
February 2016 | Volume 7 | Article 201

Mini Review
published: 23 February 2016

doi: 10.3389/fpsyt.2016.00020

Frontiers in Psychiatry | www.frontiersin.org

Edited by: 
Stefan Borgwardt,  

University of Basel, Switzerland

Reviewed by: 
Richard Eugene Frye,  

Children’s Hospital Boston and 
Harvard University, USA  

Megha Sharda,  
University of Montreal, Canada

*Correspondence:
Alessandro Crippa  

alessandro.crippa@bp.lnf.it

Specialty section: 
This article was submitted to 

Neuroimaging and Stimulation,  
a section of the journal  
Frontiers in Psychiatry

Received: 01 December 2015
Accepted: 09 February 2016
Published: 23 February 2016

Citation: 
Crippa A, Del Vecchio G, 

Busti Ceccarelli S, Nobile M, 
Arrigoni F and Brambilla P (2016) 
Cortico-Cerebellar Connectivity in 

Autism Spectrum Disorder: What Do 
We Know So Far?  

Front. Psychiatry 7:20.  
doi: 10.3389/fpsyt.2016.00020

Cortico-Cerebellar Connectivity in 
Autism Spectrum Disorder: what Do 
we Know So Far?
Alessandro Crippa1,2* , Giuseppe Del Vecchio1 , Silvia Busti Ceccarelli1 , Maria Nobile1,3 , 
Filippo Arrigoni1 and Paolo Brambilla4,5

1 Scientific Institute, IRCCS Eugenio Medea, Lecco, Italy, 2 Department of Psychology, University of Milano – Bicocca, Milan, 
Italy, 3 Department of Clinical Neurosciences, Hermanas Hospitalarias, FoRiPsi, Albese con Cassano, Italy, 4 Department of 
Neurosciences and Mental Health, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, University of Milan, 
Milan, Italy, 5 Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center at Houston, 
Houston, TX, USA

Although the Autism Spectrum Disorder (ASD) is renowned to be a connectivity disorder 
and a condition characterized by cerebellar involvement, the connectivity between the 
cerebellum and other cortical brain regions is particularly underexamined. Indeed, con-
verging evidence has recently suggested that the cerebellum could play a key role in the 
etiopathogenesis of ASD, since cerebellar anomalies have been consistently reported 
in ASD from the molecular to the behavioral level, and damage to the cerebellum early 
in development has been linked with signs of autistic features. In addition, current data 
have shown that the cerebellum is a key structure not only for sensory-motor control, but 
also for “higher functions,” such as social cognition and emotion, through its extensive 
connections with cortical areas. The disruption of these circuits could be implicated in 
the wide range of autistic symptoms that the term “spectrum” connotes. In this review, 
we present and discuss the recent findings from imaging studies that investigated cor-
tico-cerebellar connectivity in people with ASD. The literature is still too limited to allow 
for definitive conclusions; however, this brief review reveals substantial areas for future 
studies, underlining currently unmet research perspectives.
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inTRODUCTiOn

Autism spectrum disorder (ASD) is a multifaceted neurodevelopmental disorder characterized 
by persistent social impairment, communication abnormalities, and restricted and repetitive 
behaviors (DSM-5) (1, 2). ASD is a complex condition with an average prevalence of about 
1% worldwide (3), one in 68 U.S. children (4). Although high heritability estimates suggest a 
critical role for genetic factors (5), its etiology is generally considered multifactorial. It has been 
hypothesized that the heterogeneous phenotype of ASD could implicate a greater likelihood of 
abnormalities in the connectivity between different neural networks rather than alterations in a 
specific cerebral area (6). Over the last decade, the claim that ASD is a disorder of connectivity 
has been reliably supported by evidence from neuroimaging studies (7, 8), even though with 
mixed findings. On one hand, some studies have provided initial evidence of underconnectivity 
in ASD (9–11); on the other hand, another line of research has indicated overconnectivity in ASD, 
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arguing for an increased local and short-distance connectivity 
within the frontal cortex, with respect to reduced long-range 
connectivity between frontal lobes and posterior brain regions 
(12–14).

Two recent studies (15, 16) that analyzed the database of 
fMRI resting-state scans from the Autism Brain Imaging Data 
Exchange have revealed the occurrence of underconnectiv-
ity and overconnectivity in ASD, although with different 
topographical distributions. More precisely, overconnectivity 
seems to be primarily associated with subcortical regions, 
whereas hypoconnectivity appears to characterize the pat-
tern of cortico-cortical and interhemispheric functional 
connectivity.

However, the connectivity between different brain areas 
with the cerebellum is still a particularly under-considered 
issue in ASD research. Although it was traditionally believed 
that the cerebellum was exclusively a motor structure (17), 
converging evidence suggested a role for the cerebellum in 
other “higher” functions, including language and cognition, 
as well as emotion (18–20). Indeed, neuroanatomical findings 
have clearly shown that the cerebellum can influence a num-
ber of neocortical areas, including premotor, prefrontal, and 
posterior parietal areas of the cerebral cortex, through polysyn-
aptic circuits via thalamus and basal ganglia. These pathways 
subserved specifically different functions, such as movement, 
cognition, and social skills (21–24). On the basis of decades 
of anatomical and imaging data [see Ref. (25, 26, 27–30) for 
reviews], it has been suggested that the cerebellum could 
be primarily implicated in ASD (31, 32), with cognitive and 
behavioral effects beyond the difficulties in the motor domain 
(33, 34). In fact, a cerebellar dysfunction early in development 
has been associated with deficits in executive functions, visual-
spatial processing, linguistic function, and affective regulation 
(35, 36), and even with social difficulties, such as avoidance 
of physical contact or gaze aversion, within a diagnosis of 
ASD (37). Moreover, Wang et al. (36) recently proposed that 
cerebellar damage in childhood may perturb the maturation 
of distant neocortical circuits during developmental sensitive 
periods through a “developmental diaschisis,” increasing the 
risk for developing ASD.

Despite its connections with several brain areas and the 
well-known involvement of this structure in the disorder, few 
imaging studies have investigated the role of cerebro-cerebellar 
connections in ASD and correlations between cerebro-cerebellar 
connectivity and clinical measures. Considering this lack of 
evidence, we briefly summarized the recent imaging findings on 
cortico-cerebellar connectivity in ASD in order to (a) address 
strengths and pitfalls of previous studies and (b) explore potential 
strategies for future research. In addition, we aimed to under-
stand whether disruptions of specific cortico-cerebellar circuits 
could be associated with specific difficulties in ASD or different 
phenotypes within the disorder. Publications for this review were 
identified from a PubMed search in November 2015 using terms 
related to autism, connectivity, magnetic resonance (MR) imag-
ing, and cerebellum. This search was supplemented with other 
publications from the reference lists of all included citations, and 
from the personal reference databases of the authors.

DiFFUSiOn iMAGinG STUDieS

Structural connectivity can be assessed in vivo using MR tech-
niques like diffusion-weighted imaging (DWI) or Diffusion 
Tensor Imaging (DTI). These non-invasive techniques provide 
indirect quantitative measures of white matter integrity, such as 
fractional anisotropy (FA), mean diffusivity, axial diffusivity, and 
radial diffusivity, by measuring water diffusion in the underlying 
tissue microstructure (38). Mean diffusivity is the average of the 
diffusion in the different directions of the space, and its values 
are related to the presence of barriers or obstacles, like cellular 
membranes and axons, which can interfere with the free water 
displacement within a voxel. When diffusion of water molecules 
is not the same along the three axes of the space (as in axons), it 
is called anisotropic, which means it has a preferential direction 
of displacement. Axial and radial diffusivity measure the entity of 
displacement along the principal and its perpendicular axis. FA 
values, which range between 0 and 1, are also a measure of ani-
sotropy that seem to be related with myelination, axon diameter, 
and fiber coherence (39). High FA values denote well organized 
and normally myelinated axons that provide natural barriers to 
water movement within tissue. Lower FA values, in contrast, may 
reflect axonal loss and/or demyelination (39) as well as areas 
of crossing fibers. DWI allows for quantification of FA at voxel 
levels, whereas DTI, using different tracking algorithms, enables 
reconstruction of structural connections. An overview of the 
studies on structural connectivity between the cerebellum and 
different cerebral areas in ASD can be found in Table 1 (40–45). 
When using the terms overconnectivity or underconnectivity in 
diffusion imaging studies, we refer here to connectivity disrup-
tion in terms of tissue organization.

The majority of results from diffusion imaging studies showed 
a weaker structural connectivity in participants with ASD, as 
indicated by decreased FA both in the superior cerebellar pedun-
cles (40, 41, 44) and in intracerebellar circuitries (45). However, 
findings in the middle cerebellar peduncles did not yield consist-
ent evidence. Shukla et al. (42) revealed reduced values of FA in 
adolescents with ASD; conversely, Sivaswamy et  al. (43) found 
increased values of FA in the right middle cerebellar peduncle, 
although within a reverse asymmetry pattern in FA of the middle 
and inferior cerebellar peduncles. A quantitative tractography 
study (45), in which a newly developed method for DWI called 
the “independent component analysis with a ball and stick model” 
was used to reveal abnormally reduced volume and number of 
fibers between the cerebellar cortex and right ventral dentate 
nucleus, accompanied by decreased FA between the cerebellar 
cortex, right dorsal dentate nucleus, and bilateral ventral dentate 
nucleus. Alterations of FA in cerebellar structures are mainly, 
but not always, reported to occur in association with reduced 
axial diffusivity [Ref. (44, 45); but not Ref. (42)], in absence of 
abnormalities of mean or radial diffusion.

In respect to the relationship between white matter integrity, 
behavior, and ASD symptoms, Catani et al. (40) found a negative 
correlation between FA values in the right superior cerebellar 
peduncle and in the right short intracerebellar fibers, in addition 
to social difficulties as reported by a caregiver using ADI-R (46), 
a “gold standard” diagnostic interview tool for clinical diagnosis. 
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TABLe 1 | Diffusion imaging studies investigating cerebro-cerebellar connectivity in ASD.

Study Participants  
(N, age range)

Methods Findings Relationship connectivity 
measures – behavior

Catani 
et al. (40)

15 Asperger, 16 HC, 
18–49 years

DTI–ROI ↓ FA in the right superior cerebellar peduncle and in the right 
short intracerebellar fibers
No differences in the mean diffusivity

Negative correlation between the ADI-R 
social domain score and FA of the left 
superior cerebellar peduncle

Brito et al. 
(41)

Eight with autism, 
eight HC, 6–12 years

DTI–ROI ↓ FA in the left superior cerebellar peduncle, and in the right and 
in the left middle cerebellar peduncles

NA

Shukla 
et al. (42)

26 ASD, 24 HC, 
9–18 years

DTI–ROI ↓ FA in the middle cerebellar peduncle
No differences in the mean diffusivity, axial or radial diffusion

No correlations with ADI or ADOS scores

Sivaswamy 
et al. (43)

27 ASD, 16 HC, 
2.6–9 years

DTI–ROI ↑ Mean diffusivity of the bilateral superior cerebellar peduncles NA
↑ FA in the right middle cerebellar peduncle
Reversed pattern of asymmetry in the FA of the middle and 
inferior cerebellar peduncles

Hanaie 
et al. (44)

13 ASD, 11 HC, 
5–14 years

DTI–ROI ↓ FA in the right superior cerebellar peduncle Positive correlation between the M-ABC 
2 total score and FA in the right superior 
cerebellar peduncle

↓ Axial diffusivity in the left superior cerebellar peduncle

Jeong 
et al. (45)

15 ASD, 14 HC, 
3.6–13

DWI – ICA + BSM 
tractography

↓ Streamline volume and count between cerebellar cortex and 
the right VDN

Positive correlation between FA of 
right dorsal dentate nucleus and VABS 
2 – daily living skills↓ FA between cerebellar cortex and the right DDN, and VDN 

bilaterally
↓ Axial diffusivity between cerebellar cortex and the left DDN, 
and left VDN

ASD, autism spectrum disorder; HC, healthy controls; DTI, diffusion tensor imaging; DWI, diffusion-weighted imaging; ICA + BSM, independent component analysis with a ball and 
stick model; ROI, region of interest; FA, fractional anisotropy; VDN, ventral dentate nucleus; DDN, dorsal dentate nucleus; NA, not assessed; ADI-R, Autism Diagnostic Interview-
revised; M-ABC 2, Movement Assessment Battery for Children – second edition; VABS, Vineland Adaptive Behavioral Scales.
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Moreover, Jeong et al. (45) depicted a relation between lower FA 
values between the cerebellar cortex and the right dorsal dentate 
nucleus, and between the ventral dentate nucleus bilaterally and 
poor daily living skills measured by Vineland Adaptive Behavioral 
Scales (47). Lastly, the motor abilities measured at Movement 
ABC-2 (48) were found to be positively correlated to FA in the 
right superior cerebellar peduncle (44). However, Shukla et  al. 
(42) reported no relationship between DTI measures and clinical 
symptoms of ASD.

In sum, findings from diffusion imaging studies indicate 
underconnectivity  –  in reference to a different white matter 
integrity and coherence between participants  –  between the 
cerebellar main outflow pathways (i.e., the superior cerebellar 
peduncles) and the neocortex, and in intracerebellar circuitries 
that involve the dentate nucleus. Results for the middle and 
inferior cerebellar peduncles are not so consistent, with mixed 
reports of reduced and increased structural connectivity. 
Nevertheless, these findings altogether seem to suggest a pos-
sible abnormal connectivity between the cortical areas and the 
main afferent fibers of the cerebellum. Finally, the findings from 
the reviewed studies suggested some preliminary evidence of a 
relationship between the structural connectivity of the cerebel-
lum and manifestations of ASD.

TASK-ReLATeD FUnCTiOnAL iMAGinG 
STUDieS

Functional brain connectivity can be effectively quantified during 
both task performance and rest by correlating variations of the 
blood-oxygen-level-dependent (BOLD) signal over time (49, 50). 

Different neuroanatomical regions are assumed to be function-
ally connected when the time courses of the BOLD fluctuations in 
these regions have synchronized patterns of activation (51). To the 
best of our knowledge, only three studies investigated the func-
tional connectivity between cerebellum and cortical areas during 
task performance in ASD. Mostofsky et al. (52) assessed activa-
tion during a sequential finger tapping task in 13 children with 
high-functioning autism aged 8–12 years and in 13 age-matched 
typically developing peers, using functional magnetic resonance 
imaging (fMRI). The authors found activations in motor circuits 
across participants, which include contralateral pre/postcentral 
gyrus, ipsilateral anterior cerebellum (lobules IV/V), bilateral 
activation in the superior medial wall (BA6), and contralateral 
activation in the thalamus. However, children with typical 
development showed recruitment of cerebellar structure, i.e., the 
anterior lobe of the contralateral cerebellum (lobules IV/V) and 
ipsilateral anterior cerebellum, that is absent in autistic children. 
Conversely, the clinical group showed an increased activation of 
the supplementary motor area. In addition, a reduced functional 
connectivity within the motor circuits including premotor areas 
and the cerebellum was observed in autistic children, suggesting 
alterations in long-range connections in the fronto-cerebello-
thalamo-frontal network.

Jack and Morris (53) directly investigated the relationship 
between functional connectivity and ASD features in an fMRI 
study on the neural bases of perception and use of human actions 
in imitation. Using psychophysiological interaction (PPI) analy-
sis, the authors indicated an involvement of the network between 
posterior superior temporal sulcus (pSTS) – neocerebellum (i.e., 
Crus I) in social cognition in both adolescents with and without 
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TABLe 2 | Resting-state imaging studies investigating cerebro-cerebellar connectivity in ASD.

Study Participants (N, age range) Methods Findings Relationship connectivity 
measures – behavior

Padmanabhan 
et al. (56)

42 ASD, 48 HC, 8–36 years ROI (striatal seed 
regions)

Different developmental trajectory of FC among 
striatum, cerebellar lobules VI and VIIa, and 
Crus I

No correlations with ADI-R 
score

Verly et al. (57) 19 ASD + LI, 23 HC, mean age 
(SD): 14.3 years (1.3), 14.0 years 
(1.5)

ROI (seed regions) plus 
voxel-based analysis

↓ FC within the cerebello-DLPF, cerebello-SMA, 
cerebello-IFG, and cerebello-premotor circuits

Negative correlation between 
the ASD severity factor and FC 
between the right cerebellum 
and left DLPF seed

Khan et al. (58) 28 ASD, 28 HC, 8–17 years ROI ↑ Overall FC between cerebrum and cerebellum No correlations with ADI-R
↑ FC between cortical regions of one domain 
(motor or supramodal) and cerebellar regions of 
the other

Negative correlation between 
the cerebellar FC with the right 
supramodal ROI and non-
verbal IQ↑ FC for the sensorimotor ROIs but ↓ FC for the 

supramodal ROIs

Carper et al. (59) 44 ASD, 36 HC, 7–18 years Seed regions No group differences in FC between cerebellum 
and M1

No correlations between 
FC and clinical symptoms 
after correction for multiple 
comparisons

Dajani and  
Uddin (60)

53 ASD, 53 HC, three stratified 
groups: children <11 years, 
adolescents 11–18 years, adults 
≥18 years [data from ABIDE (14)]

Regional Homogeneity 
(ReHo)

Children: ↓ ReHo in cerebellar lobule VI Positive correlation between 
mean ReHo values and SCQAdolescents: ↑ ReHo in cerebellar lobule IX

Adults: ↓ ReHo in cerebellar vermis, bilateral 
lobule VI, and Crus I

ASD, autism spectrum disorder; LI, language impairment; HC, healthy controls; ROI, region of interest; FC, functional connectivity; DLPF, dorsolateral prefrontal; SMA, 
supplementary motor area; IFG, inferior frontal gyrus; ADI-R, Autism Diagnostic Interview-revised; SCQ, Social Communication Questionnaire.

February 2016 | Volume 7 | Article 204

Crippa et al. Cortico-Cerebellar Connectivity in ASD

Frontiers in Psychiatry | www.frontiersin.org

ASD. Although PPI data did not differ between groups, the 
authors showed that functional coactivation of pSTS and Crus I 
could predict the social deficits in ASD, as rated by parents on a 
questionnaire assessing “mentalizing skills,” (54) i.e., the ability to 
attribute mental states to others.

Recently, Kana et  al. (55) examined the neural network 
underlying theory of mind, including the cerebellum, in high-
functioning children and adolescents with autism while they 
were decoding the interactions between animated figures. The 
authors found a reduced cerebellar activation, particularly in 
Crus I, in participants with ASD in the theory of mind condition. 
Furthermore, they outlined reduced functional connectivity in 
ASD between the cerebellum and medial regions (i.e., medial 
prefrontal cortex and posterior cingulate cortex).

ReSTinG-STATe iMAGinG STUDieS

Five recent studies that use resting state to assess cerebro-
cerebellar connectivity were included in the present review (see 
Table 2 for an overview).

Verly et  al. (57) investigated the role of the cerebellum and 
its functional connectivity in the classic areas of the language 
network in children with ASD and language impairment. To do 
this, a verb generation fMRI task was first used to define lan-
guage areas commonly active in participants with and without 
ASD. Afterward, the selected regions were used as seeds for 
resting-state analysis, in addition to the traditional voxel-based 
analysis. Results from both the seed-based and voxel-wise maps 
indicated a significantly reduced functional connectivity in ASD 
among cerebellum, Broca’s, and Wernicke’s areas. The authors 
interpreted this dissociation of cerebral and cerebellar language 

regions as a possible index of altered cerebellar modulation of 
language functioning.

The study by Khan et al. (58) is, to date, the first work that aimed 
to directly assess the cerebro-cerebellar connectivity in ASD. The 
authors used resting-state MRI to measure the functional connec-
tivity between the cerebellum and seven bilateral cortical regions 
of interest (ROIs) in 28 children and adolescents with ASD com-
pared to their typically developing peers. Cerebral regions were 
grouped in sensorimotor ROIs (premotor and primary motor 
cortices, somatosensory superior temporal cortex, and occipital 
lobe) and in supramodal ROIs (prefrontal cortex, posterior 
parietal cortex, and inferior and middle temporal gyri). Overall, 
the authors found a general cerebro-cerebellar overconnectivity 
in the ASD group. In addition, the analysis of the connections’ 
domain-specificities revealed an increase in non-canonical links, 
i.e., in the connections between cortical regions of one domain 
(sensorimotor or supramodal) and cerebellar regions of the 
other. Furthermore, an increased cerebro-cerebellar connectivity 
was also found in sensorimotor circuitries at the expense of con-
nectivity in supramodal “cognitive” networks (reduced in ASD).

Carper et  al. (59) have recently investigated the anatomical 
and functional connectivity of the motor control system in chil-
dren and adolescents with ASD compared to healthy controls. 
With regard to the connectivity between the cerebellum and 
M1, the authors did not find any group differences in functional 
connectivity.

Finally, the other two resting-state studies reviewed here aimed 
to assess the functional connectivity of the cerebellum across 
development (56, 60). Indeed, both studies were cross-sectional 
and recruited participants of different ages, from childhood to 
adulthood. Findings from these works consistently indicated 
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abnormal developmental trajectories of functional connectivity. 
Specifically, Padmanabhan et al. (56) found an increase of con-
nectivity over development between cerebellar and subcortical 
regions (i.e., the striatum nucleus) in people with ASD, but a 
decrease in healthy controls. Dajani and Uddin (60) used regional 
homogeneity (ReHo) analysis to individuate local patterns of con-
nectivity within the cerebellum. The authors were able to describe 
an age-specific pattern of short-range connectivity in ASD, with 
children and adults having lower ReHo in the cerebellum than 
controls, while adolescents exhibited an increased cerebellar local 
connectivity.

In respect to the relationship between functional connectivity 
and ASD features, findings from the study analyzed here are not 
entirely consistent. Indeed, no links between connectivity and 
“gold standard” clinical measures of ASD were observed (56, 58), 
although reduced connectivity seem to be accompanied by an 
increase in the severity of the disorder (57, 60), as assessed by the 
Social Communication Questionnaire [SCQ, Ref. (61)]. Lastly, 
lower values of connectivity between cerebellum and supramodal 
“cognitive” areas have been observed to be linked to higher non-
verbal IQ (58).

SUMMARY AnD FUTURe DiReCTiOnS

In the present work, we aimed to provide an up-to-date overview 
of current findings on cortico-cerebellar connectivity in ASD. 
This issue represents an emerging field of interest for ASD 
research, following the hypothesis that ASD is a connectivity 
disorder associated with cerebellar dysfunctions. The cerebel-
lum has been recently indicated as a key structure not only 
for sensory-motor control, but also for language, social cogni-
tion, and emotion, via its extensive connections with cortical 
areas (33–37). Although the literature is at a very early stage 
and more work on cortico-cerebellar connectivity is urgently 
needed, some preliminary suggestions can be drawn from the 
reviewed studies. Findings from task-related imaging studies 
showed a pattern of underconnectivity between the cerebellar 
outflow pathways and the neocortex, and in long-range fronto-
cerebello-thalamo connections. Results from diffusion imaging 
studies are partly in line with these conclusions, although it is 
worth noting that this technique does not provide any direct 
measure of connectivity but is solely an index of fibers coher-
ence and integrity. Significantly reduced long-range functional 
connectivity, among cerebral and cerebellar language regions, 
was also found in a resting-state study. However, results from 
afferent fibers of the cerebellum and from other resting-state 
studies indicated more complex, or even opposite, patterns of 
findings, disallowing any firm conclusion at this time. The causes 
of this discrepancy might be various, as the studies differed in 
many important methodological aspects. As clearly shown by 
Nair et al. (62), factors such as the type of analysis, the choice 
of seed placement, and the type of dataset can have a dramatic 
impact on results of functional connectivity studies in ASD. 
Keeping this in mind, a possible theoretical explanation could 
be a concurrence of under connectivity and overconnectivity 

between cortical areas and cerebellum. This suggestion seems 
to be supported by findings from a study that, for the first time, 
explicitly assessed cortico-cerebellar connectivity in ASD (58). 
Another explication of the partly conflicting reports may be 
the developmental changes in functional connectivity (63). 
Theoretically, this opinion is based on the account of ASD as 
a “developmental disconnection syndrome,” first proposed by 
Geschwind and Levitt, and more recently, by Wang et al. (36, 64). 
Given the developmental nature of the disorder, the connectivity 
abnormalities in ASD could vary in direction and in degrees of 
alteration through different stages of development as a result of 
neural plasticity. This hypothesis has received empirical support 
from diffusion imaging studies (65), resting-state studies using 
fMRI (66), and near-infrared spectroscopy (67). Abnormal 
developmental trajectories in ASD have been also found for 
the cortico-cerebellar connectivity (56, 60), as discussed above. 
Cross-sectional and longitudinal studies are warranted to 
control for the impact of studies’ differences in age ranges of 
participants on findings. In order to better understand possible 
developmental abnormalities of cortico-cerebellum connectiv-
ity, animal models can also provide useful insights into how a 
damage in cortico-cerebellar connections at a specific age could 
result in abnormal autistic-like behaviors (68).

Another area of concern raised by the evidence reviewed 
here is the lack of a specific relationship between connectivity 
and behavioral/diagnostic measures of ASD. This might be due, 
at least in part, to the well-known heterogeneity of people with 
ASD. Thus, with respect to the aim of our work, it is not possible at 
this stage to draw a direct link between the disruption of a specific 
cerebro-cerebellar circuit and a restricted behavioral phenotype 
of patients. Future research could overcome this limitation by 
including subsets of patients defined on the basis of different 
quantifiable measures of ASD phenotype, such as motor impair-
ments, stereotyped behaviors, or language difficulties, in order 
to understand the relationship between these “proxy markers” 
of the disorder and the cortico-cerebellar connectivity. Within 
this context, more neuroimaging observations are also needed to 
localize ASD abnormalities in connectivity to specific areas of the 
cerebellum. To do this, it could be useful to couple both structural 
and functional imaging with experimental neurobehavioral para-
digms that encompass the role of the cerebellum in movement, 
language, and social cognition.
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