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Exciting developments have taken place in the neuroscience research in autism 
spectrum disorder (ASD), and results from these studies indicate that brain in ASD is 
associated with aberrant neuroplasticity. Transcranial magnetic stimulation (TMS) has 
rapidly evolved to become a widely used, safe, and non-invasive neuroscientific tool 
to investigate a variety of neurophysiological processes, including neuroplasticity. The 
diagnostic and therapeutic potential of TMS in ASD is beginning to be realized. In this 
article, we briefly reviewed evidence of aberrant neuroplasticity in ASD, suggested future 
directions in assessing neuroplasticity using repetitive TMS (rTMS), and discussed the 
potential of rTMS in rectifying aberrant neuroplasticity in ASD.
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introduction

Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder characterized by 
persistent deficits in social communication and interaction and stereotyped behaviors, interests, 
and activities [Diagnostic and Statistical Manual of Mental Disorders, 5th Edition (DSM-5)] (1). The 
most recent US Centers for Disease Control and Prevention data estimate that ASD now affects 1 in 
68 children (2). These data establish ASD as the most common neurodevelopmental disorder. Thus, 
the social, clinical, and economic burden of ASD is tremendous.

Since the turn of the century, significant advancements have been made in ASD research, and a 
range of macro- and micro-structural, neurochemical, functional, anatomic, and genetic abnormali-
ties have been proposed [see reviews by Rubenstein and Merzenich (3), Parellada et al. (4), Chen 
et al. (5), Ameis and Catani (6)]; however, despite gaining important leads, the exact etiology of ASD 
is still unknown and successful treatment remains elusive. Thus, there is an urgent need to explore 
novel and effective investigational and mechanism-driven treatment paradigms for ASD.

One mechanism that has recently received a large amount of support suggesting its role in the 
pathophysiology of ASD is aberrant neuroplasticity (7, 8) In fact, several lines of evidence from 
genetic (9–13) to animal model (7, 14), neuroimaging (15, 16), and brain stimulation (17, 18) 
research have all begun to implicate aberrant neuroplasticity in ASD. One neuroscientific tool that 
has become a widely used, safe, and non-invasive way to probe aberrant neuroplasticity is transcranial 
magnetic stimulation (TMS) and repetitive TMS (rTMS). Perhaps a fair example of this is the use of  
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TMS/rTMS in the study of Parkinson’s disease [see review by 
Shukla and Vaillancourt (19)], depression (20), and schizophrenia 
(21). The diagnostic and therapeutic potential of rTMS in ASD 
is beginning to be realized. In this article, we will briefly review 
evidence of aberrant neuroplasticity in ASD, suggest future direc-
tions in assessing neuroplasticity using rTMS, and discuss the 
potential of rTMS in rectifying aberrant neuroplasticity in ASD.

Aberrant neuroplasticity in ASD

Before describing the evidence in favor of aberrant neuroplasticity 
in ASD, it may be worthwhile briefly revisiting neuroplasticity 
first. Neuroplasticity refers to neuron’s ability to reorganize and 
alter their anatomical and functional connectivity in response to 
the environmental input. Long-term potentiation (LTP), which 
involves a net increase in synaptic efficacy, and long-term depres-
sion (LTD), which indicates a net decrease in synaptic efficacy, are 
the two prototypes of neuroplasticity (22).

In a simplistic model, LTP is mediated by glutamate via 
N-methyl-d-aspartate (NMDA) receptors (23). The basic process 
of LTP generation involves the removal of the Mg2+ block of the 
post-synaptic NMDA receptors by a strong wave of depolariza-
tion in the dendritic spine, leading to a rapid inflow of Ca2+ that 
activates several kinases, eventually leading to the generation 
of LTP. Similarly, LTD too perhaps is dependent on NMDA 
receptors. The mechanism of LTD generation, however, requires 
milder activation of post-synaptic NMDA receptors, which leads 
to an intermediate intracellular Ca2+ elevation (23). One key 
regulator of LTP and LTD is gamma-aminobutyric acid (GABA) 
released by the inhibitory interneurons (24). At the synaptic level, 
the fine balance between excitation (mediated by glutamate) and 
inhibition (mediated by GABA) could be crucial for optimal level 
of neuroplasticity (25).

evidence from the Structural neuroimaging 
Studies in ASD
Most of the symptoms of ASD develop in the first few years of life 
when synaptic development and maturation are occurring at a 
rapid rate, and one of the most consistent morphological findings 
that emerged from the structural neuroimaging studies in ASD 
is early brain overgrowth (15) [also see review by Courchesne 
et al. (16)]. Such atypical brain enlargement appears to be most 
pronounced between 2 and 5 years of age (16), and it preferen-
tially affects the frontal and temporal cortices (5). Furthermore, 
recent evidence indicates that atypical cortical development in 
ASD subjects persists beyond toddlerhood. In particular, evi-
dence of cortical thinning has been observed among adolescents 
and young adults (26). These observations led to the hypothesis 
that ASD is associated with a significant disruption of the typical 
synaptic maturation and plasticity (5).

evidence from the Genetic Studies in ASD
Of all the proposed neurobiological theories of ASD, the poten-
tial contribution of genetic factors is backed by a large body of 
evidence [see review by Chen et al. (5)]. It is important to note 
that many ASD-associated genes reported by genome-wide 
association studies encode proteins related to synaptic formation, 

transmission, and neuroplasticity, and results from recent genetic 
studies involving ASD clients have consistently linked mutations 
involving several genes supporting synaptic maturation and 
neuroplasticity. The examples of such mutations involve genes 
critically involved in (a) synaptic maturation, e.g., neuroligin 
3 and 4 (10), c3orf58, NHE9, and PCDH10 (13); (b) neuronal 
migration, e.g., CNTNAP2 (12); and (c) dendritic development, 
e.g., SHANK3 (12).

evidence from Animal Models of ASD
Further evidence of aberrant neuroplasticity in ASD is shown 
by animal models. Perhaps one of the best known among these 
models is the valproic acid (VPA) rat model of autism. This model 
predicts that brain in ASD is likely to be hyperplastic. It has been 
found that, following a Hebbian Pairing Stimulation protocol, the 
amount of post-synaptic LTP measured in the neocortex and the 
amygdala doubled in VPA-treated rats compared with controls 
(14). However, other animal models utilizing genetically modi-
fied mice showed that ASD brain could be characterized by both 
impairment and enhancement of neuroplasticity. For example, 
Shank3(G/G) mice (27) and mice with MECP2 mutations (model 
of Rett’s syndrome) (28) were shown to have cellular hypoplastic-
ity, but mice with neuroligin-3 mutation were associated with 
hyperplasticity (29). Such divergent outcomes with regard to the 
direction of neuroplasticity in these animal experiments could 
be due to the nature of the genetic modifications used and their 
impact on the brain substrates of neuroplasticity. Nevertheless, a 
key insight emerging from these animal models is that if the brain 
becomes too much or too less plastic (i.e., hyper or hypo), cogni-
tion and behavior will be affected. It has been suggested that an 
optimum level of plasticity is necessary for optimal performance 
(30), and this process essentially involves keeping excitability 
within a normal physiological range (31).

excitation/inhibition imbalance in ASD
Perhaps one of the widely cited neurobiological models in ASD 
over the past decade is the increased excitation/inhibition ratio in 
ASD brain (3). It has been suggested that the excitation–inhibition 
imbalance could be the key determinant of neuroplasticity abnor-
malities in neurodevelopmental disorders such as ASD (32), and 
a deficit in the inhibitory neurotransmission has been implicated 
in the etiopathogenesis of ASD [see review by Baroncelli et  al. 
(25)]. It is believed that such deficits could develop during neu-
ronal maturation (25). At the synaptic level, abnormally increased 
NMDA-mediated state of excitation, and/or abnormally reduced 
GABA-mediated inhibition, may lead to abnormally increased 
neuronal excitability and neuroplasticity. In fact, studies involv-
ing subjects with ASD have shown that excitatory glutamate 
receptors (NMDA and metabotropic glutamate receptor 5) are 
overexpressed, whereas inhibitory gamma aminobutyric acid A 
(GABAA) and B (GABAB) receptors are underexpressed in the 
ASD brain (25, 33). Additionally, post-mortem studies of mini-
columnar morphometry in subjects with ASD also demonstrate 
a significant reduction of the peripheral neuropil space, which is 
the site of GABA-ergic lateral inhibition in the brain (34).

Transcranial magnetic stimulation has also been used to 
investigate excitation–inhibition imbalance in ASD. Specifically, 

http://www.frontiersin.org/Psychiatry/archive
http://www.frontiersin.org/Psychiatry/
http://www.frontiersin.org


September 2015 | Volume 6 | Article 1243

Desarkar et al. Aberrant neuroplasticity, ASD, and TMS

Frontiers in Psychiatry | www.frontiersin.org

paired-pulse TMS paradigms, involving the “pairing” of a “condi-
tioning stimulus” with a “test stimulus” at different interstimulus 
intervals, have been used to assess cortical inhibition (CI) and 
facilitation. CI is the neurophysiological process in which inhibi-
tory GABA-ergic interneurons selectively attenuate the activity of 
pyramidal neurons in the cortex. It has been suggested that CI is 
key to the regulation of neuroplasticity, and the therapeutic effects 
of rTMS could be mediated by the induction of local changes in 
CI (35). Emerging evidence indicates that post-synaptic GABAB 
receptor-mediated CI is crucial for the regulation of neuroplasti-
city. GABAB regulates neuroplasticity in two ways: (a) they con-
tribute to the regulation of inhibition by mediating long-lasting 
inhibitory post-synaptic potentials (IPSPs) and (b) they reduce 
GABAA receptor-mediated inhibition through presynaptic auto-
inhibition of inhibitory interneurons (36). Using paired-pulse 
TMS paradigms, studies have found evidence for excitation–
inhibition imbalance in a subgroup of individuals with ASD (37, 
38). Other studies have shown no abnormality in CI (18, 39) or a 
heterogeneous response to this paradigm (40). The heterogeneity 
in these findings reflects the known heterogeneity of ASD at both 
the behavioral and the physiological level.

rTMS in the Assessment of neuroplasticity 
in ASD

Repetitive TMS, which involves repetitive delivery of pulses 
(>1 Hz), is used to modulate cortical activity for investigative and 
therapeutic purposes [see review by Kobayashi and Pascual-Leone 
(41)]. rTMS has been increasingly used to study neuroplasticity 
in humans. The basic premise is that rTMS can modulate activity 
in the targeted brain region for a duration that can outlast the 
effects of stimulation itself (30). It is believed that rTMS induces 
such lasting changes in the brain through altering neuroplasticity 
mechanisms (42). So far, two rTMS paradigms  –  theta-burst 
stimulation (TBS) (17) and paired associative stimulation (PAS) 
(18) – have been used to assess neuroplasticity in ASD.

Theta-Burst Stimulation
Theta-burst stimulation involves the delivery of a burst of 
three pulses at 50  Hz (i.e., 20  ms between stimulus) repeated 
at intervals of 200 ms (i.e., 5 Hz, hence called theta-burst) (43). 
TBS comprises two well-established patterned stimulation pro-
tocols – continuous TBS (also known as cTBS) and intermittent 
TBS or iTBS. cTBS paradigm involves the delivery of continuous 
uninterrupted TBS for 40 s. In the iTBS paradigm, a 2-s train of 
TBS is repeated every 10 s for a total of 190 s. However, the total 
number of pulses delivered may vary from one study to another. 
In the original study, Huang et  al. (43) used 600 pulses. iTBS 
produces sustained enhancement, whereas cTBS is associated 
with lasting suppression of cortical activity, indexed by potentia-
tion and suppression of motor-evoked potential (MEP) following 
single-pulse TMS in the contralateral thumb muscle, respectively 
(43). It is believed that such lasting changes induced by iTBS and 
cTBS reflect LTP- and LTD-like mechanisms in the brain (43), 
and in previous experiments, they have been found to be medi-
ated by NMDA receptor (44) and GABA receptor pathways (45), 
respectively.

Paired Associative Stimulation
Paired associative stimulation is another well-established rTMS 
paradigm that has been associated with the induction of LTP-like 
neuroplasticity (PAS-LTP). It has been shown that PAS-LTP is 
mediated by NMDA receptors (46). The PAS protocol involves 
the repetitive delivery of two paired (180 pairs at 0.1  Hz for 
30 min) stimulations: (1) an electrical peripheral nerve stimula-
tion of the right median nerve, and 25 ms later, a (2) TMS pulse 
delivered to the contralateral motor cortex (M1) (hence PAS-25). 
PAS-25 results in LTP-like neuroplasticity that manifests as the 
potentiation of MEP in the thumb muscle following single-pulse 
TMS (46).

Safety of rTMS in ASD
Available limited data indicate that rTMS, when applied within 
established safety guidelines, is well tolerated and safe in both 
adult and pediatric ASD populations (47, 48). There is no current 
evidence of increased risk of seizure (48).

rTMS Studies Assessing neuroplasticity in ASD
Asperger’s disorder (AD), which was a subtype of the DSM-IV 
Pervasive Developmental Disorder, has now been subsumed 
under ASD in DSM-5 (1). A more direct evidence of aber-
rant neuroplasticity in AD subjects has been shown by recent 
rTMS studies using TBS and PAS paradigms. All these studies, 
however, have assessed neuroplasticity in the motor cortex 
(M1). One group found greater and long-lasting modulation of 
neuroplasticity (reflective of aberrant hyperplasticity) following 
both forms of TBS (cTBS and iTBS) in a small cohort (40) and, 
subsequently, in a relatively bigger sample of adults with AD (17). 
Another group, examining LTP-like neuroplasticity in a mixed 
cohort of adolescents and adults with AD using PAS, obtained 
similar results, i.e., aberrant neuroplasticity (18); however, the 
direction of aberrant neuroplasticity was different. In this study, 
it was found that, compared to typically developing subjects, PAS-
induced LTP-like plasticity was significantly deficient (reflective 
of aberrant hypoplasticity) in the AD group.

Assessing neuroplasticity in ASD Subjects 
Using rTMS: Future Considerations

At present, research assessing neuroplasticity using rTMS in ASD 
population is at an early stage. Studies so far have only tested high-
functioning ASD subjects at the motor cortex (M1). Furthermore, 
findings obtained in the adult population may not be generalized 
to the pediatric population. For example, Oberman et  al. (47) 
found a “paradoxical facilitatory effect” to cTBS in more than 
one-third of their sample consisting of children and adolescents. 
Therefore, to what extent current findings can be generalized 
is certainly not very clear at present. The potential factors that 
need to be considered by future research are heterogeneity in 
the ASD population, potential impact of the presence/absence of 
comorbidities including intellectual disabilities, medication use, 
developmental age, site of stimulation, stimulation parameters 
(e.g., TBS versus PAS), etc.

The other important point for consideration is that all existing 
studies utilizing rTMS have assessed neuroplasticity at the motor 
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cortex (M1) of ASD brain. In the future, studies need to look at 
neuroplasticity in other potential areas of interest in the ASD 
brain. Information regarding which sites to choose for assessing 
neuroplasticity in ASD brain may come from existing rTMS 
intervention studies. So far, studies that used rTMS for therapeu-
tic purposes to improve either symptoms or physiological and 
cognitive indices have focused on four areas of ASD brain – the 
dorsolateral prefrontal cortex (DLPFC), medial prefrontal cortex 
(mPFC), supplementary motor area, and right pars triangularis 
and pars opercularis [for a review see Oberman et al. (49)]. The 
DLPFC was chosen due to its extensive network connection with 
other specialized distributed and local networks in brain (34). 
Dorsomedial PFC (dmPFC) is another key area for stimulation 
since it is believed to be uniquely linked with the mentalizing 
ability (50). A recent trial of deep rTMS delivered bilaterally to the 
dmPFC significantly improved social relatedness in ASD subjects 
(51). Therefore, both DLPFC and mPFC could be potential sites 
of interest for studying neuroplasticity in ASD. Other brain areas 
related to mentalizing, such as the temporoparietal junction (TPJ) 
(52), and facial processing, such as superior temporal sulcus (53), 
could be potential sites for stimulation as well.

Establishing a stimulation paradigm to reliably assess 
neuroplasticity from these key areas of brain is challenging; 
however, the combination of TMS with electroencephalography 
(TMS–EEG) offers researchers an exciting opportunity to gather 
a more direct measure of neuroplasticity from these areas of 
brain. Previously, our group established that TMS–EEG can be 
a reliable method to measure neuroplasticity from M1 and also 
DLPFC (54). More recently, using a pioneering technique that 
combines PAS with EEG – “PAS–EEG,” our group assessed and 
successfully demonstrated PAS-induced potentiation of cortical 
evoked activity, which is reflective of LTP-like neuroplasticity, in 
DLPFC (55). A similar TMS–EEG approach may be useful for 
studying neuroplasticity in other key areas of brain. For example, 
TBS can be combined with EEG to investigate neuroplasticity 
measures.

In the future, TMS–EEG can also be combined with various 
social–cognitive tasks and functional neuroimaging to better elu-
cidate the brain–behavior relationship in ASD. Ultimately, TMS–
EEG will be combined with genetic research to better elucidate 
the link between underlying genetic factors (i.e., polymorphisms) 
and aberration in neuroplasticity captured more directly by 
TMS–EEG cortical readout. Results from a few early exploratory 
studies assessing the impact of single-nucleotide polymorphisms, 
e.g., brain-derived neurotrophic factor valine-to-methionine 
substitution at codon 66 (Val66Met) genotype (56), on TMS-
induced plasticity measures have so far been encouraging.

Can rTMS be Used as a Therapeutic Tool 
to Rectify Aberrant neuroplasticity in 
ASD?

Repetitive TMS affords researchers to design specific stimulation 
protocols that can modulate neuroplasticity, and such neuro-
plasticity-based brain stimulation interventions look promising. 
Recently, in a randomized double-blind sham-controlled study, 

our group demonstrated that application of 1,500 pulses/session 
of high-frequency (20  Hz) rTMS to DLPFC can “normalize” 
working memory deficits in schizophrenia (57). One possible 
mechanism of such improvement is enhancement of neuroplas-
ticity in the DLPFC. There is a need to explore similar approach 
to treat aberrant neuroplasticity in ASD.

what rTMS Stimulation Protocol to Choose for 
Stabilizing Aberrant neuroplasticity in ASD?
Since aberrant neuroplasticity has been linked with the pathogen-
esis of ASD (7, 8), there is an urgent need to explore treatment 
paradigms that can stabilize aberrant neuroplasticity and thus 
potentially facilitate optimal social and cognitive performance and 
improve restricted and repetitive behaviors in ASD. In this regard, 
we would like to propose the potential role of extended dosing 
(i.e., 6,000 pulses) of high-frequency (i.e., 20 Hz) rTMS (58).

In healthy adults, rTMS applied on M1 has been shown to 
enhance GABA-mediated inhibitory neurotransmission indexed 
by lengthening of the cortical silent period (CSP), a CI measure 
reflective of GABAB-mediated inhibitory neurotransmission, 
with increased stimulation frequency. Our group found that the 
enhancement was maximal at 20  Hz (31). This finding breaks 
with convention that high-frequency stimulation results in exci-
tation, whereas low-frequency stimulation results in inhibition, 
as 20-Hz rTMS, but not 1-Hz rTMS, resulted in a CSP prolonga-
tion (31, 58). One explanation is that 20-Hz rTMS may exert its 
inhibitory effect by selectively affecting networks involving fast-
spiking inhibitory interneurons that mainly oscillate at higher 
(i.e., 30–70  Hz) frequencies (58). A recent study by our group 
investigating differing durations or doses of rTMS on CI in M1 
in healthy subjects found that even a single session of extended 
dosing (6,000 pulses) with high-frequency (20 Hz) pulses led to 
significant lengthening of the GABAB-mediated CSP compared 
with other paradigms (58). This effect was not seen with active or 
sham 1- or 20-Hz rTMS at 1,200 pulses or 3,600 pulses.

It has been suggested that, depending on the direction and 
magnitude of inhibition, GABAB receptor-mediated neurotrans-
mission may attenuate neuroplasticity. In fact, baclofen, a GABAB 
agonist, significantly attenuated LTP-like neuroplasticity in M1 
induced by PAS (59). Since extended dosing (i.e., 6,000 pulses) of 
such specific high-frequency (20 Hz) rTMS protocol (58) appears 
to maximally enhance GABAB-mediated inhibitory neurotrans-
mission, one approach would be to assess if such protocols are 
able to stabilize aberrant hyperplasticity seen in ASD. This line 
of approach is also consistent with the excitation–inhibition 
imbalance in ASD, i.e., a general deficit in GABA-ergic inhibition, 
an increased excitation/inhibition ratio (3), and an evidence of 
reduced expression of GABAB receptors (33). In the future, proof-
of-principle studies are needed to test this assumption. Because 
of its simplicity and reliability, such experiments may begin at 
M1 to see if the delivery of 6,000 pulses at 20 Hz can stabilize 
aberrant neuroplasticity in ASD subjects. If successful, further 
pilot studies will be required to assess whether rectifying aber-
rant neuroplasticity translates into actual clinical improvement 
or not. These pilot studies may potentially stimulate key areas of 
ASD brain discussed above, i.e., DLPFC, TPJ, and dmPFC, and 
determine key stimulation parameters, duration of sessions, etc.
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Conclusion

In summary, existing genetic and animal studies of ASD and 
evidence emerging from human rTMS studies have consistently 
indicated aberrant neuroplasticity in ASD brain. However, at this 
point, there are many unanswered questions regarding the exact 
etiopathological connection between aberrant neuroplasticity in 
the brain and development of autistic symptoms. Nevertheless, 
existing evidence still indicates that aberrant neuroplasticity could 
play a critical role in the pathogenesis of ASD. Therefore, it can be 
postulated that it may be possible to attain optimal social and cog-
nitive performance in ASD by stabilizing aberrant neuroplasticity. 
In this context, we discussed a novel mechanism-driven approach 
toward achieving such goal using rTMS. If successful, this informa-
tion will not only help us better understand the brain mechanisms 
involved in ASD but also stimulate trials testing mechanism-driven 
novel brain stimulation treatment paradigms for ASD.
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