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The purpose of this review is to discuss recent findings related to sex differences in 
behavioral dyscontrol that lead to drug addiction, and clinical implications for humans 
are discussed. This review includes research conducted in animals and humans that 
reveals fundamental aspects of behavioral dyscontrol. The importance of sex differences 
in aspects of behavioral dyscontrol, such as impulsivity and compulsivity, is discussed 
as major determinants of drug addiction. Behavioral dyscontrol during adolescence is 
also an important consideration, as this is the time of onset for drug addiction. These 
vulnerability factors additively increase drug-abuse vulnerability, and they are integral 
aspects of addiction that covary and interact with sex differences. Sex differences in 
treatments for drug addiction are also reviewed in terms of their ability to modify the 
behavioral dyscontrol that underlies addictive behavior. Customized treatments to reduce 
behavioral dyscontrol are discussed, such as (1) using natural consequences such as 
non-drug rewards (e.g., exercise) to maintain abstinence, or using punishment as a 
consequence for drug use, (2) targeting factors that underlie behavioral dyscontrol, such 
as impulsivity or anxiety, by repurposing medications to relieve these underlying condi-
tions, and (3) combining two or more novel behavioral or pharmacological treatments to 
produce additive reductions in drug seeking. Recent published work has indicated that 
factors contributing to behavioral dyscontrol are an important target for advancing our 
knowledge on the etiology of drug abuse, intervening with the drug addiction process 
and developing novel treatments.

Keywords: animal models, behavioral dyscontrol, drug addiction, food addiction, impulsivity, sweet intake, sex 
differences, novel treatments

iNTRODUCTiON

Addiction and related impulse control disorders have an estimated cost to society of 600 billion 
dollars per year (1). In humans, substance abuse varies with current drug availability trends and sex 
differences are reported (2), but the direction of those differences is not always consistent, as it varies 
with current trends in substance availability and cost (3). However, in recent years, women exceed 
men in the abuse of prescription drugs, men use more alcohol and stimulant drugs than women, and 
the use of nicotine has been more equal across sexes (4). By contrast, animal studies have revealed 
more consistent trends in drug-seeking behavior indicating that females are more likely to initi-
ate and maintain drug-seeking behavior, and they have a better response to treatment than males. 
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Sex differences in drug abuse, hormonal influences, and their 
implications for treatment have been extensively reviewed with 
regard to animal and human studies (3, 5–9). A recent finding 
that is important to our understanding of sex differences in drug 
abuse is that underlying aspects of addiction, such as compulsive 
and impulsive behavior (e.g., behavioral dyscontrol) are strong 
determinants of addiction, and differences in drug taking depend 
on several factors, such as type of drug, behavioral measures that 
are used, and sociocultural influences [e.g., Ref. (10)].

The present review focuses on elements of behavioral dyscon-
trol that increase vulnerability to drug abuse and add to sex differ-
ences to evaluate the importance of sex, hormonal conditions, as 
well as other individual differences, in developing treatments for 
drug addiction. In this review, findings from laboratory animals 
and human research will be discussed separately. We discuss major 
aspects of behavioral dyscontrol and how they interact with sex 
differences to contribute to vulnerability to drug addiction and 
receptivity to treatment. Behavioral dyscontrol is defined as mala-
daptive influences, behavior that an individual has difficulty stop-
ping. It includes impulsivity, compulsive binge-like behavior, and 
it is particularly prevalent during adolescence (vs. adulthood), the 
time when drug addiction is most prevalent. In several reviews of 
factors that underlie drug addiction, these topics have emerged 
as the strongest contributors to addictive behavior, and there 
are interactions among them. The goal of this review is to bring 
the sex differences and behavioral dyscontrol literature together 
within the drug-abuse context to better understand critical 
vulnerability factors for drug addiction and how that knowledge 
may be useful in developing prevention and treatment strategies. 
Parallels are also drawn to other forms of addiction, such as food 
addiction (11–13), to illustrate that mechanisms of dyscontrol 
that underlie these addictive behaviors are similar. Thus, it may be 
instructive to target elements of dysregulation such as impulsive 
and compulsive behavior when developing strategies to treat drug 
addiction. For each of the following determinants of drug addic-
tion, results from animal and human studies will be considered 
separately with respect to sex differences.

The study of sex differences in addiction has branched into 
several directions since our initial work of the late 1990s [see 
Ref. (14)]: the next section (Section 2) compares sex differences 
observed in human and animal models of drug abuse to under-
stand how this factor affects addiction potential. Section 3 focuses 
on the underlying processes of addiction, such as impulsivity that 
leads to drug seeking. Thus, differences in addictive behavior in 
rats selected for high vs. low impulsivity (HiI vs. LoI) will be 
discussed and results extended to human drug addiction. Section 
4 considers compulsive behavior that makes addictive behavior 
persist by comparing sex differences in compulsive, binge-like 
characteristics of addiction using selectively bred rat lines that 
were bred to binge drink a saccharin (SACC) solution (HiS) vs. 
rats that consume low to normal levels of SACC (LoS). These HiS 
and LoS rat lines are genetically predisposed to show high vs. low 
levels of drug seeking. These findings are discussed with respect 
to food addiction and its similarity to drug addiction. Section 5 
compares sex differences during a critical developmental period 
(adolescents vs. adults) on measures of behavioral dyscontrol 
and drug addiction. Comparing different ages is a natural study 

in behavioral dyscontrol, as adolescence is the time when most 
humans express higher rates of impulsivity, compulsivity, and 
drug-seeking behavior compared with adults. Finally, Section 6 
considers sex and individual differences in response to treatment 
for behavioral dyscontrol and drug addiction. Novel treatments 
are discussed, such as environmental enrichment, competing 
rewards/activities (e.g., exercise), and consequences (positive and 
negative). Pharmacological treatments are also discussed, such 
as medications to target underlying factors in addiction, such as 
impulsivity and anxiety. Self-sustaining treatments and custom-
ized treatments for addiction-prone and -resistant phenotypes 
are examined, as well as novel treatment combinations.

SeX AND HORMONAL iNFLUeNCeS ON 
DRUG ADDiCTiON

Sex differences in drug addiction is an area of research that has 
received increased attention since it began over 15  years ago, 
when the early studies were first reviewed (14), to the present 
when research in both sexes at all levels of animal research is 
recommended (15), and will be mandated by NIH (16). Sex dif-
ferences in drug addiction have been discussed in recent reviews 
of animal and human studies (3, 5–8, 17). In non-human ani-
mals, the direction of the sex differences generally favors greater 
avidity for drugs in females than males, and this is mainly due 
to hormonal differences. However, sex differences in studies of 
drug addiction in humans are less clear, as they are influenced by 
both hormonal conditions and societal factors (3). A key factor in 
understanding sex differences in drug addiction is that in females 
estrogen increases drug-seeking and drug-rewarding effects, 
whereas progesterone (PRO) decreases drug-seeking behaviors 
to the levels of males. By contrast, male hormones (e.g., testoster-
one) have little influence on drug addiction. The importance of 
sex differences and hormonal conditions in addictive behaviors 
in animal and human research has been recently reviewed (3, 5, 
7, 8, 17–20) and is summarized in separate sections below along 
with suggestions of areas where future work is needed.

Laboratory Animals
Preclinical findings on vulnerability factors in drug abuse have 
been extensively reviewed in recent years [e.g., Ref. (5–7, 17, 18, 
21–28)]. These reviews also indicate that sex differences occur 
in each phase of the addiction process ranging from initiation 
(acquisition) to maintenance, escalation, withdrawal, and relapse. 
In general, female animals exhibit greater vulnerability than 
males to drug-seeking behavior during most of these phases. 
An exception is that during drug withdrawal (26, 29–31), and 
when considering other negative or punishing effects of drugs 
(22, 23), males generally show more susceptibility than females 
to these negative drug-related effects. While sex differences in 
animal research occur across most phases of addiction, and they 
are consistent, the effects are modest in size. Observing a sex 
difference effect in drug addiction research is usually depend on 
the use of drug naive animals, low-to-moderate drug doses, and/
or relatively demanding reinforcement schedules. Sex differences 
are not as likely to be found at high doses, or when access to the 
drug requires minimal effort, as ceiling effects occur.
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However, there are relatively few reports of substantial sex dif-
ferences in humans compared to the stronger sex-specific effects 
found in animals, which may be explained by environmental condi-
tions. In experimentally naive animals, background conditions and 
experimental environments are minimal and typically the same for 
all animals, focusing on one variable, sex differences or hormonal 
conditions, with only minimal non-drug rewards available in the 
drug-taking environment (e.g., food, water). Thus, sex differences 
in drug seeking are more likely to emerge in animals (vs. humans) 
and be attributed to the rewarding effects of the drug, as the drug 
is a highly salient commodity. By contrast, in human studies, par-
ticipants are not drug naive, there is environmental diversity (vs. 
uniformity), and historical factors as well as concurrently available 
of competing rewards can also influence self-reports of the reward-
ing effects of abused drugs. Another difference is that drug abuse is 
measured by actual drug intake in animals, whereas it is measured 
by self-report and choice or hypothetical choice in humans.

Humans
Sex differences in drug effects are reported in humans, and they 
are similar to those found in animals; females generally exceed 
males in drug use, although to different degrees with different 
types of drugs (5). For example, in recent years, women were 
more likely than men to use prescription drugs, such as sedatives, 
tranquilizers, and opioids for pain, whereas men were more likely 
to use illicit drugs (32). Overall, in humans, females are more avid 
drug seekers than males with regard to several drugs of abuse, 
such as alcohol (33), amphetamine (34), cannabinoids (19), 
cocaine (14, 20), nicotine (35), opioids (36), and phencyclidine 
(37). By contrast, as reported in studies with rats and monkeys, 
males generally show more susceptibility than females to negative 
drug effects, such as drug withdrawal (38).

Sex differences in drug addiction in humans are strongly 
influenced by biological conditions such as estrogen and PRO 
levels (39) and the PRO (P) to estrogen (E) ratio (P/E) (40) during 
different phases of the menstrual cycle that has been suggested as 
an index of hormonal status in humans (40). However, sex dif-
ferences in drug addiction are also determined by sociological as 
well as biological factors (10, 17). For example, when considering 
sex differences in human alcohol and opioid use in the 1700s, and 
comparing that to alcohol, opioid use in the late 1800s to early 
1900s, it is clear that as social norms and legal policy changed, 
drug-abuse patterns have shifted in women and men over time 
(17). Kornetsky (10) illustrated that due to cultural changes and 
changes in job opportunities, family structure, and other social 
factors, alcohol and opioid abuse were more common in women 
than men in the 1800s, but in the 1900s, men exceeded women 
on use of most drugs, and those patterns shifted, depending on 
the drug, in the late 1990s to the present.

Current Research on Sex Differences in 
Addiction
The study of sex differences in drug addiction did not begin in 
earnest until about 1998 [see Ref. (14)]. In recent years, the study of 
sex differences (41) and the impact of ovarian hormones (42) have 
expanded exponentially and taken on several new directions. For 
example, to better understand the differences and commonalities 

between sex differences in both laboratory animals and humans, 
animal research models have been developed to represent the 
human condition, such as modeling fundamental diagnostic cri-
teria used in humans (43, 44) and modeling reduced sensitivity to 
treatment of drug-seeking behaviors, such as escalation (45, 46) 
and relapse (47, 48). The goal is not only to study sex differences in 
drug addiction in isolation but also to begin with the foundation 
of behavioral dyscontrol from which it arises, and consider major 
factors that constitute behavioral dyscontrol, such as impulsive 
choice and action, compulsive, binge-like drug seeking, and age 
(adolescence vs. adulthood). Age is especially important because 
adolescence and young adulthood is when the majority of drug 
abuse begins. It is ethically difficult to prospectively study this 
time period in humans; thus, it is essential to work in tandem 
with laboratory animal models. Biological and behavioral events 
that occur during this time may be crucial to finding solutions for 
prevention and treatment of addiction. Another novel approach 
of this review is to discuss sex differences in novel treatments 
that were developed in animals and tested in humans for drug 
addiction, and how their effects differ by sex and other vulner-
ability factors involving impulsive and compulsive behavior. This 
area has been neglected in most previous reviews, as no viable 
treatment strategies are currently available to adequately treat 
human drug addiction. However, the animal literature has begun 
to reveal several promising leads for prevention and treatment. 
Section “Sex Differences in the Effect of Novel Treatments for 
Behavioral Dyscontrol and Drug Addiction” will consider several 
novel treatments that might be self-sustaining in humans.

Thus, the present review will focus on sex differences in behavio-
ral dyscontrol, highlighting key individual differences that can lead 
to drug addiction. These include impulsive drug seeking in the 
form of impulsive choice and action, such as compulsive behavior 
that leads to binging on drugs when extended access is available, 
and excessive drug seeking during abstinence that can lead to 
relapse. The sections that follow will examine sex differences in 
impulsive [for a detailed review, see Weafer and de Wit (49)], and 
other individual differences such as compulsive, binge-like intake 
of a sweetened liquid (SACC) [see reviews in Ref. (22–26, 28, 31, 
Carroll et al., under review)], and age (adolescence vs. adult) (50). 
Subsequently, behavioral and pharmacological interventions for 
reducing these forms of behavioral dyscontrol will be discussed. 
Table 1 summarizes the vulnerable behaviors that will be discussed 
as predecessors and predictors of drug abuse, impulsivity, compul-
sivity, and age (adolescents vs. adults), and how treatment success 
varies by the vulnerability characteristic. These three vulnerability 
characteristics will be discussed in Sections “Sex Differences in 
Impulsivity and Drug Addiction,” “Sex Differences in Compulsive 
Sweet Consumption as a Predictor of Drug Addiction,” and 
“Sex and Age (Adolescent vs. Adult) Differences in Behavioral 
Dyscontrol and Drug Addiction,” respectively, and compared by 
sex for laboratory animals and humans.

SeX DiFFeReNCeS iN iMPULSiviTY AND 
DRUG ADDiCTiON

Impulsivity, defined as behavior without forethought or 
consideration of future consequences, is a familiar form 
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TABLe 1 | Summary of individual differences in selected and selectively-
bred rats showing trends in vulnerability to addiction, behavioral 
dyscontrol, reaction to aversive events, and treatment outcome as a 
function of sex, age (adolescent vs. adult), impulsivity (i), and sweet 
intake (S).

vulnerable 
behaviors

individual 
difference

Reaction 
to aversive 
events

Treatment 
outcome

Reference

Drug 
addiction

F > M M > F F > M Anker and Carroll (6), 
Becker et al. (17), Carroll 
et al. (under review), Lynch 
et al. (51, 263), Perry et al. 
(53), Anker et al. (54), 
Cosgrove and Carroll (55)

Adoles >  
Adult

Adult >  
Adoles

Adult >  
Adoles

Carroll and Anker (7,  
263), Anker and Carroll 
(18), O’Dell et al. (57), 
Perry et al. (52), Anker 
and Carroll (56), Spear 
and Swartzwelder (50)

Adoles >  
Adult

Adoles >  
Adult

Zlebnik et al. (58)

HMI > LMI HMI > LMI Economidou et al. (71)

HMI > LMI Diergaarde et al. (77), 
Belin et al. (78),  
Dalley et al. (79)

HiI = LoI LoI > HiI Regier et al. (59)
HiI > LoI Anker et al. (54), Perry et 

al. (73), Poulos et al. (75), 
Diergaarde et al. (77)

HiI > LoI LoI > HiI Broos et al. (69)

HiS > LoS LoS > HiS LoS > HiS Dess et al. (60, 61), Carroll 
et al. (25, 28, 62), Perry 
et al. (29), Anker and 
Carroll (56), Holtz et al. 
(63), Holtz and Carroll (23, 
24, 64)

Impulsive 
action

M > F Jentsch and Taylor (65), 
Bayless et al. (66),  
Burton and Fletcher (67)

HiS > LoS
HiI = LoI

Anker et al. (68)
Broos et al. (70)

Impulsive 
choice

F > M van Haaren et al. (72), 
Perry et al. (53),  
Koot et al. (74)

F = M
HMI > LMI
HMI = LMI
HiS > LoS

HMI > LMI
Perry et al. (73)
Robinson et al. (80)
Broos et al. (70)
Perry et al. (52)

Sweet 
intake

F > M
HiI > LoI

Carroll et al. (25, 28), 
Carroll and Holtz (22)

M, male; F, female; HiI, LoI, selected for high vs. low impulsive, delay discounting; HMI, 
LMI, high and low motor impulsive, 5-CSRTT; HiS, LoS, selectively bred for high vs. low 
saccharin intake.
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a small-immediate reward over a larger-delayed choice (82), 
whereas impulsive action is considered the inability to withhold 
a response until an appropriate time is signaled (83). Animal 
and human preclinical studies have shown that both forms of 
impulsivity are positively related to drug abuse [for reviews, 
see Ref. (27, 49, 84, 85)]. There is strong clinical evidence that 
greater impulsive choice is associated with the development of 
drug abuse (86), and lower impulsive choice is predictive of 
better treatment success (87). Results of studies in which both 
forms of impulsivity have been studied in animal and human 
research is discussed below.

impulsive Choice
Impulsive choice is typically measured using procedures that 
assess preference for a small-immediate reward over a large-
delayed reward over a range of delays to its receipt. One method 
to quantify impulsive choice is to determine how rapidly an 
individual discounts the value of the large alternative, as 
delays are imposed on its receipt. A steeper discounter (more 
impulsive) would devalue the larger or delayed alternative, and 
they would shift their preference to the smaller-sooner alterna-
tive at shorter delays. A shallow discounter (less impulsive) 
would tolerate longer delays for a larger reward. Impulsive 
choice (steeper discounting) is associated with drug abuse 
and decreased treatment success (85, 88), these findings may 
partially explain why animal and human females (vs. males) are 
more predisposed to choose drug abuse vs. healthy alternative 
behaviors (27, 73, 89).

Laboratory Animals
One of the first studies of sex differences in impulsive choice used 
a Y-maze to assess choice for immediate or delayed food in slightly 
food restricted rats (72), and females discounted the larger-delayed 
reward more than males. Subsequently, Perry et al. (52) conducted a 
similar study of impulsive choice for food using a two-lever operant 
conditioning chamber in which responding on one lever resulted 
in a small-immediate amount of food and responding on the other 
lever produced a larger-delayed amount. When this experiment 
was replicated with other groups of male and female rats that self-
administered i.v. cocaine under a similar delay-discounting task, 
there were no sex differences. This was likely due to a ceiling effect 
since overall impulsivity for cocaine was much higher than for 
food (52). In a subsequent study, Perry et al. (73) compared male 
and female rats selected for high vs. low impulsivity (HiI vs. LoI), 
based on the delay-discounting task for food, on acquisition of 
cocaine self-administration, and on cocaine-primed reinstatement 
of cocaine seeking (a model of relapse). They found that both HiI 
males and females acquired cocaine self-administration faster than 
LoI males and females, and HiI females showed greater cocaine 
seeking during reinstatement than LoI females or either group of 
males (Hi, LoI). A similar study was conducted by Koot et al. (74) 
in mice that were divided into steep (more impulsive) vs. shallow 
(less impulsive) discounters based on a median split. Within the 
steep-discounter group females were more impulsive than males. 
Overall, while there are only a few studies of impulsive choice in 
animals, the results consistently support a moderately higher level 
of impulsivity in females than males.

of behavioral dyscontrol that has been linked to attention 
deficit/hyperactivity disorder (ADHD) and is a criterion for 
substance abuse, pathological gambling, and eating disorders 
[Ref. (81); see review by Fattore et  al. (3)]. Impulsivity is 
often separated into two main forms: impulsive choice and 
impulsive action. Impulsive choice is defined as a preference for 
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Humans
In humans, sex differences in impulsive choice are more mixed. 
Women tend to be slightly more impulsive than men when 
making choices between real (lottery based) and hypothetical 
monetary outcomes [Ref. (90–93); but see Ref. (94)]. However, in 
some studies, no differences have been reported (95–100). Kirby 
and Maraković (94) reported that men were more impulsive 
than women when hypothetical money was a choice, but when 
real money was based on a lottery, men discounted money more 
steeply than women at the higher monetary values. Overall, 
women generally show greater impulsive choices for hypothetical 
rewards, but men show more impulsive choices for actual rewards.

In summary, regarding impulsive choice, results of animal 
studies suggest that females exhibited more impulsivity than 
males in the transition states of addiction, such as initiation and 
relapse or reinstatement of drug-seeking behavior. In humans, 
the methods are quite different than in animals, but women were 
more impulsive toward hypothetical rewards, and men were more 
impulsive for actual rewards [see Ref. (49)].

impulsive Action
Impulsive action is typically considered an inability to inhibit 
non-productive or inappropriate responses (83), and in humans 
and animals, two tasks to quantify this form of impulsivity are 
commonly used, the stop-signal reaction time (SSRT) and Go/
No-go tasks. These tasks signal periods of responding and non-
responding, and failures to inhibit an inappropriate response 
are considered instances of impulsive action. During the SSRT, a 
subject must inhibit an ongoing “go” response when a “stop” signal 
is presented, making the task more difficult than the Go/No-go 
task in which the participant must respond to a “go” stimulus 
but inhibit a response following “no-go” stimulus. In these tasks, 
researchers consider impulsive action to be an increase in errors of 
commission (i.e., failures to inhibit responding to an inappropri-
ate stimulus in SSRT, more responding during a no-go period, and 
longer stop-signal reaction times). These tasks are similar to the 
relapse aspect of drug addiction, whereby individuals are unable 
to withhold responding to drug-related cues (e.g., accepting a 
drink offer).

Laboratory Animals
In an animal study of impulsive action, male and female rats were 
compared on a Go/No-go task for food or i.v. cocaine infusions 
(68), and no differences were found in responding for food 
reward during the no-go period (impulsivity measure). However, 
females made more responses for cocaine infusions during the 
no-go period than males, and this was consistent with measures 
of impulsive choice (52). In the five-choice serial reaction time 
task (5-CSRTT), no sex differences were found in mice during 
acquisition or the challenging portion when long intertrial inter-
vals (ITI), stress, and ad libitum food were tested (98). However, 
over repeated testing, females were more impulsive than males 
as indicated by premature responding (action impulsivity). In 
another 5-CSRTT study of young vs. adult rats, no sex or age 
differences were found in task acquisition, but females made 
more premature responses than males in the challenging task 
(long ITI) (67).

As in a previous study of impulsive choice (51), sex hormones 
were implicated in studies of impulsive action. For example, 
Jentsch and Taylor (65) compared intact and gonadectomized, 
male and female rats, in a 5-CSRTT study, and intact males 
made more premature responses than gonadectomized females 
during the acquisition and challenge (long ITI) conditions. 
Gonadectomy increased impulsive action in males and ova-
riectomy increased impulsive action in females, suggesting that 
both testosterone and estrogen are related to impulsive action 
in rats. In a recent study by Bayless et al. (66), comparing male 
and proestrus female rats on the 5-CSRTT, males showed greater 
impulsivity (premature responding) than females. Thus, there is 
an indication that sex and hormonal status are factors in meas-
ures of impulsive action.

Humans
In tests of impulsive action with humans, sex differences have 
been mixed, depending on the procedure employed. Under the 
Go/no-go procedure, males tended to commit more inhibitory 
errors than females (99, 100), but in other studies, there were no 
sex differences (93, 101). Similar findings occurred using a con-
tinuous performance task (CPT). In an eight-study meta-analysis 
of children with ADHD, boys consistently made more errors of 
commission (i.e., more impulsive) than girls (102), and there were 
similar findings in adolescent vs. adult smokers (103). However, 
in the SSRT, females had longer reaction times (more impulsive) 
than males (103–106); although, in a similar number of studies, 
no sex differences were found (93, 101, 106, 107). Thus, human 
sex differences in impulsive action may be procedure dependent. 
Males were more impulsive on tasks requiring inhibition of ongo-
ing “go” responses (e.g., CPT and Go/No-go task), and females 
were more impulsive on the SSRT task (i.e., longer reaction times) 
that requires initiation of a response.

Sex differences in impulsive action also extend to drug 
addiction, and women drug users are more impulsive than 
men. Female heavy drinkers and adolescent smokers were more 
impulsive than males on the SSRT (103, 106) and CPT (108) 
tasks. Interestingly, the non-drug-seeking control males were 
similar or more impulsive than the female controls, suggesting a 
strong covariance of impulsive action and drug abuse in females 
vs. males. Estrogen reduced impulsive behavior in a SSRT task in 
humans (104), and women in the follicular phase, when estrogen 
levels are peaking, were more impulsive (longer reaction times) 
than during the luteal phase when the estrogen levels are low and 
PRO levels peak and decline. Overall, sex and sex hormones play 
a role in modulating impulsive action. Specifically, PRO reduced 
impulsivity (Smethells et al., under review); thus, using PRO as 
a treatment to target impulsivity may be effective for reducing 
addictive behavior (see Targeting Individual Differences with 
Repurposed Medications as Treatments for Addiction).

A general trend in sex differences in impulsive action in ani-
mals and humans is less clear than for impulsive choice; however, 
a wider range of tasks are used to assess impulsive action, and they 
may be accessing different elements of the behavior. In animals, 
males exhibit more impulsive action than females, but it is task 
dependent. In humans, women tend to show more impulsive 
action than men on several tasks [see Ref. (49)].
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SeX DiFFeReNCeS iN COMPULSive 
SweeT CONSUMPTiON AS A PReDiCTOR 
OF DRUG ADDiCTiON

For many reasons (e.g., television advertising, changes in food 
production, and fast food access), changes in the U.S. culture over 
the last century have led to a condition where two-thirds of the 
population is overweight or obese, resulting in premature death 
due to metabolic syndrome, diabetes, heat disease, digestive 
disorders and associated cancers (109). The terms “food addic-
tion,” “hedonic overeating,” and “food insecurity” (110) have been 
used recently to describe and explain chronic overeating leading 
to weight gain, and these concepts highlight underlying similari-
ties between excessive eating and drug addiction. However, there 
is some disagreement that the behavioral and neurobiological 
mechanisms underlying this behavior are completely parallel to 
those involved with drug addiction [e.g., Ref. (3, 11, 12, 22, 28, 
111–113)]. Nevertheless, recognizing similarities between “drug” 
and “food” addiction may be useful for designing treatment 
strategies.

Animal models have also been useful in understanding 
behavioral dyscontrol in food consumption as it relates to drug 
addiction. For example, sugar-binging rats extended this behav-
ior to amphetamine (114), and rats selectively bred to consume 
large amounts of a SACC-sweetened liquid (HiS) showed faster 
initiation of heroin self-administration (62), with more animals 
per group acquiring drug use, escalating, and relapsing after 
forced abstinence, than rats bred for low SACC intake (LoS) 
(28). Other studies that model criteria for addiction in humans 
indicate that the HiS (vs. LoS) rats meet several DSM V (81) 
criteria for addiction, such as tolerance, difficulty limiting use, 
spending excessive time-seeking drug (29, 30), escalation of drug 
intake (115), impaired ability to regulate drug intake (51, 116), 
and continued use despite aversive consequences (117). HiS rats 
also showed impaired ability to regulate SACC intake (51). While 
sweet preference predicts all aspects of drug addiction, only a few 
studies in animals and humans have reported sex differences in 
these behaviors (28).

Laboratory Animals
One of the best examples of animal models of behavioral dysregu-
lation in feeding that is related to drug addiction and obesity is 
from studies initiated by Dess and colleagues. They bred different 
lines of rats that ingested excessively high levels of a sweet SACC 
solution (HiS) or low to normal amounts of SACC (LoS). Their 
early studies also revealed greater sensitivity in HiS vs. LoS rats 
to several tastes, such as sweet, salty, and bitter (118), and they 
found more ethanol intake in the HiS than the LoS rats (61, 119). 
Subsequent studies with the HiS/LoS rat lines in our laboratory 
with cocaine or heroin showed that HiS rats exceeded LoS rats 
during all phases of drug addiction, including initiation, escala-
tion, or binging on cocaine during long access, resistance to 
extinction when cocaine availability was terminated, and relapse 
or reinstatement of drug seeking instigated by brief exposure to 
cocaine, stress, or cocaine-related cues, even several weeks after 
cocaine self-administration had terminated [see reviews in Ref. 

(22, 25, 26, 28)]. In a recent study in our laboratory, the findings 
of SACC preference predicting drug self-administration were 
extended to other measures of reward, such ICSS, and HiS rats 
showed more cocaine-induced reward enhancement of intracra-
nial self-stimulation than LoS rats (120). Converging results from 
many of these studies suggest that avidity for sweets and drug-
taking behaviors are closely related, heritable, and substitutable 
(22, 25, 114), and they likely operate through common neural 
mechanisms [e.g., Ref. (121)].

A similar connection between sweet preference and drug 
addiction (e.g., HiS vs. LoS) was also found with outbred rats 
that were selected for high or low intake of SACC [e.g., Ref. (122, 
123)], or other sweet substances, such as sucrose (124, 125), and 
opioid self-administration (126). The results were similar to those 
obtained in the HiS vs. LoS rat studies. The connection between 
drug addiction and overindulgence in food was recently modeled 
in a study by Yakovenko et al. (127) in which HiS rats exhibited 
more binge-like behaviors with access to high-fat or -sugar con-
taining substances than LoS rats. This strong predictor of drug 
abuse has also been found to interact with sex. Sex differences 
in drug-seeking behavior were also examined in the HiS vs. LoS 
rats, and females exceeded males on drug seeking and intake. 
During the acquisition phase of drug self-administration, HiS 
and LoS females exceeded males in ethanol intake (119). During 
maintenance, females also consumed more ethanol (61, 119) and 
heroin (62) than males. HiS females also scored higher than LoS 
females on cocaine-induced locomotor activity and cocaine-
induced sensitization of locomotor activity (116). Thus, HiS and 
female rats showed more cocaine-induced locomotor activity and 
sensitization than LoS and male rats.

Overall, the comparisons of HiS vs. LoS rats indicated that 
sex and SACC preference were additive predictors of behavioral 
dyscontrol in the form of drug addiction. Across several studies, 
the HiS females were ranked highest in drug seeking, followed 
by LoS females or HiS males, and then LoS males were lowest 
in terms of drug intake (22–25, 28). When the results of these 
studies were translated into DSM V (81) criteria for addiction 
(43), HiS rats exceeded LoS rats on several addiction criteria, 
such as tolerance, difficulty limiting use, excessive time-seeking 
drugs, impaired control over use, and despite punishment, 
as well as resistance to withdrawal effects [see reviews in Ref. 
(22–26, 28)]. Thus, the animal findings lend strong support to 
the conclusion that drug and food addiction have many similar 
characteristics.

Humans
In humans, parallels between food and drug addiction are 
beginning to emerge, but these areas have remained separate 
in the feeding literature, except for a few isolated reports. The 
relationship between substance abuse disorders and avidity for 
sweets has also been reported in human alcohol (128), cocaine 
(129), and opioid abusers (130). However, a more recent trend 
in hedonic overeating, often called “food addiction” that results 
in overweight and obese individuals in nearly two-thirds of the 
U.S. population, is nearly equally distributed in males and females 
(131) or worldwide, slightly more prevalent in women than in 
men (13). Other eating disorders, such as bulimia and anorexia 
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nervosa, have not been closely studied for sex differences, as most 
eating disorders have predominantly occurred in females [see 
edited volume by Avena (132)], but the lack of sex differences in 
the Centers for Disease Control and Prevention (131) data may 
be due to several factors, such as food is an essential commodity, 
whereas addictive drugs are optional. Nevertheless, the parallels 
and differences between addiction to food vs. drugs may be 
informative for prevention and treatment strategies. Currently, 
there is little human literature regarding an interchange between 
food and drug addiction, and how that might vary by sex. 
However, this interchange has been clearly demonstrated in rats, 
and females exceed males on both hedonic overeating and drug 
addiction (22, 28). The translational implications for humans are 
that as weight loss is effectively pursued, individuals will be at 
higher risk for drug addiction, and this is more likely to occur in 
females than males.

In summary, while animal data clearly indicate a strong con-
nection between food- and drug-seeking behavior, and females 
show more drug seeking and sweet preference than males, there 
are not enough data available at this time to determine whether 
parallels in hedonic overeating and drug addiction extend to 
humans.

SeX AND AGe (ADOLeSCeNT vS. ADULT) 
DiFFeReNCeS iN BeHAviORAL 
DYSCONTROL AND DRUG ADDiCTiON

Age (adolescence vs. adult) is an important individual factor to 
consider when evaluating the contribution of sex and behavioral 
dyscontrol to addiction, because adolescence is when biological 
(hormonal) and behavioral (impulsivity, risk-taking) changes 
emerge in animals and humans, and these are major variables 
contributing to drug addiction. Laboratory animal and human 
adolescents and adults have been compared and reviewed in 
several previous studies of drug addiction for their differential 
responding to both the rewarding and aversive aspects (136–133). 
Generally, adolescents are more sensitive to the rewarding effects 
of drugs of abuse, but they have reduced sensitivity to the aversive 
effects. Importantly, animal and human studies indicate that 
adolescents are also more sensitive than adults to other major fac-
tors included in this review that have been noted to predict drug 
addiction, such as impulsivity (56, 134) and compulsive sweet 
intake (134–136). Sex differences in the development of addictive 
behavior are difficult to study during the adolescent period in ani-
mals, as adolescence is only about 30 days in rodents. In humans, 
there is mostly epidemiological research on behavioral dyscontrol 
and adolescence vs. adulthood, which has been informative, but 
prospective studies are limited due to the difficulty of studying 
human adolescents. The following sections review age-dependent 
effects of alcohol use in animals and humans, since it is a widely 
abused and well studied in the adolescent population (2).

Laboratory Animals
The animal literature indicates that adolescent rats self-administer 
about two to three times more alcohol than adult rats [e.g., Ref. 
(137–139)]. Research with rats has also established that early 

alcohol consumption in adolescent-exposed rats produced more 
impulsive risky choices in adults, compared to control rats that 
did not have adolescent alcohol access (140, 141). Contrary 
to human studies, female rats tend to consume more alcohol 
during adulthood than adolescence [e.g., Ref. (138, 142)]. The 
higher intake of alcohol in male adolescent rats, compared 
with adults, is likely due to a reduced sensitivity to the alcohol-
induced sedative/hypnotic (143), hypothermic (144, 145), motor 
impairing (146), anxiolytic (147), and anxiogenic effects (148). 
This decreased sensitivity combined with a slightly higher rate 
of alcohol metabolism potentially enables adolescent rats (and 
perhaps adolescent humans) to consume more alcohol (144, 145, 
149). While adolescent rats were more vulnerable than adults to 
various forms of addiction (150–152), opposite age effects have 
been reported (133, 153). Several studies have investigated the 
effect of adolescent drug exposure on subsequent adult drug use 
in animals (56) and humans (154, 155), and the findings indicate 
that early exposure facilitates adult drug abuse. Few studies have 
compared sex differences in rat studies of adolescence and addic-
tion. In one study, rats self-administering cocaine were exposed 
to physical exercise as a treatment, and it was more effective 
in adolescents than adults (58). More details on treatment are 
presented in Section “Physical Exercise.”

Humans
Although few studies have compared sex and age with respect 
to drug addiction, one study indicated that in humans, young-
adults (ages 18–25) drink more alcohol than older adults (ages 
35–54) [e.g., Ref. (156)]. For instance, in the Naimi study, binge 
drinking (>5 drinks per sitting) occurred about two to three 
times more frequently in younger adults than older adults, with 
males far exceeding females across all age groups. Age of expo-
sure to alcohol also interacted with other risk factors for drug 
use, including impulsive and risky behavior. It has been found 
that those whose initial alcohol problems began in adolescence 
(age 13–17) are more impulsive than controls. Impulsivity was 
observed in early drug use (157–160) and later (38–46 year olds) 
after drug use had become fully established (161–166). These 
results suggest that exposure to alcohol early in life may increase 
impulsive and risky behavior, and adolescence may be a critical 
period when drug use alters prefrontal brain development lead-
ing to increased impulsivity [Ref. (167); see reviews by Brown and 
Tapert (168)]. The earlier the age of initial alcohol exposure, the 
poorer the prognosis for alcohol abuse in adulthood, and this can 
result from ease of access. For example, in the case of nicotine, 
second-hand smoke in children and adolescents yields nicotine 
content similar to actual smoking (169). Thus, parental smoking 
can accelerate health risks from smoking in addition to smoke 
inhaled by adolescents who use tobacco.

Dom et al. (164) found that the age of an alcohol problem onset 
was important for increasing impulsive choice that is predictive 
of further drug use. The rate of this increase when compared to 
controls, however, was only significantly steeper (i.e., impulsive 
choice was greater) for alcoholics whose alcohol problems 
started earlier in life (<25 years old) but not for alcoholics whose 
alcohol problems started later in life (>25 years old). Given the 
small number of females included, sex differences could not be 
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determined; however, the findings suggested an age-dependent 
relationship between the onset of an alcohol problem onset 
and impulsive choice. Thus, early alcohol exposure may cause 
increased levels of impulsive and risky behavior later in life lead-
ing to more drug abuse.

Taken together, the animal and human research suggests that 
age (adolescence vs. adults) is a significant vulnerability factor 
that interacts with other major factors, sex and impulsivity, and 
since males consume more alcohol than females during adoles-
cence, this may result in enhanced vulnerability for alcohol abuse 
in males later in life.

SeX DiFFeReNCeS iN THe eFFeCT OF 
NOveL TReATMeNTS FOR BeHAviORAL 
DYSCONTROL AND DRUG ADDiCTiON

In previous attempts to develop treatment for drug addiction, 
receptor pharmacology guided medication development. Several 
medications were designed to act on transmitter systems involved 
in drug addiction, and a consistent finding in these studies was 
that the treatments were more successful for female than male ani-
mals. For example, female rodents showed a greater reduction in 
cocaine self-administration than males when treated with kappa 
opioid agonists, spiralodine (170), bremazocine (171), a GABAB 
agonist, baclofen (172), a corticosterone synthesis inhibitor, and 
ketoconazole (173). In more recent studies with rats modafinil (an 
analeptic drug) decreased methamphetamine (METH) induced 
reinstatement (relapse) in both males and females. Other studies 
compared treatment effects bremazocine, a kappa opioid receptor 
agonist, in female and male monkeys self-administering orally 
delivered PCP (55), while females consumed more drug than 
males (milligram per kilogram), they reduced their drug intake 
more than males with bremazocine (171) treatment (see Table 1). 
However, most of those treatments failed to show efficacy or had 
undesirable side effects when translated to humans.

Despite these previous innovative treatment attempts and their 
success in animals, there are currently no safe, non-addictive, effec-
tive treatments for reducing the morbidity and mortality of drug 
addiction that are useful in humans, except for agonist therapies 
(e.g., methadone, buprenorphine) and drugs that have modest 
effects on relapse to smoking (e.g., varenicline – Chantix) or alcohol 
abuse (e.g., naltrexone). This is indicated by epidemiological reports 
that the rates of most forms of addictive behavior have remained 
steady or increased over the last decade, and there are endless new 
forms of addiction (e.g., designer drugs, bath salts, etc.) that defy 
treatment (32). Thus, development of treatments for drug addiction 
is a high priority. Of the studies that show some promising initial 
findings, very few have compared males and females. A review of 
280 treatment studies for substance abuse disorders in men and 
women that were published between 1975 and 2005 indicated 
better treatment outcomes for women than men (174). However, 
their later analysis of the multi-site combined pharmacotherapy 
and behavioral interventions for alcohol dependence program 
(COMBINE), including 1383 men and women, reported that while 
there were sex differences in those seeking treatment for alcoholism, 
there were no sex differences in the combined treatment condition. 

Women responded to naltrexone treatment combined with a medi-
cal management control condition similar to men (175).

A novel approach to designing new treatment strategies is to 
target factors that underly drug addiction. For example, behavio-
ral dyscontrol is common to many forms of addiction; thus, treat-
ment models can be designed to remedy this underlying aspect of 
drug abuse. The reinstatement (relapse) model has been useful for 
this purpose, as it portrays several aspects of the drug addiction 
process that occurs in humans, such as acquisition or initiation of 
drug self-administration, steady maintenance intake, escalation 
or binge-like intake of drugs, persistence of drug seeking (drug-
lever responding) during extinction or abstinence when the drug 
is no longer available (compulsive drug seeking), reinstatement 
or relapse of drug seeking following experimenter-administered 
injections of the drug or presentation of drug-related cues or 
stress stimuli, and incubation of craving (a time-dependent 
increase in drug seeking) that accelerates drug craving and leads 
to relapse after extended periods of abstinence (176, 177). Earlier 
studies with rats and rhesus monkeys indicated that behavioral 
interventions as well as medications have had some success in 
reducing drug-motivated behavior, and some of these studies 
indicated that females were more responsive to treatment than 
males [see review by Carroll and Holtz (22)].

Much of the animal findings regarding medications for drug 
addiction have generally not translated to effective treatments for 
drug abuse in humans. Thus, recent animal studies have focused on 
novel treatments for drug addiction that could be self-sustaining 
in humans. These include (1) using natural consequences such as 
non-drug rewards or positive events (environmental enrichment) 
that a drug-abusing individual might encounter in the environ-
ment that would compete with drug use (e.g., social interaction, 
exercise). Also, negative consequences, such as punishment for 
drug use are naturally built into the environment and can be 
programed to reduce drug use. (2) Targeting factors that underlie 
behavioral dyscontrol, such as impulsivity or anxiety by repurpos-
ing medications designed to relieve these underlying behaviors 
that can drive drug addiction. For example, PRO [e.g., Ref. (40)] 
or atomoxetine (ATO) could be used for anxiety, impulsivity, or 
other forms of behavioral dyscontrol that are associated with 
ADHD, and (3) combining two or more novel behavioral and 
pharmacological treatments.

environmental enrichment
A widely studied and promising approach for reducing or pre-
venting the development drug addiction (as a form of behavioral 
dyscontrol) has been to enrich the environment with non-drug 
rewards [see reviews in Ref. (27, 28, 178, 179)]. This has been a 
successful treatment method for reducing many aspects of drug 
addiction, and it is well supported by extensive preclinical and 
clinical evidence. However, this method has not been widely stud-
ied with respect to individual differences, such as sex. In earlier 
studies, a commonly used method of environmental enrichment 
for reducing drug-seeking behavior was to use preferred foods 
(180), or place animals after weaning in a larger social environ-
ment (vs. isolated) that contains novel objects and activities (181). 
Non-caloric sweet substances (e.g., SACC) were also effective as 
competing rewards to reduce drug seeking in rats [e.g., Ref. (55)] 
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and rhesus monkeys [e.g., Ref. (182, Carroll et al., under review)]. 
In these environmental enrichment studies, females reduced drug 
taking more than males when they had sweet substances concur-
rently available [see reviews in Ref. (22, 25)], or when they had 
prior access to a sweet substance (183, 184). Studies with female 
and male monkeys self-administering orally delivered PCP (55) 
or cocaine (Carroll et al., under review) indicated that females 
consumed more drug than males (milligram per kilogram), but 
females also reduced their drug intake more than males when 
treated with access to a non-drug reward, SACC (see Table 1). 
While these therapeutic advances were effective and providing 
palatable substances was a powerful intervention for drug abuse 
[see Ref. (22–25, 28)], more recent studies have sought to provide 
a healthier environmental enrichment alternative, focusing on 
social and physical elements of the environment.

Social
Taking drugs in a social environment is important for humans 
and non-human primates. In behavioral economic terms, some 
drugs and social rewards work together as complements, and 
each increases the other, such as drinking and smoking at a social 
gathering, or smoking while talking on the phone. However, in 
other cases, social stimuli and drug-taking work as substitutes, 
whereby one reward may replace the other (173, 185). Thus, the 
rewards of social interaction can be used as substitutes to reduce 
drug taking (181).

Laboratory Animals
Rearing environment is an important factor in the development 
of drug self-administration. To examine this, rats were raised in 
enriched conditions (EC) with a large environment, several cage 
mates, and a variety of toys and exercise devices, whereas rats 
raised in the isolated condition (IC) were singley housed in smaller 
standard rat cages. As adults, rats were allowed to self-administer 
drugs, and EC rats self-administered less amphetamine than 
the IC rats (181). Lower rates of responding in EC rats (vs. IC) 
indicated that the enriched environment reduced motivation for 
amphetamine (lower break point on a progressive ratio schedule) 
(186). The EC rats were also less impulsive during the acquisition 
of an impulsive action task compared to IC rats (187), and they 
were less impulsive than IC rats on an impulsive choice procedure 
(73). These findings suggest that early exposure to an enriched 
environment may alter sensitivity to drugs of abuse and blunt 
the development of drug abuse in adulthood; however, sex differ-
ences were not often considered in these studies.

Humans
In humans, non-drug rewards delivered in a contingency man-
agement (CM) format successfully reduced drug dependence 
[for a review see Ref. (188)]. In general, CM programs promote 
drug abstinence through a combination of positive reinforce-
ment for drug-free urine samples. For instance, voucher-based 
reinforcement therapy in which medication compliance, therapy 
session attendance, and negative drug screenings reinforced with 
vouchers to local business (e.g., movie theater, restaurants, etc.) 
directly reinforces drug abstinence, provides competing rein-
forcers, enriches the environment, and it is a robust treatment 

across a broad range of abused drugs (189). Another example of 
using social rewards to reduce drug addiction was given in the 
Naimi et  al. (156) study, comparing younger and older adults, 
who reported that enhancing non-alcohol-related campus social 
programing had decreased alcohol use.

In summary, both animal and human studies indicate that 
environmental enrichment is an important intervention that 
moderates the development and progression of drug addiction. 
There is little information regarding sex differences in social 
reward at present; however, once drug use patterns have devel-
oped, non-drug rewards, such as social interaction, have the 
advantage of being self-sustaining and are effective in both sexes.

Physical Exercise
There is accelerating evidence that physical exercise is a useful 
treatment for preventing and reducing drug addiction [see reviews 
in Ref. (28, 178, 190, 191)]. In some individuals, exercise has its 
own rewarding effects, and a behavioral economic interaction 
may occur, such that physical and social rewards of exercise can 
substitute for the rewarding effects of drug abuse. Exercise has also 
been a valuable treatment for slowing cognitive decline in patients 
with dementia [e.g., Ref. (192)], health-related problems in obe-
sity [e.g., Ref. (193)], and in psychiatric disorders, such as anxiety 
(194), depression (195), and schizophrenia (196). The value of 
this form of treatment for drug addiction in laboratory animals 
and humans is that exercise, if it can substitute for the rewarding 
effects of drugs, could be self-maintained over an extended period 
of time. Work to date in laboratory animals [for review, see Ref. 
(191)] and humans [for review, see Ref. (178)] regarding exercise 
as a treatment for drug addiction supports this hypothesis.

Laboratory Animals
Recent animal studies have consistently reported that exercise 
reduces drug-seeking behavior in both self-administration 
and conditioned place preference (CPP) studies [see reviews 
in Ref. (28, 178, 190, 191)]. In rat studies, exercise in the form 
of wheel running decreased cocaine-seeking behavior in males 
and females across all phases of the drug addiction, including 
acquisition (197), maintenance (58, 198–201), escalation/binging 
(58, 201, 202), extinction (203–205), and reinstatement/relapse 
(203–207), including extended relapse or incubation of cocaine-
cue-induced reinstatement (craving) over extended time periods 
(208). Voluntary running is also effective if it is provided in the 
home cage environment, and drug-seeking behavior is tested 
separately in an operant chamber [e.g., Ref. (203, 204, 206, 208)].

There have been few studies directly comparing sex differences 
on the effects of exercise as a treatment to reduce drug-seeking 
behavior [see review by Zhou et  al. (190)]; however, limited 
evidence shows that concurrent access to a running wheel (vs. a 
locked wheel) reduced cocaine self-administration more in female 
than male rats (198). Few studies have compared sex and age in 
treatment studies with rats. However, in rats self-administering 
cocaine, physical exercise was more effective in adolescents than 
adults (58). Exercise may be a more suitable treatment than phar-
macological interventions in adolescents who are undergoing 
critical phases of development and brain maturation (209, 210). 
In animal studies, both concurrent exposure to exercise (198, 211) 
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and prior exposure and/or exposure in a different environment 
(200, 201, 203, 204, 212–215) effectively reduced drug seeking.

While both concurrent and sequential approaches are effective, 
these data show actual reductions in drug intake (vs. drug seek-
ing) with concurrent access to exercise (198, 211) and other non-
drug rewards (28), while previous studies using sequential access 
to exercise report that initiation of drug self-administration (213) 
or drug-seeking behavior during extinction from former access 
(relapse) is suppressed [e.g., Ref. (212)]. While concurrent and 
sequential access to drug and exercise has not been directly 
compared in rat studies, there may be an advantage to allowing 
concurrent access or at least presenting both in a contiguous 
time frame. For example, a previous within-subjects study using 
treatment with a non-drug reward (SACC) in monkeys, with 
both concurrent and sequential access, verified a more robust 
reduction in drug intake with concurrent access to SACC than 
sequential access (183). Thus, comparing concurrent vs. sequen-
tial access, and contingent access [e.g., Ref. (188)] with exercise as 
a treatment is an important area for future research.

Recent studies in rats have examined sex differences on the 
effect of previous exercise exposure in a different environment 
on subsequent drug seeking during different parts of the drug 
addiction process. Ehringer et  al. (199) indicated that females 
significantly lowered their alcohol consumption compared to 
males when a running wheel was available, but not during the 
reinstatement (relapse) component. Smith et  al. (204) did not 
find a sex difference in the effect of wheel running on cocaine 
self-administration or reinstatement, but they found that females 
decreased drug seeking more than the males during the first few 
extinction sessions when a running wheel was available. However, 
two studies directly compared the effect of exercise in male and 
female rats self-administering cocaine (198) or on cocaine-primed 
reinstatement (216), and both found a better effect of exercise in 
reducing drug seeking in females than males. In other studies, wheel 
running reduced cocaine (206) and nicotine acquisition (213) and 
nicotine seeking during reinstatement (212). Nevertheless, in the 
cocaine study (206), males’ cocaine seeking was also reduced more 
than females’ by entry into the locked wheel control condition, 
and an opposite sex difference was found in the nicotine study 
(212) whereby females’ nicotine seeking was reduced more than 
males by entry into the locked wheel control condition. In con-
trast, Smith et al. (204) did not find a sex difference in the effect of 
wheel running on cocaine self-administration or reinstatement, 
but they found that females had decreased extinction responding 
compared to males. Results of these and other initial studies [e.g., 
Ref. (58, 198, 205, 216, 217)] suggest that the effects of exercise are 
strongest when exercise is available during the critical phases of 
addiction (acquisition, maintenance, escalation, or drug-primed 
reinstatement), and sex differences (F  >  M) are found. More 
work is needed with both males and females during all phases of 
addiction to identify the most effective treatment strategy. While 
numerous studies exercise as a treatment for addiction have been 
conducted with both male and female rodents [see Ref. (191); 
Table  1] using both drug self-administration and CPP models, 
approximately 80% of the work has been done with males. It was 
encouraging that in most of the studies reviewed, exercise had an 

advantageous effect on preventing or treating CPP for the environ-
ment where drug exposure occurred.

In general, existing studies suggest that physical exercise is 
an effective deterrent to drug seeking and abuse, and it offers a 
healthy, self-sustaining treatment for drug abuse. However, more 
work is needed to evaluate the potential for this treatment in both 
males and females and its effect on individuals with other vulner-
abilities for drug abuse. Moderate use of this treatment may be 
the key to its success. For example, non-drug rewards such as 
excessive amounts of sweet drinks also reduce drug addiction in 
animal models (185), but they can also become addictive (112, 
218) and lead to other unhealthy consequences. Similarly, while 
it is uncommon, too much exercise could result in health issues, 
such as exercise addiction and exercise-induced anorexia (3, 219).

In summary, emerging evidence from the animal literature 
indicates that exercise is a healthy candidate for treating drug 
abuse, but not enough data are available to make a strong predic-
tion regarding sex differences in treatment efficacy or the best 
strategy for delivering this treatment, whether it is concurrent 
with drug access, sequential, or contingent upon non-use of drug 
[e.g., Ref. (188)]. In previous rat, monkey, and human studies, 
concurrent and/or contingent access to drug and non-drug 
rewards have been the most effective strategies for reducing drug 
abuse [see Ref. (173, 178, 185, 188)].

Humans
Compared to the large number of laboratory animal studies that 
have prospectively examined physical exercise as a potential 
treatment for drug abuse [see Ref. (191)], human studies are few, 
and the results are not as definitive. Most of the human data are 
cross-sectional, but importantly they involve cigarette smoking, 
which is easier to study than illicit drugs because large sample 
sizes are available and it is a legal drug. However, in a recent 
review of the clinical literature, Linke and Ussher (220) concluded 
that there is a lack of prospective randomized clinical trials (RCT) 
that are needed to study the effects of exercise not only nicotine, 
tobacco, and alcohol abuse but also for other drugs that have a 
high rate of abuse, such as METH. For example, in several studies, 
higher abstinence rates were reported at 3 months (195, 221, 222), 
6 months (223), and 12 months (221) after an exercise regimen; 
however, other studies found no significant effects of exercise on 
abstinence (220, 224). In a recent review of the literature on physi-
cal activity and drug abuse, Bardo and Compton (178) noted that 
the impact of physical activity on the reduction of drug intake 
in humans has also been shown mainly in observational studies, 
both cross-sectional and prospective. Survey research has also 
indicated that higher levels of physical activity are associated with 
lower alcohol, tobacco, and marijuana use (225).

Reviews of these correlational studies emphasize a need for 
RCT in alcohol, tobacco, and marijuana addiction, and initial 
studies on the use of exercise programs for treatment tobacco use 
have shown improvement for smoking cessation [e.g., Ref. (223)]. 
However, others have shown no benefit, possibly because they 
were underpowered. There are efforts to promote physical activity 
as an adjunct for smoking cessation, especially among women 
(224), but key parameters, such as type and intensity (dose) of 
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physical activity, have not been determined. Aside from the few 
studies on tobacco and alcohol, there are no reports of RTC 
studies showing improvements in outcomes on drug addiction 
using exercise as an inpatient treatment. However, a RTC study 
was recently reported by Rawson et al. (226), whereby they used 
8  weeks of exercise as a post-residential treatment for METH 
addiction, showed a significant reduction in use (confirmed by 
urine screens) in participants who had been using meth 18 days or 
less a month. Earlier reports from this group showed that exercise 
also resulted in improvements in fitness and heart rate measures 
(227, 228). In another human study on cigarette smoking, it was 
reported that individuals were more successful in maintaining 
abstinence if they continued their exercise program on their own 
after the experimental intervention ended (221).

Animal and human research on physical exercise as a treat-
ment for stimulant addiction indicates that this is one of the most 
promising treatments on the horizon. However, there are few 
studies of sex differences in outcome of this form of treatment. 
Initial animal work suggests that females and adolescents are 
more responsive to this form of treatment than males; however, 
further animal work and extension to human RTCs is needed.

Negative environmental Consequences
For drug abusers, punishment exists in natural settings, in 
the form of natural consequences for drug use, such as loss of 
friends, jobs, money, and to promote survival. It has seldom 
been proposed for treating drug abuse in humans, although 
treatment methods for alcoholism, such as antabuse, re-setting 
voucher amounts in VBRT after positive urine samples, and 
revocation professional licenses for drug addition, are forms of 
punishment that human drug abusers encounter. While treat-
ments based on negative environmental consequences have not 
been systematically explored in humans, animal studies indicate 
that negative consequences for drug use may be an important 
aspect of treatment to consider. However, only a few animal 
studies have modeled the effect of punishment on drug seek-
ing and drug self-administration, and results indicate that mild 
forms of punishment are effective and enduring. For example, 
after several months of ethanol intake, rats continued to drink 
alcohol despite the consequences of footshock (229) or bitter 
tasting quinine (230), and this aversion-resistant alcohol intake 
is considered to be a model of compulsive drug abuse in humans 
[e.g., Ref. (231)]. However, in some animals, these aversive 
pairings with drug self-administration reduce drug intake. The 
extent to which rats have reduced sensitivity to aversive effects 
of drugs interacts with individual differences, such as sex, age 
(adolescent vs. adult), sweet preference (HiS, LoS), and impulsiv-
ity (HiI, LoI). Given the individual differences in vulnerability 
to addiction (see Table 1), and response to treatment effects in 
rats and monkeys with biologically and behaviorally mediated 
differences (male/female, HiI/LoI, HiS/LoS and adolescent/
adult), recent animal studies have considered individual differ-
ences in response to punishment as a treatment for drug abuse. 
Histamine was used as a chronic, aversive condition to validate 
a model of punished drug seeking that would represent the 
negative emotional and physical symptoms (hangovers, anxiety, 

anhedonia, and irritability) experienced by humans. Histamine 
(i.v.) was added to the i.v. cocaine self-administration in groups 
of male vs. female HiS vs. LoS, HiI vs. LoI, and adolescent vs. 
adult rats (23, 117). All groups suppressed responding for cocaine 
when histamine was added. Female and LoS rats showed a sig-
nificantly slower (5–15 days) return to baseline levels of cocaine 
self-administration after histamine was terminated, and HiI and 
LoI rats showed no differences throughout the experimental 
phases (117). However, while adult rats also showed a greater 
punishment effect than adolescent rats when histamine was 
present in the cocaine solution, adults and adolescents recovered 
to baseline at the same rate (23).

Consistent with the histamine findings, in other studies, adult 
rats had more severe withdrawal effects than adolescent rats 
(232, 233). This was in contrast to findings that adolescent rats 
self-administering cocaine were more sensitive to the rewarding 
effects of drug (52, 120) and showed more severe relapse effects 
than adult rats (18). These findings highlight opposite effects that 
can occur in groups of rats when considering the rewarding vs. 
aversive effects as previously discussed by Riley (234), and they 
emphasize the importance of considering individual differences 
in vulnerability to drug abuse and response to treatment. These 
results with differentially vulnerable groups concur with recent 
treatment studies with baclofen, an agent that reduces cocaine-
induced dopamine increase in the nucleus accumbens. Baclofen 
treatment reduced cocaine self-administration in the less vulner-
able LoS animals, and potentiated it in the more vulnerable HiS 
animals (63). Similar effects were found with PRO that reduced 
escalation of cocaine self-administration in LoS rats and increased 
it in HiS rats (56). These studies highlight the importance of con-
sidering novel treatment mechanisms and individual differences 
in response to different treatments.

Targeting individual Differences with 
Repurposed Medications as Treatments 
for Addiction
In recent studies, proposed novel treatments have addressed 
factors that underlie behavioral dyscontrol. For example, (1) 
impulsivity has been shown to be positively related to drug 
addiction, and repurposing medications that reduce impulsivity 
to treat underlying problems had initial success in treating drug 
addiction, as both male and female humans report that it reduces 
anxiety. For instance, ATO that is used to treat ADHD, and it 
reduced impulsivity in rats (235). (2) Hormonal conditions are 
known to increase (estrogen) or decrease (PRO) cocaine and 
nicotine-seeking behavior, especially in females, and PRO has 
emerged in animal and human studies as a promising medication 
that could be repurposed for drug addiction, as both male and 
females report that it reduces anxiety. For example, PRO is used 
in some oral contraceptives to treat problems with the female 
reproductive system, but when used for drug-abuse treatment, it 
counteracts the facilitatory effects of estrogen and reduces drug 
relapse [see Ref. (9)]. PRO also has anxiolytic effects that reduce 
drug seeking [e.g., Ref. (40, 236)]. (3) An additional strategy 
has been to combine two or more novel approaches, such as 
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medication (e.g., ATO, PRO) or behavioral treatments, that often 
has a greater impact than monotherapy in animals and humans.

In summary, research in animals has begun to target specific 
behaviors or hormonal conditions that are associated with addic-
tive behavior, such as anxiety, depression, and impulsivity. In this 
section, we discuss two repurposed medications, ATO and PRO, 
as they have shown efficacy for treatment in rodent studies. Thus 
far, the results support the hypothesis that treating the underly-
ing behaviors associated with drug abuse, with PRO and ATO, 
has potential for treating human drug abuse, and as discussed 
in Section “Treatment Combinations,” adding these treatments 
(ATO or PRO) to a behavioral treatment in rats, such as physical 
exercise, results in an enhanced treatment effect. However, initial 
studies with these novel treatments have not fully examined sex 
differences, and sex is an important factor in drug abuse and its 
treatment.

Atomoxetine
Atomoxetine is a selective norepinephrine (NE) reuptake inhibi-
tor that is used in humans for ADHD, inattention, and impulsiv-
ity associated with ADHD (237). These properties also make it a 
candidate therapy for psychostimulant addiction [for a review see 
Ref. (243)]. Like cocaine, ATO functions as a selective NE reup-
take inhibitor that increases NE and dopamine in the prefrontal 
cortex (238, 239), but it does not have the abuse liability of other 
stimulants such as methylphenidate and desipramine (240).

Laboratory Animals
The relationship between ATO and impulsive behavior has been 
shown using several behavioral tasks in animals, such as the 
5-CSRTT (76, 241), the SSRT task (76), and delay discounting 
(76, 235), but in other studies, ATO did not modify impulsivity 
(70, 241). In animal models of addictive behavior, ATO treat-
ment was not effective at reducing cocaine self-administration 
in rats (71, 242–244). However, in combination with wheel run-
ning (245), ATO reduced cue-primed cocaine seeking in rats. It 
also reduced the strength of conditioned stimuli associated with 
nicotine in rats (246), attenuated nicotine withdrawal symptoms 
in mice (247), and reduced impulsive responding for i.v. cocaine 
in female rats (Smethells et al., under review). In our series of 
animal studies, we have modeled the combination approach 
with animals using some of the novel treatments described 
above. For instance, when combined with physical exercise ATO 
attenuated cocaine extinction, and cocaine-primed reinstate-
ment in females but not in males (245). In a recent study, ATO 
was studied in rats responding for i.v. cocaine under a delay-
discounting schedule with a small amount of cocaine available 
immediately, or a larger amount after a delay, treatment with 
ATO or ATO combined with PRO shifted the choice from the 
impulsive choice of a smaller-immediate cocaine delivery to the 
less impulsive choice of a larger-delayed cocaine delivery (248). 
However, the combined ATO–PRO treatment did not reduce 
impulsive cocaine seeking any further than either treatment 
alone. These animal studies suggest that ATO may be an effec-
tive treatment for psychostimulant addiction and for reducing 
impulsive behavior that underlies drug seeking.

Humans
Little data are available from human studies to confirm the poten-
tial for ATO to treat drug cocaine or other stimulant addiction. 
Some clinical investigations have not demonstrated a therapeutic 
effect of ATO on cocaine use (243, 244) or on the subjective effects 
of METH (249). However, Sofuoglu and Mooney (250) reported 
that ATO attenuated physiological and subjective effects of 
d-amphetamine. Others have shown fewer days of heavy alcohol 
drinking, less alcohol craving with ATO and longer abstinence 
from alcohol use with ATO treatment than with counseling by 
itself (251, 252).

Progesterone
Progesterone is used therapeutically in humans and for other 
primates for contraception, endometriosis, and maintaining 
pregnancies. It has also been shown in animal studies to indicate 
impulsive drug seeking and anxiety-like behaviors (248, 253, 
254). PRO plays an important role in reducing drug seeking in 
rats [for review, see Ref. (6)], monkeys (255–257), and humans 
[for review, see Ref. (8)].

Laboratory Animals
In preclinical models, exogenously administered PRO and its 
primary metabolite, ALLO, attenuated acquisition, escalation of 
cocaine self-administration, and cocaine-primed reinstatement 
(54, 258) of cocaine seeking in rats (259, 260). Sex differences in 
the effects of ALLO have been reported with METH-primed rein-
statement (64), and reinstatement was significantly reduced in 
female rats when they were treated with ALLO. However, ALLO 
had no effect on male rats [see Ref. (6) for a complete review]. In 
rats self-administering cocaine, concurrent running-wheel access 
was combined with PRO treatment, and the combination reduced 
extinction responding and cocaine-primed reinstatement in 
females but not males (216). However, in treatment-resistant 
males, the wheel access and PRO combination were more effec-
tive than wheel access or PRO alone. Studies of the effects of 
PRO on the rewarding effects of drugs show that rhesus monkeys 
maintained higher breakpoints for cocaine during the follicular 
than the luteal phase [Ref. (255); lowest dose only]. Also, rats self-
administered more cocaine during the estrus phase of the estrous 
cycle, when estrogen levels are rising, than during proestrous, 
when PRO is relatively high (51, 259, 261–264).

Humans
In humans, during the follicular phase, when estrogen peaks, 
women report that cocaine is subjectively more rewarding than 
during the luteal phase, when PRO levels are have peaked [Ref. 
(265–267); see also Ref. (268)]. Human laboratory studies also 
indicate that PRO has an important role in nicotine addiction. 
For example, in a study of sensitivity to alcohol in women with 
premenstrual dysphoric disorder (PMDD), women reported 
a blunted physiological response and less intoxication after an 
alcohol infusion in the late luteal phase (high P/E) compared to 
the mid-follicular phase (low P/E) of the menstrual cycle indicat-
ing that PRO reduced the intoxicating effects of alcohol (269). In a 
recent study with both men and women, the effects of i.v. nicotine 
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were assessed as a function of sex and menstrual cycle phase, and 
men reported greater subjective reactivity to nicotine, but women 
showed more physiological reactions (39). In women, this effect 
was diminished during the luteal phase (higher P/E ratio) com-
pared to the follicular phase of the cycle. Women reported less 
nicotine reactivity, fewer negative symptoms, and better task 
performance during the luteal compared to the follicular phase 
suggesting that a higher P/E ratio may have alleviated nicotine’s 
negative effects. However, this sex difference finding was incon-
sistent with previous studies of the same i.v. nicotine infusion 
(250), oral intake (270), intranasal (271), and transdermal (272) 
nicotine administration, although phase of menstrual cycle was 
not a factor in these studies. The finding of greater subjective 
nicotine sensitivity in men vs. women was consistent with previ-
ous reports using intranasal nicotine (273) and smoked cocaine. 
Physiological findings of nicotine administration were consistent 
with the heart rate response (272) and diastolic blood pressure 
seen by others (274), but not with studies of nicotine and heart 
rate or blood pressure (250, 275).

In a recent smoking treatment study with either varenicline vs. 
placebo or nicotine patch vs. placebo patch in women, PRO levels 
were measured and compared to treatment outcome. This was 
the first study to identify a relationship between increasing levels 
of PRO and better abstinence outcomes in freely cycling women 
(236). The additive effect of rising PRO levels and treatment success 
was mainly found with the nicotine patch (vs. varenicline). There 
was a 23% increase in the odds of being abstinent within each of 
the 4 weeks of treatment in the luteal (PRO) + patch group. Based 
on animal research findings, clinical and preclinical researchers 
have examined the effects of exogenously administered PRO as a 
treatment for cocaine abuse. Comparable findings were obtained 
in humans who were treated with PRO. They showed reduced 
physiological and subjective rewarding effects of cocaine or cue-
induced cocaine craving (8, 272, 276–279). Also, in clinical trials, 
PRO treatment reduced cocaine use in post-partum women in 
(280). Overall, there is strong accumulating evidence in human 
and animal studies, suggesting that, at least in females, PRO may 
serve as an efficacious pharmacological intervention for nicotine 
and cocaine addiction.

Treatment Combinations
Human studies suggest that combined therapies produce addi-
tive reductions in drug addiction compared to single treatment, 
and effects may vary with individual differences, such as male 
vs. female. For example, a review of 280 treatment studies for 
substance abuse disorders in men and women, published between 
1975 and 2005, revealed better treatment outcomes for women 
than men (174). However, recent analysis of the multi-site 
COMBINE project, including 1383 men and women, reported 
that while there were sex differences in those seeking treatment 
for alcoholism and in those reporting alcohol treatment, there 
were no sex differences in the combined behavioral + naltrexone 
intervention, and the combination did not produce a better 
outcome than the individual treatments. Furthermore, women 
responded to naltrexone treatment and naltrexone + the control 
condition, medical management, similar to men (175). A recent 

review of combined pharmacotherapies (vs. single) for stimulant 
use disorder provided little evidence for an advantage of combined 
vs. monotherapies (281). Thus, further clinical work is needed 
with combined behavioral and pharmacological treatments for 
stimulant addiction to extend the promising results with labora-
tory animals to humans.

A recent study in rhesus monkeys showed reduced oral cocaine 
self-administration in female rhesus monkeys during the luteal 
phase of the menstrual cycle when PRO peaks compared with 
the follicular phase when estrogen peaks (Carroll et al., under 
review). In this study, monkeys received SACC concurrently with 
access to cocaine (0.4 mg/ml) under FR 4 schedules, and cocaine 
intake (milligram per kilogram) was compared in males and 
females during the follicular vs. the luteal phase of the menstrual 
cycle. When concurrent water was available with cocaine, females 
in the follicular phase consumed more cocaine than luteal females 
or males, an effect attributed to the lower PRO levels. Treatment 
with concurrent access to SACC along with cocaine resulted in 
reduced cocaine intake in both males and in females in both their 
follicular and luteal phases. An additive effect of PRO and SACC 
may have been occluded by a floor effect of SACC. However, a 
comparison of females across phases indicated a reduction in 
cocaine intake due to higher PRO (luteal phase) and to the addi-
tive effectiveness of PRO and SACC.

SUMMARY/CONCLUSiON

Sex differences in behavioral dyscontrol were discussed in 
relation to drug addiction, as well as other factors that interact 
with sex differences to influence addictive behavior, such as 
impulsivity, compulsive binge intake of sweet substances, and 
age (adolescence). Each of these vulnerability factors has a sub-
stantial influence on behavioral dyscontrol and drug addiction. 
Not only do these individual differences explain the propensity 
for addiction in some individuals and not others but they also 
can be additive, presenting serious challenges to prevention and 
treatment once drug addiction has developed. Furthermore, 
these factors explain the propensity for addiction in some 
individuals and not others, which is instructive for designing 
prevention and treatment strategies. In addition, recent find-
ings suggest that drug-prone individuals vs. those that are less 
sensitive to the aversive effects of drugs, further enhancing their 
vulnerability to addiction. Challenges in designing treatment 
for individuals with these addiction-prone characteristics are 
addressed by proposing novel treatments that take into account 
impulsive behavior and other forms of behavioral dyscontrol, 
such as excessive reward seeking, as well as sex, and hormonal 
conditions. Promising treatment strategies include behavioral 
manipulations, such as environmental enrichment (social 
and physical), such as exercise, or brief exposure to negative 
environmental consequences (e.g., punishment), and targeting 
individual differences with medications repurposed to address 
specific vulnerability factors, such as hormonal status (PRO), 
anxiety, or impulsivity (ATO), and combined behavioral and 
pharmacological therapies. Overall, the present review empha-
sizes that sex differences are intertwined with other major 
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