior 
cingulate cortex (likely representing long-range cortico-cortical 
connections), a higher proportion of branched axons of medium 
caliber, and a significantly increased density of thinner branched, 
axons in the superficial white matter (likely connecting nearby 
areas). Other neuroimaging studies have shown reductions in 
the strength of long-distance connections, e.g., sensory input 
to prefrontal cortex and inter-hemispheric connections (40, 43, 
70–72). Such defects would be expected to have quite severe 
network effects.

Travers et  al. (73) (and references therein) summarize and 
compare 48 peer-reviewed diffusion tensor imaging (DTI) stud-
ies. Preliminary findings suggest that developmental trajectories 
of fractional anisotropy in ASD infants are also different from 
controls, and may mimic the accelerated brain volume phenotype 
(41, 73). Despite small sample sizes, the corpus callosum was 
found in several DTI studies to be reduced in volume [Ref. (43), 
see Figure 3 of Ref. (73)], and in one study the authors further 
found this result to be specific to patients who did not have 
macrocephaly (61). Interestingly and vice versa, callosal agenesis 
is also associated with autism-like symptoms. Concerning micro-
structure, fractional anisotropy was found reduced in anterior 
regions or across the length of the corpus callosum in multiple 
studies (42, 43, 73). This may be due to reduced myelination or 
larger axon diameter or reduced density. In some studies, this 
finding was associated with reduced performance IQ and reduced 
callosal volume (43). Differences were observed in ASD patients, 
concerning the cingulum bundles, which are primary inter-hemi-
spheric-association pathways associated with executive function, 
connecting the medial cingulate cortex with temporal lobe 
structures, such as the hippocampus, consistent macrostructural, 
and reduced fractional anisotropy (44). Relatively  concordant 
results of decreased fractional anisotropy were obtained at the 
beginning of the arcuate fasciculus (although heterogeneous 
results were obtained for the whole tract) in the region of the 
temporo-parietal junction and superior temporal gray matter 
(45, 46, 73). This latter region is associated with social perception, 
and gray matter structure and functional connectivity differ-
ences have also previously been identified (47). For the moment, 
relationships between DTI measures and ASD symptoms remain 
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only preliminary and future work with defined patient groups will 
deepen these correlations [see also Ref. (44)].

Studies using DTI also show differences in the cerebellar fib-
ers that connect to various brain regions, demonstrating altered 
cerebellar feedback projections in ASD (74). In addition, neu-
ropathological studies have also reported a decrease in Purkinje 
cell density in the cerebellum of ASD patients indicating that this 
abnormality may contribute to selected clinical features of the 
autism phenotype (75).

Functional magnetic resonance imaging (fMRI) studies are 
being used to assess synchronous activated and deactivated 
brain regions during cognitive tasks and in resting states in ASD 
patients [reviewed by Rathinam et al. (76)]. It appears that the 
most consistent functional results refers to a decreased con-
nectivity between frontal and more posterior brain regions (in 
high-functioning patients), performing a variety of tasks. These 
include task integrating language comprehension (frontal) and 
spatial processing (parietal) (77); in working memory tasks 
related to face recognition [involving frontal executive and 
occipito-temporal fusiform gyrus regions (49)], and in reading 
comprehension requiring language comprehension and working 
memory (50). Similarly, frontal-posterior under-connectivity 
has also been found in studies of patients at rest, revealing hence 
spontaneous brain activity connections (51, 52, 78). These rest-
ing state studies suggest that abnormal connectivity may already 
exist in patient brains, not specifically related to different tasks, 
and perhaps indicating a structural basis for some differences, 
as suggested above. There is, however, some heterogeneity in 
other fMRI results, since some tasks in some patients have also 
shown frontal-posterior over-connectivity (79), fronto-frontal, 
or posterio-posterior over-connectivity in the resting state (53). 
Analyzing connections with other brain regions, e.g., subcortico-
cortico, has also in several cases revealed over-connectivity [e.g., 
in task-independent tasks, Ref. (72) and references therein], or 
under-connectivity (55). A variety of other brain regions have 
been analyzed contributing to the variability of the results 
obtained [Ref. (80) and references therein]. In addition, tran-
scranial ultrasonography may be a useful screening technique for 
children at potential risk of ASD, providing rapid, non-invasive 
evaluation of extra-axial fluid and cortical lesions (81). Further 
work, potentially involving new methods, may help to clarify 
under- or over-connectivity in different brain regions.

Whether or not these changes are related to neuroimmune 
interactions is a completely open field of investigation. In particu-
lar, it should be helpful to perform correlation studies between 
the above described changes with specific immune activation 
states, such as infections.

Crosstalk Between the Cns and the 
immune system in asd

The crosstalk involving the immune and nervous systems 
encompasses a complex and intricate pathway of signals with 
extensive communication between them in health and disease 
(82, 83). Cytokines and chemokines modulate brain function, 
as well as systemic and CNS responses to infection, injury, and 
inflammation (84). In fact, cytokines, such as TNF-α, IL-1β, IL-6, 

and TGF-β family, are able to modulate neuronal activity (85) and 
IL-6 promotes oligodendrocyte survival (86).

Pro-inflammatory cytokines, including interleukin (IL)-1, 
IL-6, IL-12, interferon-γ (IFN-γ), and tumor necrosis factor α 
(TNF-α), are involved in CNS pleiotropic effects during neurode-
velopment (87) and have been extensively studied in patients with 
ASD. In a pioneer work indicating immune dysfunction in ASD 
(88), cell-mediated immune response was assessed in  vitro by 
phytohemagglutinin (PHA) stimulation in lymphocyte cultures 
from 12 children with ASD and 13 control subjects: the ASD 
against neural antigens, produced by the mother during preg-
nancy (89–92), and that may induce changes in neural develop-
ment and plasticity in the developing embryo/fetus.

Anti-double-stranded DNA antibodies and anti-nuclear anti-
bodies were measured in the sera of 100 autistic children, aged 
between 4 and 11 years, in comparison to 100 healthy-matched 
children (93). In this study, the authors found increased levels of 
anti-double-strand DNA (34%) or anti-nuclear antibodies (25%) 
in ASD children. Furthermore, meta-analysis of data reported 
in patients with ASD clearly revealed alterations in different 
cytokines, both in plasma and in brain, as seen in Table 3.

Also, although ASD patients present reduced amounts of total 
IgM and IgG immunoglobulins contents, they exhibit increased 
levels of antibodies against various proteins expressed in the 
nervous tissue, e.g., serotonin receptors, myelin basic protein, heat 
shock protein, and glial fibrillary acidic protein (GFAP) (107, 108). 
Recently, the presence of autoantibodies against human neuronal 
progenitor cells (NPCs) was assayed in sera from children with 
ASD (109). Immunoreactivity against multiple NPC proteins of 
molecular sizes ranging from 55 to 210 kDa was found in the ASD 
group, significantly differing from control individuals. This is in 
keeping with the fact that in the mouse model of autism following 
maternal immune activation triggered by poly(I:C)-injection, off-
spring exhibited a reduction of 50% in the numbers of regulatory T 
lymphocytes (CD4+Foxp3+CD25+) in the spleen (110), indicating 
a dysfunction in the regulation of the immune response in autism.

As mentioned above, studies in animal models indicate that 
maternal immune activation leads to autistic-like behavioral 
patterns in the offspring (111, 112). In addition to B and T cell 
abnormalities, changes in the innate immune response have been 
reported. Using in  vitro experiments, it was demonstrated that 
ASD individuals have a reduced capacity of natural killer (NK) 
cells to kill K562 target cells (an immortalized myelogenous 
leukemia cell line) (113). Thus, it is likely that an aberrant group 
showed impaired lymphocyte PHA-induced proliferation when 
compared to control subjects.

In the following years, the hypothesis of autoimmunity involv-
ing the CNS was postulated as a key issue in the pathogenesis 
of autism and various clinical studies indicated a link between 
dysfunctional immune activity and ASD, including maternal 
immune abnormalities during early pregnancy (10, 114) and 
increased incidence of familial autoimmunity (115). Additionally, 
autoimmunity triggered by viral or bacterial infections has been 
considered as risk factor to ASD development (87, 116, 117). It 
has also been demonstrated in humans that family history of 
autoimmune disorders is more common in families of children 
with ASD (118). In addition, immune-mediated disorders during 
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taBLe 3 | altered cytokines in autism spectrum disorder (asd).

Cytokines Level compared to control group source evaluated subjects reference

interLeUKins

IL-1β ↑ Plasma Children with ASD (94)
↑ Plasma Children with ASD (95)
↑ Plasma Adults with severe ASD (96)
↑ Blood cells Children with ASD (97)
↑ (TLR2 or TLR4 stimulation) Blood cells Children with ASD (98)
↓ (TLR-9 stimulation) Blood cells Children with ASD (98)

IL-6 ↑ Plasma Children with ASD (94)
↑ Plasma Adults with severe autism (96)
↑ Blood cells Children with ASD (97)
↑ (TLR2 or TLR4 stimulation) Blood cells Children with ASD (98)
↓ (TLR-9 stimulation) Blood cells Children with ASD (98)
↑ Lymphoblasts Children with ASD (99)
↑ Cerebellum (postmortem) Children with ASD (100)
↑ Brain (postmortem) ASD subjects (children and adults) (101)
↑ Brain (postmortem) ASD subjects (children and adults) (102)

IL-12 P40 ↑ Plasma Children with ASD (94)

CHeMoKines

CCL2 ↑ Brain (postmortem) ASD subjects (children and adults) (101)
Plasma Children with ASD (94)

tUMor neCrosis FaCtor

TNF-α ↑ CSF Children with ASD (94)
Brain (postmortem) Children with ASD (103)

interFeron

IFN-γ Serum (mid-gestational) Mothers giving birth to child with ASD (6)
↑ Whole blood and serum Children with ASD (104)

Brain (postmortem) ASD subjects (children and adults) (103)

GroWtH FaCtors

TGF-β1 ↓ Plasma Children with ASD (Lower levels correlated  
with more severe behavioral scores)

(105)

↓ Serum Adults with ASD (106)
BDNF ↑ Brain (postmortem) ASD subjects (children and adults) (101)

↑ Plasma Children with ASD (94)

IK, interleukin; IFN, interferon; TGF, transforming growth factor; TLR, toll-like receptors.
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pregnancy, such as allergy and psoriasis, are more frequent in 
mothers of children with ASD compared with mothers of chil-
dren with typical development (119).

Yet, the biological mechanism(s) of maternal immune dysfunc-
tion that could be involved in triggering ASD remain(s) unclear. 
One possibility involves the generation of antibodies activity of 
these components of innate immunity may also contribute to 
atypical immune activity seen in patients with ASD.

Moreover, increased numbers of circulating monocytes, 
important precursors for macrophages, dendritic, and microglial 
cells, have been observed in the blood and in the postmortem 
brain tissue from ASD individuals, associated with the presence 
of perivascular macrophages (101, 120). Furthermore, analysis of 
cytokine serum levels in children with ASD revealed a representa-
tive profile of myeloid cell activation, with increased production 
of IL-14, IL-12p40, TNF-α, IL-1β, and IL-6 (94–97, 121). Also, 
increased level of TNF-α was found in cerebrospinal fluid of 
children with ASD (122).

In respect to caspases, a group of cysteinyl aspartate-specific 
proteases involved in apoptosis and several other cell functions, 
it has been shown that the activation of some members of the 

caspase family contributes to the differentiation of monocytes 
into macrophages, in the absence of cell death (123). Interestingly, 
the mRNA levels for caspases 1–5, 7, and 12 were significantly 
increased in ASD patients as compared to healthy subjects, sug-
gesting a role of the caspase pathway in ASD clinical outcome and 
as potential diagnostic and/or as therapeutic tools (124). These 
studies will hopefully provide new insights in the mechanisms 
of caspase activation and abnormal differentiation of monocytes 
into macrophages in ASD.

Considering that monocytes are key elements for the immune 
response, these alterations may result in long-term immune 
alterations in ASD children, with adverse neuroimmune interac-
tions, ultimately contributing to the ASD pathophysiology. Also, 
it was found increased expression levels of pro-inflammatory 
cytokines TNF-alpha and IL-6, and decreased Bcl2 expression in 
lymphoblasts (99) and decreased levels of TGF-β in plasma (105) 
and in serum (106) of autistic subjects.

Moreover, considering that increased levels of anti- and pro-
inflammatory cytokines have been observed in ASD individuals 
(6), it is conceivable that cytokines are also involved in the 
pathophysiology of ASD.
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Taking into account, the environmental in  utero influence 
in triggering ASD changes in oxidative stress responses may 
also correlate with activation of the hypothalamic–pituitary– 
adrenal (HPA) axis. Upon activation, the hypothalamus secretes 
corticotropin-releasing hormone (CRH), stimulating the anterior 
pituitary gland to secrete adrenocorticotropic hormone (ACTH), 
which in turn stimulates the cortex of the adrenal glands to 
release glucocorticoid, which plays an important role in adaptive 
responses (125), including immunosuppression. This response 
can signal to the organism under stressful events, such as envi-
ronmental adverse factors in  utero. In fact, patients with ASD 
present elevated blood levels of nitric oxide (NO), nitrites, and 
nitrates (126). These molecules might increase the permeability 
of BBB and intestinal permeability, as commonly found in autism 
(127). Furthermore, ASD patients have diminished antioxidant 
systems in plasma, including decreased amounts of glutathione 
(GSH), vitamins (A, C, and E), and antioxidant enzymes (super-
oxide dismutase and glutathione peroxidase) (128–130). The 
increase in oxidative stress can potentially induce dysfunction in 
the immune system, plasticity and function of the thymus and 
stimulate neuroinflammatory infiltrates. Potentially, this set of 
dysfunctions may be associated with the behavioral abnormali-
ties, gastrointestinal disorders, and sleep disturbances present in 
autism. In an animal model of ASD induced by prenatal exposure 
to valproic acid (VPA), a reduced thymus size was observed in the 
VPA group, compared to the control animals (131), indicating 
that T-cell development can also be affected in autism, and may 
be at the origin of both T and B cell dysfunctions seen in ASD, 
including neuroinflammation.

One important point is that, although the well accepted fact 
that the CNS undergoes constant immune surveillance that 
takes place within the meningeal compartment (132), the real 
mechanism(s) that guide(s) the entrance and exit of immune 
cells from the CNS remains to be demonstrated. Recently, an 
interesting investigation revealed the presence of structures with 
functional lymphatic vessels lining the dural sinuses, in a place 
difficult to visualize and actually so far ignored. These structures 
present characteristics of lymphatic endothelial cells and are able 
to carry both fluid and immune cells from and into the cerebro-
spinal fluid. Importantly, these structures are connected to the 
deep cervical lymph nodes (132). From this view, it is clear that a 
new and important window of investigation starts, in the search 
for possible link(s) connecting triggering of ASD to immune 
system impairment and vice versa.

evidence for neuroimmune interactions  
in asd

The intercommunication between the brain and blood systems 
is followed by integrative exchanges, and the BBB permeability is 
variable, depending on the vessel type (artery, capillary, or vein) 
(8). During development, neurons, astrocytes, oligodendrocytes, 
and microglia intercommunicate in a paracrine/autocrine man-
ner (133), withstand endocrine and immune systems influences, 
particularly during pregnancy, which can impair functions of the 
nervous system. Microglial cells in turn act as surveillance sys-
tems, with the capacity to respond phenotypically with varying 

degrees of activation to fluctuations in microenvironment stimuli 
or to transient or chronic damage, reaching the phagocytic state 
in the event of cell death (134). These cells also present dynamic 
movements or projections able to detect irregularities in neural 
microenvironments, in both intra and extracellular milieu and 
can increase in number by proliferation or through the entrance 
of macrophages into the brain (135).

In this vein, it was demonstrated by analysis of postmortem 
brain tissue that individuals with autism have an increased num-
ber of activated microglial cells (136).

Figure 1 illustrates alterations found in both blood and post-
mortem brains of patients with ASD, including blood/brain cell 
activation, autoantibody production, and alterations in levels of 
different molecules that can modify cell signaling, brain response, 
and BBB permeability. The associated neuroinflammatory pro-
cess does support the hypothesis of neuroimmune interactions 
in the pathogenesis of ASD.

The analysis of postmortem brains from ASD individuals 
indicates changes in synaptic organization, dendritic arboriza-
tion, neurotransmission (i.e., GABAergic, serotonergic, and glu-
tamatergic pathways), and glial cells. Accordingly, recent studies 
suggested an important role for astrocytes and microglial cells in 
ASD, with alterations in GFAP expression (137), and increases of 
pro-inflammatory cytokines (6).

Molecules secreted by the brain’s immune system may influ-
ence neurodevelopment. As already mentioned above, individuals 
with autism have a marked neuroinflammation, with microglial 
activation and increased NO, as well as production of chemokines 
and pro-inflammatory cytokines (6, 101). There is evidence that 
an increase of TNF-α is associated with stereotypic behaviors 
similar to those found in individuals with autism (138). Moreover, 
soluble cytokine receptors that are normally present in blood can 
regulate peripheral cytokine and lymphoid activity (139–141). 
Further elucidation and characterization of the molecular path-
ways that mediate soluble cytokine receptor signaling in ASD will 
promote new strategies for therapeutic interventions.

In addition, as demonstrated in Table 1, the genes MET, PTEN, 
TSC1, and TSC2, for example, encode proteins related to the 
phosphoinositide3-kinase (PI3K) pathway, which plays an impor-
tant role in suppressing the production of the pro-inflammatory 
cytokine IL-12 (142). MET is important to the developing brain, 
particularly to the neocortex and cerebellum in two regions 
frequently compromised in autism (22). Also, alteration in this 
gene can be correlated with increased immune response, involving 
cytokine expression (21) and regulation by small RNAs (miRNA) 
(143), which are presently known to be associated with the immu-
nological response, such as lymphocytic phenotypes or key points 
during hematopoiesis (144). In ASD, various miRNA are altered 
in the blood, providing new clues in the search for new molecular 
targets in the study of autism (145–147). One is miR-132, altered 
in both autism and schizophrenia, and that can participate in brain 
plasticity, connectivity, and regulation of immune responses (145).

Another area implicated in autism is the cerebellum, and 
immunological studies indicate increased levels of IL-6 in 
the cerebellum of ASD subjects, stimulating the formation of 
granule cell excitatory synapses, without affecting inhibitory 
synapses (100).
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A relevant point to be considered in the neuroimmune inter-
actions occurring in autism is the fact that the intestinal mucosa 
of children with autism has a higher frequency of TNF-α+ T cells 
and lower frequency of IL-10+ T cells (148, 149). These studies 
indicate that such lymphocytes assume a pro-inflammatory 
profile, which corroborates with the increased levels of pro-
inflammatory cytokines found in plasma and brain of patients 
with ASD.

Another important issue is the strong association between 
autism and allergic response involving mast cells, which corre-
lates with various cellular processes, including allergic reactions 
enteric nervous system (ENS) (87, 150).

Increased plasma levels of IgG4 in children with ASD were 
also observed (151). These changes may be linked to changes in 
BBB permeability and also may influence neural plasticity and 
function, resulting in impairment in social interaction, commu-
nication, and behavior (87).

It is also important to consider cell adhesion molecules 
(CAM), which are present in endothelial cells, promoting a direct 
and selective interaction between blood cells and the cerebral 
endothelium (152). It is well known that CAMs play an impor-
tant role in mediating the passage of T cells through endothelial 
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FiGUre 1 | evidence for neuroimmune interactions in autism spectrum 
disorder (asd). Blood and postmortem brain alterations in individuals with 
ASD. (1) Antibody production in blood against brain antigens. (2) Brain cell 
infiltration of Th1 lymphocytes, monocytes and mast cells. (3) Increase in blood 
brain barrier (BBB) permeability. (4) Increase in IgG and IgM levels. (5) Less 
antioxidant defenses. (6) Changes in cytokine levels. (7) Decrease in cell 

adhesion molecules, such as Selectins and PCAM-1. 8. Increase in oxidative 
stress. All these alterations can promote neuroinflammation, followed by 
neuron–glial response and brain connectivity dysfunction that ultimately can 
influence behavioral features in ASD. GSH, glutathione; GPx, glutathione 
peroxidase; NO, nitric oxide; Th, T-helper; OS, oxidative stress; CCL2, C–C 
motif chemokine 2.

barriers (153). These data indicate that the modulation of immune 
cell entry into the brain from patients with autism might also be a 
potential therapeutic target.

Working with the animal model of ASD induced by prenatal 
exposure of VPA, we recently demonstrated that the treatment 
of pregnant females with the antioxidant and anti-inflammatory 
resveratrol (RSV), before and after VPA exposure, prevented all 
behavioral impairments observed in the offspring (154). This is 
a naturally occurring phytochemical that was detected in 1963 
in the dried roots of Polygonum cuspidatum (Itadori tea) and 
has been proposed as a pharmacological tool for neuroprotec-
tion against neuronal injury, including age-associated chronic 
diseases (155), ischemic brain damage (156), and cerebral models 
of stroke (157). For a systematic review and recommendations on 
the use of RSV, read (158).

Since similar alterations are also observed in the animal model 
induced by VPA (131, 159–161) and RSV exerts anti-inflamma-
tory effects (158), future studies will be relevant to evaluate the 
influence of RSV in the immune system, particular in the ASD 
context. There is evidence for RSV use to establish immunological 
tolerance during treatment of autoimmune diseases that ablate or 
suppress the immune system. Specifically, RSV effect on tolerance 
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Model animal outcome, breakthrough or major finding reference

– Mouse Suggested that animal models of autoimmunity-associated behavioral syndrome (AABS) may be a useful model for the study of 
CNS involvement in human autoimmune diseases, e.g., autism

(164)

Neonatal rat infection with Borna 
disease virus

Rat Abnormalities of early development; Increase locomotor activity; Increased stereotypies; Increased brain expression of mRNA for 
IL-1a, IL1-b, IL-6, TNF-α, and TNF-β

(165)

MIA Mouse Offspring display deficits in prepulse inhibition; deficiency in exploratory behavior and deficiency in social interaction (166)

MIA Mouse Prepulse inhibition (PPI) and latent inhibition (LI) deficits were observed in the adult offspring. Coadministration of an anti-IL-6 
antibody in the model of MIA prevented the behavioral changes. MIA in IL-6 knockout mice does not result in several of the 
behavioral changes seen in the offspring of wild-type mice after MIA

(167)

Prenatal exposure  
to VPA

Rat Increased basal level of corticosterone, decreased weight of the thymus, decreased splenocytes proliferative response to 
concanavaline A, lower IFN-gamma/IL-10 ratio, and increased production of NO by peritoneal macrophages

(159)

Prenatal exposure to antibodies from 
mothers of children with autism

Mouse Adult mice exposed in utero to IgG from mothers of children with autistic disorder displayed anxiety-like behavior and mice had 
alterations of sociability; evidence of cytokine and glial activation in embryonic brains

(168)

MIA Rhesus monkey Behavioral alterations in infants monkeys were observed, e.g., disruption of prepulse inhibition. Magnetic resonance imaging (MRI) 
revealed a significant 8.8% increase in global white matter volume distributed across many cortical regions compared to controls

(169)

MIA Mouse Pups born to maternal immune activation (MIA) mothers produce a lower rate of Ultrasonic vocalizations, decreased sociability and 
increased repetitive/stereotyped behavior

(170)

MIA Mouse Systemic deficit in CD4(+) TCRβ(+) Foxp3(+) CD25(+) T regulatory cells, increased IL 6 and IL-17 production by CD4(+) T cells, 
and elevated levels of peripheral Gr-1(+) cells; hematopoietic stem cells exhibit altered myeloid lineage potential and differentiation; 
behaviorally abnormal MA offspring that have been irradiated and transplanted with immunologically normal bone marrow from 
either MIA or control offspring no longer exhibit deficits in stereotyped/repetitive and anxiety-like behaviors

(110)

MIA Rhesus monkey Offspring exhibited abnormal responses to separation from their mothers, increased repetitive behaviors and inappropriately 
approaching and remaining in immediate proximity of an unfamiliar animal

(171)

Prenatal exposure to antibodies from 
mothers of children with autism

Mouse Offspring displayed autistic-like stereotypical behavior in both marble burying and spontaneous grooming behaviors. Additionally, 
small alterations in social approach behavior were observed

(172)

MIA Mouse Following stimulation macrophages from offspring of poly(I:C) treated dams produced higher levels of IL-12, suggesting an 
increased M1 polarization. Also, macrophages from offspring of poly(I:C) treated dams exhibited a higher production of CCL3

(173)

MIA Mouse In the marble burying test of repetitive behavior, male offspring but not female offspring from both LPS and PolyIC-treated mothers 
showed increased marble burying

(174)

Prenatal exposure to VPA Mouse VPA mice present signs of chronic glial activation in the hippocampus and the cerebellum; When they are challenged LPS, they 
show an exacerbated inflammatory response, increased expression of pro-inflammatory cytokines in the spleen and higher 
corticosterone secretion to the blood

(112)

BTBR strain Mouse Levels of IgG isotypes deposited in fetal brain of BTBR mice were significantly higher than in FVB mice except for IgG1 (175)

BTBR strain Mouse Altered IgG levels were found, e.g., higher IgG1:IgG2a ratios; presence of brain-reactive IgG in the sera; levels of IgG1 deposited 
in the cerebellum, cortex, hippocampus or striatum of both BTBR male and female mice were significantly higher than in FVB 
counterpart

(176)

MIA Mouse Adult LPS-treated mice offspring had an elevated percentage of interferon (IFN)-γ(+) CD4(+) T cells and interleukin (IL)-17A(+) 
CD4(+) T cells in the spleen, IL-17A(+) CD4(+) T cells in the liver, and CD4(+) Foxp3(+) T cells in the spleen. LPS offspring CD4(+) 
T cells showed increased proliferation and an enhanced survival rate

(177)
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Brain connectivity alterations
Neuron and glia responses
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neuroimmunomodulatory

interactions
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Genetic and epigenetic
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Environmental risk
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FiGUre 2 | Hypothesis for neuroimmune interactions in triggering the 
development of asd. This hypothesis considers the presence of 
environmental risk factors during pregnancy, followed by 
immunoneuroendocrine response from the mother to the developing embryo/
fetus. The risk factors (such as VPA) would influence central and peripheral 
neural responses in the context of a crosstalk with the immune system, 
followed by gradual changes in neural plasticity and function, resulting in 
behavioral impairment during development, ultimately leading to ASD.

is likely to be in the induction of Foxp3+ T cells and IL-10 expres-
sion, which are critical to development of T cells that are pro-
tective against autoimmune diseases, such as multiple sclerosis 
(162). In addition, the administration of RSV to mice developing 
experimental autoimmune encephalomyelitis – an animal model 
of human multiple sclerosis – increases expression of IL-10 and 
Foxp3 in T cells, the animal model of multiple sclerosis (163). In 
order to advance the knowledge related ASD development, it is 
important to also evaluate intracellular targets of VPA and RSV to 
clarify molecules and pathways affected by both. In this respect, 
we anticipate that further understanding of these molecular tar-
gets will be relevant to both therapeutic and etiological aspects of 
ASD. Similarly, such studies will hopefully help us to understand 
ASD-related epigenetic modulation and developmental altera-
tions implicated in the neural and behavioral impairments.

In Table 4, we have summarized outcomes, breakthroughs, or 
major findings in animal models, relating to ASD and immune 
system activation. In the case of animal models of maternal 
immune activation, there is a cascade of inflammatory responses 
that are dependent on the pathogenic agent and can potentiate 
immune responses in offspring in a strain-dependent manner 
(111). It is hypothesized that pro-inflammatory cytokines, 
brain-reactive antibodies, and endocrine mediators, such as 
corticotropin-releasing factor and glucocorticoids participate in 
the etiology of autoimmunity-associated behavioral syndrome 
(164). Also, neonatal rat infection with Borna disease virus results 

in abnormalities of early development and increase in locomotor 
activity; stereotypies and brain expression of mRNA for IL-1α, 
IL1-β, IL-6, TNF-α, and TNF-β (165).

Animal models of maternal infection have also been used 
to study behavioral impairments and brain alterations, such as 
maternal influenza infection (166), maternal immune activation 
(110, 167, 169–171, 173, 174, 177, 178), and prenatal exposure 
to antibodies (168, 172). In addition, the inbred BTBR T + tf/J 
(BTBR) mouse strain has been used as an animal model of core 
behavioral deficits in autism. BTBR mice exhibit repetitive behav-
iors and deficits in sociability and communication, presenting 
higher IgG1:IgG2a ratios and increased levels of IgG1 in brain 
(175, 176).

summary and outlook

Since the first descriptions of autism, 70  years of investigation 
have passed, with great efforts mainly in the last decade, bring-
ing important information and knowledge on the mechanisms 
underlying ASD. Nevertheless, even with these advances, the 
etiology of ASD remains largely unknown and we are still search-
ing for specific clinical marker(s) able to improve early diagnosis. 
We work on the hypothesis that integrating maternal–embryo 
systems will contribute to the understanding of ASD. One pos-
sibility, which was summarized here, concerns the hypothesis 
of neuroimmune interactions being involved in triggering ASD 
development, as schematically depicted in Figure 2. The presence 
of environmental risk factors during critical periods of embry-
onic/fetal development may influence the immune system in the 
mother, promoting localized or systemic inflammatory responses 
with the release of cytokines and hormonal molecules, which 
in turn, via neuroimmunomodulatory responses and crosstalk 
between circulatory and neural systems, may impair circuitry 
development, neuronal plasticity, and neuroglial function in the 
embryo/fetus. As immunological factors interfere with neural 
development since the embryonic period, and considering that 
inflammation or immune response may arise due to abnormal 
environmental interactions in  utero, a better understanding of 
the neuroimmune changes that may underlie the pathogenesis 
or pathophysiology of ASD will hopefully have a large impact 
on the development of new clinical and therapeutic strategies to 
better deal with ASD.
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