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To investigate whether aberrant interactions between brain structure and function presen
similarly or differently across probands with psychotic illnesses [schizophrenia (SZ), schi
zoaffective disorder (SAD), and bipolar I disorder with psychosis (BP)] and whether thes
deficits are shared with their first-degree non-psychotic relatives. A total of 1199 subject
were assessed, including 220 SZ, 147 SAD, 180 psychotic BP, 150 first-degree relative
of SZ, 126 SAD relatives, 134 BP relatives, and 242 healthy controls (1). All subject
underwent structural MRI (sMRI) and resting-state functional MRI (rs-fMRI) scanning
Joint-independent component analysis (jICA) was used to fuse sMRI gray matter an
rs-fMRI amplitude of low-frequency fluctuations data to identify the relationship betwee
the two modalities. jICA revealed two significantly fused components. The associatio
between functional brain alteration in a prefrontal–striatal–thalamic–cerebellar networ
and structural abnormalities in the default mode network was found to be commo
across psychotic diagnoses and correlated with cognitive function, social function, an
schizo-bipolar scale scores. The fused alteration in the temporal lobe was unique to S
and SAD. The above effects were not seen in any relative group (including those wit
cluster-A personality). Using a multivariate-fused approach involving two widely use
imaging markers, we demonstrate both shared and distinct biological traits across th
psychosis spectrum. Furthermore, our results suggest that the above traits are psycho
sis biomarkers rather than endophenotypes.
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inTrODUcTiOn

Whether schizophrenia (SZ), schizoaffective disorder (SAD), 
and psychotic bipolar disorder are distinct illnesses or represent 
a continuum continues to be debated (2–4). There is overlap 
among clinical symptoms (5), cognitive functional deficits (6), 
and disease risk genes (7) among these disorders (8) that chal-
lenge traditional diagnostic categories. Clarifying similarities 
and differences in anatomical and functional deficits among 
psychotic probands may contribute to the better understanding 
of the mechanisms underlying psychotic disorders. The above 
disorders are highly heritable (9, 10), and illness-related genes 
associated with the abnormalities in brain structure and func-
tion (11) may also be present in their unaffected relatives. Thus, 
shared abnormalities between probands and unaffected relatives 
can serve as endophenotypes, which may provide biological 
genetic substrates for improved diagnostic classification (12), and 
ultimately may lead to better, more focused treatments.

Psychotic illnesses are widely assumed to be brain disorders 
characterized by distributed cerebral dysconnectivity across 
large-scale neural networks. Resting-state networks reflect cor-
related spontaneous fluctuations in brain regional activity at rest 
(13) and show a similar correspondence to task-related networks 
that control brain action and cognition (14). A recent resting-
state functional MRI (rs-fMRI) study reported that SZ, SAD, and 
psychotic bipolar disorder share disruptions within the fronto-
parietal control network (7). Both default mode network (DMN) 
and prefrontal–thalamic–cerebellar network connectivity have 
been reported to be abnormal in probands with SZ and bipolar 
disorder (15, 16) and between probands and relatives with SZ 
(17–19). Lui et al. (20) compared resting-state functional network 
connectivity between SZ and psychotic bipolar probands and 
their unaffected first-degree relatives and found probands with SZ 
and psychotic bipolar shared deficits in striatal–thalamic–cortical 
network as well as bipolar relatives. Independent structural MRI 
(sMRI) studies reveal both common and unique regional gray 
matter (GM) abnormalities across psychotic probands (21–24). 
Ivleva et al. (24) reported that SZ, SAD, psychotic bipolar disorder 
probands, and their relatives with psychosis showed overlapping 
GM deficits throughout the neocortex as a psychosis endophe-
notype. Collectively, overlaps and differences in both functional 
and structural networks across psychosis probands and their rela-
tives have been identified, but no studies to date have examined 
both structural and functional deficits together. Brain regions 
are highly interconnected and local changes in brain structure 
may result in altered brain activity in distant regions (25, 26). 
Inter-regional correlations of GM volume may reflect changed 
inter-regional functional connectivity (27). Thus, examining 
abnormalities in structure and function together may help better 
characterize illness-related features and provide more informa-
tion than each measure independently.

Joint-independent component analysis (jICA), a data-driven 
feature-based approach, enables joint analysis of different 
data types, for example, relationships between brain function 
and structure (28). In the present study, we utilized two com-
monly employed techniques to quantify anatomy and function. 
Anatomical data were indexed by GM volumes obtained through 

voxel-based morphometry (VBM), while resting-state function 
was measured using amplitude of low-frequency fluctuations 
(ALFF) (0.01–0.08  Hz) of the blood oxygen level dependent. 
ALFF measures, particularly in the 0.01–0.08  Hz frequency 
range have been demonstrated to be physiologically relevant 
and related to neuronal fluctuations in brain GM in resting state 
(29, 30). In the current study, we utilized the joint approach to 
integrate GM and ALFF, to investigate joint structure–function 
anomalies across the SZ-psychotic bipolar disorder spectrum 
using data from the large-scale multi-site bipolar-schizophrenia 
network on intermediate phenotypes (B-SNIP) psychosis study 
(31). Our aims were to (1) detect whether aberrancies detected by 
fusing rs-fMRI and sMRI would be specific to SZ, SAD, or bipo-
lar I disorder with psychosis (BP) or shared by these psychotic 
disorders relative to healthy controls; (2) investigate whether 
these abnormalities across two modalities would be shared by 
probands and their non-psychotic relatives, suggesting that they 
may represent endophenotypes across the psychosis dimension.

MaTerials anD MeThODs

Participants
A total of 1199 subjects (passing quality control) were used for 
the current analysis. Subjects were drawn from the B-SNIP study 
from six sites, including 220 SZ, 180 psychotic BP, 147 SAD, 150 
first-degree relatives of SZ, 134 first-degree relatives of psychotic 
BP, 126 first-degree relatives of SAD, and 242 healthy controls. 
The details of characteristics of the B-SNIP clinical population are 
described in Ref. (31). All participants provided written informed 
consent approved separately by institutional review boards of 
individual sites after a complete explanation of the study. All 
probands and relatives were diagnosed using the Structured 
Clinical Interview for DSM-IV Axis I Disorder, Patient Edition 
(SCID-I/P) (32). Relatives were also diagnosed with the struc-
tured interview for DSM-IV personality (SIDP-IV) (33) for axis-
II diagnoses. Relatives meeting the criteria for axis I proband-like 
psychotic disorders (N = 64) were classified to the corresponding 
proband groups and those with no axis I or no lifetime psychotic 
diagnoses were included in the non-psychotic relative groups. 
In addition, relatives without a psychotic disorder were admin-
istered the SIDP-IV (34) and were considered to have elevated 
psychosis spectrum personality traits if meeting full or within 
one criteria of Cluster-A (psychosis spectrum; N = 63) Axis-II 
diagnosis. Healthy controls were evaluated using the SCID Non-
Patient Edition to confirm lifetime absence of Axis I illness or 
a family history of SZ-bipolar spectrum disorders. All probands 
were assessed with positive and negative syndrome scale (PANSS) 
(35), Montgomery–Åsberg depression rating scale (MADRS) 
(36), Young Mania Rating Scale (YMRS) (37), and schizo-bipolar 
scale (SBS) (5). Additionally, all subjects were assessed with brief 
assessment of cognition in schizophrenia (BACS) (38) and the 
Birchwood social functioning scale (SFS) (39).

The demographic and clinical characteristics of study sample 
are outlined in Table 1, and details are described in the previous 
B-SNIP papers (24, 31). Medication data are listed in Table S2 in 
Supplementary Material.
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TaBle 1 | Demographic and clinical characteristics of the study sample.

Variablea schizophrenia 
probands (n =220)

schizoaffective 
disorder probands 

(n =147)

Psychotic bipolar 
probands (n =180)

relatives of 
schizophrenia 

(n =150)

relatives of 
schizoaffective 

disorder (n =126)

relatives of 
psychotic bipolar 

(n =134)

healthy controls 
(n =242)

statisticc

N % N % N % N % N % N % N % χ2 p

Male gender 145 65.91 66 44.90 58 32.22 49 32.67 40 31.75 49 36.57 103 42.56 71.27 2 × 10−13

Mean sD Mean sD Mean sD Mean sD Mean sD Mean sD Mean sD F p

Age (years) 35.15 12.31 35.08 12.01 36.94 13.04 43.33 15.55 41.01 16.14 40.59 16.13 38.14 12.65 7.72 4 × 10−8

Panss

Positive 16.91 5.42 18.12 5.32 12.77 4.38 – – – – – – – – 50.47 1 × 10−22

Negative 16.27 5.93 15.49 4.95 11.79 3.61 – – – – – – – – 40.96 3 × 10−17

General 32.02 8.72 34.80 9.00 28.60 8.04 – – – – – – – – 20.57 3 × 10−9

Total 65.20 16.78 68.41 16.28 53.17 13.48 – – – – – – – – 43.74 3 × 10−18

MADRS 8.90 7.93 14.31 10.26 10.51 8.99 – – – – – – – – 15.76 2 × 10−7

YMRS 5.76 5.79 7.69 6.48 5.69 6.46 – – – – – – – – 5.22 0.006

SBS 7.79 1.36 5.01 1.60 1.35 1.24 – – – – – – – – 1006.21 2 × 10−178

Bacsb (z)

Verbal memory −1.14 1.32 −1.04 1.39 −0.44 1.28 −0.08 1.09 −0.46 1.26 −0.13 1.07 −0.04 1.08 23.13 8 × 10−26

Token motor −1.33 1.18 −1.36 1.17 −0.95 1.24 −0.33 1.16 −0.24 1.03 −0.31 1.07 0.02 1.12 39.24 3 × 10−43

Digit 
sequencing

−1.26 1.20 −0.94 1.28 −0.51 1.11 −0.38 1.14 -0.27 1.15 −0.03 1.11 −0.06 1.12 26.71 8 × 10−30

Verbal fluency −0.76 1.15 −0.50 1.27 −0.20 1.23 −0.93 1.08 0.02 1.20 0.07 1.07 0.14 1.05 14.20 1 × 10−15

Symbol coding −1.41 1.10 −1.37 1.18 −0.87 1.01 −0.37 1.08 −0.39 1.10 −0.07 1.04 −0.00 1.01 49.42 1 × 10−53

Tower of 
London

−0.87 1.39 −0.70 1.30 −0.28 1.10 −0.19 1.08 −0.18 1.27 0.11 0.85 0.02 1.17 15.80 2 × 10−17

Composite 
score

−1.79 1.34 −1.54 1.37 −0.87 1.24 −0.38 1.19 −0.40 1.25 −0.09 1.11 0.02 1.17 54.99 3 × 10−59

SFS 123.27 23.13 119.28 24.42 134.10 22.77 151.03 18.23 144.64 21.89 151.42 21.60 156.09 15.94 68.31 2 × 10−70

aPANSS, positive and negative syndrome scale; MRADS, Montgomery–Åsberg depression rating scale; YMRS, Young Mania Rating Scale; SBS, schizo-bipolar scale; BACS, brief assessment of cognition in schizophrenia; SFS, 
Birchwood social functioning scale.
bz-Scores are calculated using the overall means and standard deviations of all healthy controls and corrected with age and sex.
cPost hoc statistic are presented as follows: age: SADR, SZR > HC; SZR, BPR, SADR > BP; HC, BPR, SADR, SZR > SZ; BPR, SADR, SZR > SAD. PANSS_Positive: SZ > BP; SAD > SZ, BP; PANSS_Negative: SZ > BP, SAD; 
SAD > BP; PANSS General: SAD > SZ > BP. MADRS: BP > HC; SZ > HC; SAD > all groups. YMRS: BP > HC; SZ > HC; SAD > all groups. SBS: SZ > BP, SAD; SAD > BP. BACS Verbal memory: BP > SZ, SAD; HC > SZ, SAD, 
BP; SADR > BP; SZR, BPR, HC > SADR; BACS token motor: BP > SZ, SAD; HC > SZ, SAD, BP; HC, SADR > SZR, BPR; BACS digit sequencing: BP > SAD > SZ; HC > SZ, SAD, BP, SZR; BACS verbal fluency: BP > SAD > SZ; 
HC > SZ, SAD, BP; BACS symbol coding: BP > SZ, SAD; HC > SZ, SAD, BP, SZR, SDAR; BACS tower of London: BP > SZ, SAD; HC > SZ, SAD, BP; BACS composite Score: BP > SZ, SAD; HC > SZ, SAD, BP; SADR > BP; SZR, 
BPR, HC > SADR.SFS: BP, SZR, BPR, SADR, HC > SZ, SAD; BP > SAD, SZ; SZR, BPR, SADR, HC > BP; SZR, BPR > SADR; HC > BP, SAD, SZ, SZR, SADR.
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Mri Data acquisition and Preprocessing
Structural and functional MRI scans were acquired on 3-T scan-
ners at each site (Scanning platforms and platforms parameters 
are listed in Table S1 in Supplementary Material). Structural and 
functional images were collected during the same scan session. 
Foam pads and ear plugs were used to minimize head motion and 
scanner noise. All the subjects were instructed to keep their eyes 
fixated on a crosshair, not to think about anything in particular 
and to move as little as possible.

Voxel-Based Morphometry
Voxel-based morphometry analyses of structural images were 
performed using the VBM8 toolbox1 as implemented in SPM8. 
T1-weighted images were bias-corrected and segmented into 
GM, white matter (WM), and cerebrospinal fluid (CSF) by “New 
Segment” using a customized template, which was constructed 
from our 1199 study samples by DARTEL in SPM8 (40). The 
segmented images were normalized to Montreal Neurological 
Institute (MNI) space (41) using the DARTEL template and 
resampled to 1.5 mm × 1.5 mm × 1.5 mm voxels. In the final 
step, the segmented normalized images were spatially smoothed 
with an 8  mm  ×  8  mm  ×  8  mm full width at half maximum 
Gaussian kernel.

amplitude of low-Frequency  
Fluctuations
Functional image preprocessing was carried out using data 
processing assistant for resting-state fMRI (DPARSF), version 
2.3 (42), implemented in the MATLAB toolbox (Mathworks, 
Inc.). The first 9  s of each subject data were discarded before 
slice timing and head motion correction were performed. 
Then, the individual structural T1 image was coregistered to 
the mean functional image after motion correction. Subjects 
with head motion >3.0  mm of maximal translation in any 
direction or 3.0° of maximal rotation were excluded from 
further analysis. In addition, six motion parameters, CSF, and 
WM signals were used as nuisance covariates to reduce effects 
of head motion and non-neuronal BOLD fluctuations. Images 
were then DARTEL normalized to MNI space and resampled to 
3 mm × 3 mm × 3 mm voxels. Subsequently, the time series were 
band-pass filtered (0.01–0.08  Hz) and linear trends removed. 
Then, the preprocessed time series were transformed to the fre-
quency domain using fast Fourier transform, and power spectra 
obtained. Because the power of a given frequency is proportional 
to the square of the amplitude of this frequency component of 
the original time series in the time domain, the square root 
was calculated at each frequency of the power spectrum and 
the averaged square root was obtained across 0.01–0.08  Hz at 
each voxel. This averaged square root was taken as the ALFF. For 
standardization purpose, the ALFF of each voxel was divided by 
the global mean ALFF value. Finally, all images were spatially 
smoothed with an 8  mm  ×  8  mm  ×  8  mm full width at half 
maximum Gaussian kernel.

1 http://dbm.neuro.uni-jena.de/vbm

Joint-independent component analysis
Joint-independent component analysis is a second-level fMRI 
analysis method that assumes two or more features (modalities) 
share the same mixing matrix and maximizes the independence 
among joint components. ICA is performed on the horizontally 
concatenated feature sets (along voxels in structure–function 
in this case), thus uncovering patterns of data that commonly 
fluctuate or are connected across both modalities (see Figure 
S1 in Supplementary Material). It is suitable for examining a 
common modulation across subjects among modalities and has 
been applied to link a variety of feature sets in the past (43, 44). 
jICA (28, 45) assumes a model χ = AS where joint-independent 
sources (S) are linearly mixed by a common mixing parameter 
(A) to generate the observations data matrix (χ). In this case, 
we use ICA analysis algorithms to form the overall data matrix 
χ  =  [χGM, χALFF] and derive spatially independent joint sources 
S =  [SGM, SALFF] along with their shared mixing parameter (A), 
which are presented as loading parameters for each subject. A 
total of 22 independent components were estimated according to 
minimum description length criteria (46) using the Group ICA of 
fMRI Toolbox (GIFT).2 The jICA was performed using the Fusion 
ICA Toolbox.3 First, the preprocessed ALFF and GM images were 
normalized to have the same average sum of squares to ensure 
that units were shared between data types. Normalization was 
performed on group level, so covariations among subjects were 
preserved. Then, the ALFF and GM data were modeled by match-
ing the sums of squares across modalities and combined into a 
single data matrix, used to identify the common mixing matrix 
parameters using the infomax algorithm (47) shared by spatially 
independent joint source images (ALFF and GM images). The 
complete details of the method were as reported in Ref. (28).

statistical analysis
A one-way analysis of variance (ANOVA) and chi-square test 
were carried out for demographic and clinical variables. The 
effects of age, sex, and site were regressed out using linear regres-
sion, and residuals of loading parameters of the independent 
components were compared across probands, relatives, and HC 
using ANOVA. Independent components showing significant 
main effect of group difference after Bonferroni correction were 
further evaluated using post hoc pair-wise group comparisons. A 
false discovery rate (FDR) correction for multiple comparisons 
was applied to post hoc tests. To assess whether the estimated ICA 
joint sources were associated with clinical symptoms, cognitive, 
or general socio-functioning, we derived associations between the 
residuals of the independent components and PANSS, MADRS, 
YMRS, BACS, and SFS scores across all available subjects. For 
the above association analyses, we added group as an additional 
covariate to covary any baseline group differences in cognition 
and social function.

In addition, relative risk (48) of joint structural–functional 
abnormalities presented by the independent components was 
calculated as the ratio of percentage of relatives classified as 

2 http://mialab.mrn.org/software/gift, version 2.0a
3 http://mialab.mrn.org/software/fit, version 1.2c
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TaBle 2 | Talairach coordinates for significant regions of component 15.

region Ba left/right volume (cc) left/right Zmax (x, y, z)

ic15_alFF
cOnTrOls > PrOBanDs

Lingual gyrus 17, 18 2.3/1.4 6.9 (−3, −91, −11)/6.7 (6, −88, −11)

Thalamus NA 1.6/2.1 4.5 (−9, −5, 11)/4.1 (6, −5, 11)

Culmen NA 1.7/1.5 3.2 (−18, −30, −16)/3.5 (0, −39, −21)

Declive NA 1.1/1.0 3.6 (−18, −88, −18)/3.5 (3, −79, −11)

Superior temporal gyrus 38 0.0/1.9 NA/4.0 (36, 8, −21)

Caudate NA 0.6/1.0 5.0 (−9, 4, 14)/4.5 (9, 6, 11)

Superior frontal gyrus 6, 8, 10 1.3/0.0 2.8 (−30, 61, −3)/NA

Rectal gyrus 11 0.6/0.5 2.7 (−3, 34, −22)/2.5 (3, 37, −25)

Cuneus 17, 18, 19 0.7/0.0 3.3 (−3, −93, 0)/NA

Fusiform gyrus 18 0.6/0.0 5.0 (−21, −91, −13)/NA

Inferior occipital gyrus 17, 18 0.6/0.0 4.1 (−30, −88, −13)/NA

Precuneus 7 0.5/0.0 3.3 (−3, −76, 45)/NA

Anterior cingulate 25 0.5/0.0 3.5 (0, 2, −10)/NA

PrOBanDs > cOnTrOls

Inferior frontal gyrus 13, 47 1.2/0.8 3.2 (−39, 11, −13)/2.8 (24, 11, −16)

Middle temporal gyrus 21, 38 1.3/0.3 3.0 (−39, 4, −30)/2.4 (48, 4, −30)

Middle occipital gyrus 18, 37 0.0/0.9 NA/2.5 (33, −76, −9)

Superior temporal gyrus 22, 38 0.6/0.0 2.6 (−39, 7, −28)/NA

Cuneus 17, 18 0.0/0.6 NA/2.6 (6, −84, 12)

Transverse temporal gyrus 41, 42 0.0/0.5 NA/3.2 (62, −14, 12)

ic15_gM

cOnTrOls > PrOBanDs

Cingulate gyrus 24, 31, 32 7.0/6.4 3.6 (−4, 25, 28)/3.4 (6, 28, 28)

Medial frontal gyrus 6, 8, 9, 10, 11, 32 5.9/5.6 3.2 (−7, 46, 12)/3.6 (4, 42, 15)

Anterior cingulate 10, 24, 32 4.1/4.6 3.5 (−4, 43, 13)/3.8 (7, 36, 19)

Paracentral lobule 5, 6, 31 1.1/1.0 2.9 (−3, −11, 43)/3.0 (9, −25, 44)

Precuneus 7, 31 1.3/0.6 3.0 (−13, −62, 22)/2.7 (15, −57, 24)

Posterior cingulate 30 0.8/0.7 3.2 (−13, −56, 17)/2.7 (15, −53, 15)

Middle frontal gyrus 9 0.0/0.8 NA/3.0 (40, 10, 30)

PrOBanDs > cOnTrOls

Lingual gyrus 17, 18 1.7/1.3 3.1 (0, −86, −7)/3.0 (3, −88, −4)

Fusiform gyrus 19, 20, 37 0.3/0.7 2.3 (−52, −66, −12)/2.5 (52, −63, −13)

NA = not applicable.
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jICA also produces loading parameters for each component pair 
that reflects the component’s influence at the subject level (49). 
This is further used to assess the between-subject differences in 
sMRI–fMRI association. Post hoc tests revealed loading param-
eters of IC6 were higher both in probands with SZ (p = 0.024) 
and SAD (p = 0.012) in relative to healthy controls. For IC 15, 
loading parameters were lower in probands with SZ (p = 0.012), 
SAD (p = 0.024), and BP (p = 0.036) relative to healthy controls 
separately. Contrasts revealed no effect of relatives and healthy 
controls in either IC6 or IC15. The mean standardized residual of 
loading parameters are shown in Figure 2. All posthoc measures 
were corrected using the FDR method (for reference).

We correlated the loading parameters of both ICs with the 
PANSS, MADRS, YMRS, BACS, SBS, and SFS scores for all 
available subjects. While, loading parameters of IC6 showed no 
correlation with any of the above scores. Loading parameters of 
IC15 were positively correlated with the BACS composite scores, 
BACS symbol coding scores, and BACS tower of London scores 
after FDR correction (Table 4).

“affected” based on a threshold of 2 SD above the control mean to 
the percentage of healthy controls designated as “affected.” A chi-
square was used to test for significance of relative risk in relatives 
compared with HC.

Furthermore, we used an ANCOVA model to detect the main 
effect of site across healthy controls and the effect of diagnosis-
by-site across all groups separately. The above analyses were 
performed using SPSS v17.0 (Statistical Package for the Social 
Sciences, IBM, Chicago, IL, USA).

resUlTs

Of the 22 components estimated from the data, only network pair 
6 (IC6) (F = 9.62; p = 7 × 10−5) and IC15 (F = 17.79; p = 2 × 10−8) 
showed a group main effects after Bonferroni correction. Talairach 
coordinates for the regions of IC15 and IC6 at a threshold of 
|Z| > 2.5 are summarized in Tables 2 and 3. The ALFF/GM maps 
of IC15 and IC6 are shown in Figure 1. As part of the output, 
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TaBle 3 | Talairach coordinates for significant regions of component 6.

region Ba left/right volume (cc) left/right Zmax (x, y, z)

ic6_alFF
PrOBanDs > cOnTrOls

Uncus 20, 28, 34, 36 5.1/4.9 8.6 (−33, −1, −28)/8.9 (33, −4, −28)

Superior temporal gyrus 38 3.4/4.4 7.8 (−33, 5, −23)/7.9 (39, 2, −20)

Middle temporal gyrus 20, 21, 38 2.6/2.9 7.6 (−39, 2, −28)/10.5 (39, −4, −28)

Parahippocampal gyrus 34, 35 2.6/2.5 8.1 (−33, −4, −20)/9.4 (36, −1, −20)

Inferior temporal gyrus 20 1.9/2.7 5.2 (−45, −4, −28)/8.4 (42, −7, −27)

Fusiform gyrus 20 0.5/0.5 4.1 (−39, −13, −25)/6.9 (42, −10, −25)

ic6_gM

PrOBanDs > cOnTrOls

Fusiform gyrus 20, 36, 37 1.2/1.1 3.9 (−42, −17, −24)/4.2 (42, −16, −24)

Superior temporal gyrus 13, 22, 38, 39, 41 0.8/1.0 3.3 (−27, 15, −30)/3.4 (49, −44, 19)

Middle frontal gyrus 6, 9, 10, 46 0.4/1.2 2.7 (−37, 37, 11)/3.9 (40, 13, 27)

Precuneus 7, 31 1.1/0.2 3.7 (−13, −69, 26)/2.1 (19, −60, 28)

Uncus 20, 28, 36, 38 1.0/0.3 4.1 (−19, 3, −32)/2.8 (22, 9, −27)

Inferior parietal lobule 40 0.8/0.3 3.2 (−43, −34, 39)/4.9 (46, −46, 22)

Inferior frontal gyrus 9, 47 0.3/0.8 2.5 (−39, 34, 13)/3.8 (42, 6, 33)

Inferior temporal gyrus 20, 37 0.0/0.8 NA/3.9 (40, −13, −27)

Precentral gyrus 6, 9, 13, 43 0.0/0.8 NA/3.0 (53, −4, 10)

Supramarginal gyrus 40 0.0/0.8 NA/5.0 (48, −47, 26)

Middle temporal gyrus 37, 39 0.0/0.4 NA/2.7 (34, −76, 18)

cOnTrOls > PrOBanDs

Precuneus 7, 31 2.8/2.0 4.6 (−7, −46, 34)/3.2 (4, −48, 33)

Cingulate gyrus 31 1.8/1.6 4.2 (−7, −43, 37)/4.2 (9, −42, 37)

Middle frontal gyrus 9, 10 1.9/1.2 4.6 (−37, 22, 32)/4.5 (37, 25, 32)

Posterior cingulate 23, 30, 31 1.5/0.9 3.8 (−19, −65, 10)/3.5 (18, −64, 10)

Middle temporal gyrus 20, 21 1.7/0.5 2.8 (−56, −41, −9)/2.6 (55, −2, −20)

Lentiform nucleus * 0.0/1.6 NA/3.2 (19, 14, −3)

Inferior frontal gyrus 45, 47 0.0/1.2 NA/3.4 (50, 22, 10)

Inferior temporal gyrus 20, 21 0.7/0.3 2.5 (−61, −21, −22)/2.6 (58, −23, −15)

Declive * 0.0/0.7 NA/2.6 (40, −75, −15)

Cuneus 18, 23, 30 0.6/0.0 3.9 (−16, −68, 12)/NA

Precentral gyrus 6, 9 0.3/0.3 5.2 (−37, 21, 36)/3.0 (50, 19, 7)

Lingual gyrus 18, 19 0.4/0.2 3.1 (−16, −51, 5)/2.5 (22, −54, 5)

Parahippocampal gyrus 30 0.3/0.2 2.7 (−22, −52, 5)/3.4 (19, −49, 5)
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There was no significant difference between relatives and 
healthy controls in relative risk of joint structural–functional 
abnormalities. Main effects of site were observed for both IC6 
(F =  40.63, p =  4 ×  10−30) and IC15 (F =  9.98, p =  1 ×  10−8). 
However, more importantly, no diagnosis-by-site interaction was 
noted.

DiscUssiOn

The human brain is connected on a variety of different spatial 
scales, from synaptic signaling at the cellular level to a more broad 
systems level containing inter-regional communication across 
physically distant brain regions. A natural starting point to exam-
ine system level architecture is by using traditional “unimodal” 
techniques. However, it is also possible to apply more advanced 
statistical techniques to define “cross-modal” brain relationships 
between disparate measures (e.g., structure and function). In 
this study, we took this approach to detect common and unique 
abnormalities in a large psychosis sample by fusing two modalities 

(rs-fMRI and sMRI) using a jICA approach across the psychotic 
spectrum (SZ, SAD, and psychotic BP) and to investigate which 
of those are shared by their unaffected first-degree relatives, sug-
gesting possible endophenotypes. Since multimodal techniques 
such as joint ICA capture “cross-feature” information simultane-
ously, they naturally contribute to a different set of information 
compared to their individual “unimodal” counterparts.

By using a jICA approach, two components showing group 
differences were identified. Joint loadings computed from IC15 
showed significant differences in SZ, SAD, and BP (compared 
to HC), while IC6 distinguished only SZ and SAD from con-
trols. However, first-degree, non-psychotic relatives showed no 
common abnormalities with the probands and no significant 
differences compared to HC. Consistent with this finding, we 
found that the relative risk estimates for the two components 
were non-significant. Brain changes in function and structure 
correlated with certain sub-scales of the BACS inventory, suggest-
ing direction relationships between affected structure–function 
patterns and cognitive function scores.
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FigUre 1 | alFF and gM spatial maps for joint ic6 and ic15. For display, the components were converted to Z-values and thresholded at |Z| > 2.5.
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The IC15-ALFF network encompassed regions, including 
thalamus, cerebellum, prefrontal cortex, and caudate, which are 
primarily involved in the prefrontal–striatal–thalamic–cerebel-
lar network that has been implicated in the pathophysiology of 
both SZ (50, 51) and BP (52), supported by growing evidence 
(53–59). The prefrontal cortex plays a critical role in executive 
cognitive control, whereas the striatum and the cerebellum, 
which are connected with the prefrontal cortex via thalamus (60, 
61), are also involved in executive function, working memory, 
spatial cognition, and language (62). The thalamus not only 
functions as a nexus to integrate cortical and subcortical activ-
ity (63, 64) but is also implicated in processing and integrating 
sensory information via connections with sensory–motor cor-
tices (65, 66). Remaining brain regions in IC15-ALFF included 
visual areas, such as lingual gyrus, cuneus, fusiform gyrus, and 
occipital cortex; and auditory-related areas, such as superior 
temporal and transverse temporal gyri, which may indicate 
dysconnectivity between sensory cortices and thalamus in 
psychosis. Thus, dysfunctions in this network may be associated 

with abnormal cognition, difficulty in coordinating processing, 
prioritization, retrieval, and expression of the information 
associated with psychotic symptoms (51, 67). Consistent with 
our results, Anticevic et al. (68) documented that thalamic con-
nectivity with prefrontal–striatal–cerebellar regions successfully 
classified SZ and psychotic bipolar patients, suggesting that 
this network may be abnormal across diagnoses. Interestingly, 
IC15 also showed decreased GM in regions that constitute the 
functional DMN (69), consistent with previous findings in 
both SZ/SAD and BP that showed reduced GM (24, 70–75). 
Two regions within IC15 showing increased GM in psychosis 
probands were lingual gyrus and fusiform gyrus, consistent with 
previous studies with larger fusiform gyrus in both SZ and BP 
(76) and larger lingual gyrus in SZ (77) compared with healthy 
controls. Positive correlation between the loading parameters of 
IC15 and BACS scores support a link between abnormalities in 
prefrontal–striatal–thalamic–cerebellar network and DMN and 
cognitive function, consistent with previous studies (38, 78–84). 
Interestingly, symbol coding was the most sensitive indicator 
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TaBle 4 | significant correlations between ic15 loading parameters and 
the brief assessment of cognition in schizophrenia adjusted using FDr 
correction for multiple comparisons.

ic15 Bacs (z) R p*

Symbol coding 0.175 0.001

Tower of London 0.157 0.003

Composite score 0.169 0.001

*FDR corrected.

FigUre 2 | Mean standardized residual of loading parameters for 
ic15 and ic6, controlling for age, sex, and site. *Individual group had 
significantly different loading parameters compared to control subjects after 
false discovery rate (FDR) correction.
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of genetic liability for SZ/SAD and performance distinguished 
psychotic BP from major depression (85).

Among the IC6-ALFF regions, a subset of temporal regions 
showed higher ALFF in both SZ and SAD in relative to HC and no 
difference between BP and controls. These results are consistent 
with previous studies that increased ALFF were found in inferior 
temporal gyrus, uncus, fusiform gyrus (86), superior temporal 
gyrus (87), and parahippocampal gyrus (88) in SZ when com-
pared to HC. All these regions overlap with the IC6-GM regions, 
which suggest that both temporal lobe function and structure 
are disturbed in SZ and SAD (89, 90). Regions noted as part of 
IC6-GM have been consistently shown to have reduced GM in 
SZ compared to HC (91, 92), often in association with psychotic 
symptoms (93). Another jICA study (28) that combined fMRI 
(from an auditory oddball task) and sMRI data showed similar 
brain regions to ours with both increased GM and abnormal 
activation primarily located in temporal lobe in SZ compared 
to HC. Furthermore, consistent with our results, Calhoun et al. 
(94) reported that temporal lobe functional data successfully 
discriminated HC from SZ during an auditory oddball task, and 
combined temporal lobe and DMN data in resting-state discrimi-
nated between SZ and psychotic BP, consistent with well-studied 
temporal lobe anomalies in SZ (45).

A natural question is what mechanisms may be responsible for 
these types of long-distance structural–functional couplings and 
how functional data in one region might be linked to a different/
remotely located functional region or vice versa. One possibility 
is that the local GM volume in one region affects the quantity of 
functional output from that region, which in turn has a causal 
influence on synaptic input arriving at a distal cortical location, 
thus suggesting a relationship from structure to downstream 
functional response. Alternatively, the causal direction of the 
relationship could be reversed, with the amount of functional 
activity in a region influencing the structural volume of a 
downstream region, either through excitotoxic or neurotrophic 
influences. Notably, an excitotoxic downstream effect would 
be a mechanism by which increased functional activity in one 
region (if consistently elevated) could lead to decreased structural 
volume in another region. In all these hypothesized mechanisms, 
it is possible that the observed structure–function relationship is 
mediated by intervening regions (either direct or indirect con-
nections). Overall, multiple mechanisms and pathways could lead 
to a coupling between structural and functional characteristics 
of the brain. Because these mechanisms are not static, it seems 
likely that the strength and directionality of structure–function 
correlations could vary in psychiatric populations, such as SZ, 
where brain connectivity is compromised in general.

The current subject sample largely overlapped with two previ-
ously published studies from our group investigating sMRI and 
ALFF individually in a more traditional “unimodal” voxel-wise 
fashion (24, 95). Importantly, these previous studies did not 
look at connectivity of regions as being presently reported here. 
Overall, in these previously reported studies, we identified larger 
structural and functional anomalies in SZ/SAD compared to 
PBP, consistent with findings from the current jICA approach. 
However, not all regions reported in the current study overlapped 
with previous findings. This is not surprising, given that jICA (a) is 
a purely data-driven (blind) technique, (b) captures data patterns 
that are linked between multimodal features, and (c) explores 
connectivity patterns among large-scale networks as opposed 
to regional effects. The jICA approach is therefore a completely 
different and novel approach to explore the data compared to 
traditional voxel-wise/regional methods, as reported previously.

Advantages of our study are the relatively large population 
with psychosis probands and relatives across the psychosis 
dimension and we combine two different data type to investigate 
the abnormalities. Limitations of the study include the potential 
confounds related to medication and illness state (96).

In summary, this study provides evidence based on a large 
sample of psychosis probands and relatives that associate between 
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