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Auditory-verbal hallucinations (AVHs) are frequent and disabling symptoms, which can 
be refractory to conventional psychopharmacological treatment in more than 25% of 
the cases. Recent advances in brain imaging allow for a better understanding of the 
neural underpinnings of AVHs. These findings strengthened transdiagnostic neurocog-
nitive models that characterize these frequent and disabling experiences. At the same 
time, technical improvements in real-time functional magnetic resonance imaging (fMRI) 
enabled the development of innovative and non-invasive methods with the potential 
to relieve psychiatric symptoms, such as fMRI-based neurofeedback (fMRI-NF). During 
fMRI-NF, brain activity is measured and fed back in real time to the participant in order 
to help subjects to progressively achieve voluntary control over their own neural activity. 
Precisely defining the target brain area/network(s) appears critical in fMRI-NF protocols. 
After reviewing the available neurocognitive models for AVHs, we elaborate on how 
recent findings in the field may help to develop strong a priori strategies for fMRI-NF 
target localization. The first approach relies on imaging-based “trait markers” (i.e., per-
sistent traits or vulnerability markers that can also be detected in the presymptomatic 
and remitted phases of AVHs). The goal of such strategies is to target areas that show 
aberrant activations during AVHs or are known to be involved in compensatory activation 
(or resilience processes). Brain regions, from which the NF signal is derived, can be 
based on structural MRI and neurocognitive knowledge, or functional MRI information 
collected during specific cognitive tasks. Because hallucinations are acute and intrusive 
symptoms, a second strategy focuses more on “state markers.” In this case, the signal 
of interest relies on fMRI capture of the neural networks exhibiting increased activity 
during AVHs occurrences, by means of multivariate pattern recognition methods. The 
fine-grained activity patterns concomitant to hallucinations can then be fed back to the 
patients for therapeutic purpose. Considering the potential cost necessary to implement 
fMRI-NF, proof-of-concept studies are urgently required to define the optimal strategy 
for application in patients with AVHs. This technique has the potential to establish a new 
brain imaging-guided psychotherapy for patients that do not respond to conventional 
treatments and take functional neuroimaging to therapeutic applications.
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INtRodUCtIoN

Auditory-verbal hallucinations (AVHs), i.e., hearing voices in 
the absence of appropriate external stimuli, are frequent experi-
ences in schizophrenia, with a lifetime prevalence of 60–80% 
(1, 2). AVHs are often strongly disabling symptoms, which can 
be refractory to conventional psychopharmacological treatment 
in more than 25% of the cases (3). A recent meta-analysis sup-
ports the effectiveness of cognitive–behavioral therapy (CBT) 
in the treatment of AVHs (4). However, in the specific case of 
treatment-refractory symptoms, CBT seems to have modest and 
only short-term benefits (5, 6).

In recent years, the number of brain imaging studies in the 
field of AVHs has grown substantially, leading to a better under-
standing of this subjective phenomenon (7, 8). Recent progress 
in deciphering the neural underpinnings of AVHs has strength-
ened transdiagnostic neurocognitive models that characterize 
AVHs, but, more specifically, these findings built the bases for 
new therapeutic strategies. Indeed, brain imaging now allows 
for the identification of therapeutic targets by determining the 
brain regions involved in the occurrence of AVHs. For example, 
based on findings implicating the left temporoparietal cortex in 
AVHs, repetitive Transcranial Magnetic Stimulation (rTMS), a 
non-invasive brain stimulation method, has been used to target 
this region and shown to have a significant, although moderate, 
effect in alleviating drug-resistant AVHs (9).

Recently, technical improvements in real-time functional 
magnetic resonance imaging (fMRI) have enabled the develop-
ment of fMRI-based neurofeedback (fMRI-NF) (10). During 
fMRI-NF, brain activity is measured in real time and fed back 
to the participant, usually using visual or auditory information, 
in order to facilitate voluntary control over the participant’s 
own neural activity. Considering the advances in the identifica-
tion of anatomical and functional changes linked with AVHs, 
fMRI-NF strategies constitute a promising tool, giving the 
possibility for patients to normalize their brain activity level or 
connectivity strength in the AVHs-specific brain regions, and 
thus reduce symptom severity. Precisely defining the target brain 
area/network(s) appears crucial for future fMRI-NF protocols 
designed to treat AVHs.

After briefly reviewing current literature about the neural 
basis of AVHs (mainly neurocognitive models and brain imaging 
findings) and providing an overview of how fMRI-NF can be 
used in psychiatry, the review will then elaborate on how recent 
advances in the field may help to develop strong a priori strategies 
for fMRI-NF target localization. Three different fMRI-NF strate-
gies dedicated to AVHs’ treatment will be proposed. Current 
limits, potential difficulties for patients with schizophrenia to 
benefit from fMRI-NF, as well as future directions will be criti-
cally discussed.

WhAt Is fMRI-NeURoFeedBACK?

fMRI-Neurofeedback: Principles
Neurofeedback is a non-invasive technique enabling partici-
pants to achieve voluntary control over the neuronal activity of 
one or more brain regions [for a recent review on the technique, 

see Ref. (11)]. In the case of fMRI-NF, this is accomplished by 
deriving and presenting blood oxygen level-dependent (BOLD) 
signal derived from the target brain area(s) to the subject in real 
time (12). Visual feedback is primarily used, but neurofeedback 
derived from other or combination of different modalities is also 
possible. Visual feedback can be presented in various formats: 
from a thermometer display to more complex interfaces [e.g., 
social feedback Ref. (13)]. The participants use this feedback 
to self-regulate their neuronal response or adjust their cogni-
tive strategy, during the experimental task in real time (see 
Figure 1A). They must be informed in detail(s) of the hemody-
namic delay of 4 or 5 s (due to the BOLD response) to update 
the neurofeedback signal. The general experimental design of an 
fMRI-NF protocol is described in Figure 1B. This technique is 
currently being used in cognitive modification (14) and clinical 
trials (15).

fMRI-Neurofeedback in Psychiatry
fMRI-based neurofeedback could be a useful tool in psychiatry. 
Numerous studies have shown the benefits of fMRI-NF to relieve 
non-psychiatric clinical symptoms. Haller et  al. demonstrated 
therapeutic effects of fMRI-NF (focusing on downregulation 
of auditory cortex) in the treatment of chronic tinnitus (16). 
deCharms et  al. also published promising results for the man-
agement of chronic pain (17), although these results failed to be 
replicated (12).

Furthermore, recent progress in the field of brain imaging 
has allowed the identification of functional changes associated 
with a range of psychiatric symptoms (18). Because fMRI-NF 
can potentially be used to normalize the activity level of specific 
brain regions (which should be a key issue in new treatments), 
fMRI-NF could offer a new interesting way to treat mental health 
symptoms (19). To date, promising positive results have been 
already demonstrated in major depressive disorder (15, 20) and 
addiction (21–23).

Why Using fMRI-Neurofeedback for 
Auditory-Verbal hallucinations in 
schizophrenia?
In a paper published in 2012, McCarthy-Jones stressed the poten-
tial interests of developing neurofeedback as a new treatment of 
AVHs (24). In the past decade, significant progress in identifying 
the neural underpinning of AVHs has been made. This knowledge 
can inform on a target region for fMRI-NF.

To date, only a few studies reporting the use of neurofeedback 
in patients with schizophrenia have been published. Most of these 
studies used electroencephalogram (EEG)-based neurofeedback 
(the principle is the same as fMRI-NF, but the brain activity is 
measured with EEG) [e.g., Ref. (25–27), with one current study 
running a trial for the treatment of AVHs (28)]. Two studies have 
used fMRI-NF in patients with schizophrenia. Ruiz et al. dem-
onstrated that patients with schizophrenia (n = 9) were able to 
achieve voluntary control of bilateral anterior insula cortex using 
an fMRI-NF protocol (29). Participants completed four training 
sessions spread over 2  weeks. Each training session comprised 
three runs of self-regulation training. Each run consisted of six 
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FIGURe 1 | the principles of fMRI-neurofeedback. (A) Diagram of an fMRI-based neurofeedback system. (B) The neurofeedback training in fMRI-
neurofeedback protocols.
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upregulation and seven baseline blocks (30 s blocks). Patients were 
instructed that the recall of emotionally relevant past experiences 
combined with the feedback could enable them to control the 
thermometer bars. No specific emotional cues or recall strategies 
were given. The gain in the voluntary control was associated with 
behavioral changes assessed on a facial emotion recognition task 
(i.e., patients recognized disgust faces more accurately and happy 
faces less accurately after the fMRI-NF training). Furthermore, 
the training was associated with an increase in the number of 
the incoming and outgoing effective connections in the anterior 
insula. This proof-of-concept study demonstrates that patients 
with schizophrenia can not only benefit from fMRI-NF and 
learn volitional brain regulation but also find that such learning 
is accompanied with behavioral changes and neurophysiological 
changes in the underlying brain network (29). More recently, 
Cordes et al. showed that patients with schizophrenia (n = 11) 
were also able to learn to control the activity of their anterior 
cingulate cortex (ACC) (30). Here, three fMRI-NF training ses-
sions were completed in 1 week. Each session included three runs 
consisting of eight regulation and nine baseline blocks lasting 30 s 
each. During the fMRI-NF session, the participants were asked to 
upregulate the signal using individual mental strategies. However, 
some template strategies from different cognitive domains were 
given: positive autobiographic memories, picturing oneself doing 

sports or playing an instrument, and concentration on given per-
ceptions like feeling the temperature of one’s own left foot. The 
results demonstrated that both patients with schizophrenia and 
healthy controls were able to develop control abilities. However, 
they used different neural strategies: patients activated more 
of the dorsal and healthy controls activated more of the rostral 
subdivision of ACC. They also used different mental strategies: 
patients mainly imagined of music, whereas healthy controls used 
more imagined sports.

In summary, evidence suggests that patients with schizophre-
nia are able to learn voluntary control over their brain in spite of 
their pathology. All of this makes the fMRI-NF a promising tool 
to tackle frequent and disabling symptoms in this population, 
such as AVHs.

WhAt do We KNoW ABoUt the 
NeURAL BAsIs oF AUdItoRY-VeRBAL 
hALLUCINAtIoNs?

Neurocognitive Models
Phonologically, AVHs are heterogeneous in form and content (31). 
They vary from acousmas (primitive sounds, such as blowing, 
shooting), utterances, or simple words to full conversations, with 
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defined characteristics such as pitch, volume, and accent. They 
might consist of a single voice or a collection of voices that speak 
the individual’s thought aloud, issuing commands and instruc-
tions, or provide a running commentary on the person’s behavior. 
The voices might be familiar or unknown (32). They often carry 
power, authority (33), and a negative quality [e.g., Ref. (2, 34)], 
and persons experiencing them often feel that they have no or 
little control over their AVHs (2).

From a neurocognitive perspective, hallucinations are errone-
ous perceptions or sensory deceptions without the presence of 
external stimuli and have been attributed to erroneous integration 
of sensory and cognitive processes (35) that may influence con-
scious perception (36). Brain regions that have been implicated 
in the experience of AVHs include the auditory cortex and the 
ventral attentional system that spontaneously orientates attention 
toward an incoming stimulus (37, 38).

A number of neurocognitive models have been proposed to 
account for heterogenic phenomenology of AVHs (39).1 The 
current models are based on research findings that illustrate the 
following contributing factors to the experience of AVHs. These 
are AVHs have clear perceptual qualities, AVHs are internally 
generated but are not attributed to an internal source, those 
experiencing AVHs have a reduced sense of control over the 
onset, content, and frequency of AVHs, and AVHs often carry an 
emotional component.

Externalization, or lack of agency, was explained by a model 
proposed by Frith (40), which postulated the breakdown in a 
physiological process known as self-monitoring. This model is 
based on the assumption that in patients with schizophrenia, 
inner speech and/thoughts fail to be recognized as self-generated 
due to a self-monitoring deficit; reflecting a dysfunction of the 
efference copy or corollary discharge mechanism that accompa-
nies a motor action, such as speech or movement (41, 42).

In those experiencing hallucinations, the efference copy 
of inner speech does not produce a corollary discharge of the 
expected experience. Consequently, this failure in the corollary 
discharge mechanism can produce confusion regarding the 
agency between one’s own thoughts and externally generated 
voice, potentially resulting in an external attribution of the 
experience and the experience of AVHs. At a neuronal level, this 
may result in greater activity in the auditory cortex when self-
generated speech or inner speech is produced (42, 43).

At a behavioral level, it has been shown that patients with 
schizophrenia and AVHs exhibit difficulty in identifying self-
generated information (44–46). However, models based on the 
misattribution of inner speech do easily account for observed 
phenomenology of AVH (47, 48) and there is no evidence that the 
cancelation or suppression of reafference indicates the source of a 
sensory event: zero signal is not the same as self-generation (49).

Another early model postulates a deficit in source monitoring 
or reality testing (50). Source monitoring is a meta-cognitive 
(thinking about thinking) process that enables us to make attri-
butions as to origins of beliefs and thoughts in order to form a 

1 Belzeaux R, Cermolacce M, Jardri R. Hallucinations: toward a dialogue between 
phenomenology and brain imaging research. J Conscious Stud (Forthcoming). 

cohesive representation of an experience (50). Bentall et al. sug-
gested that patients with schizophrenia have deficits in discrimi-
nating between external (real) and internal (imagined) events, 
accompanied with a specific externalization bias. For example, 
it has been demonstrated that patients with schizophrenia and 
AVHs were more prone to misattribute self-generated items to 
other sources (51). Further, the experience of AVHs has also been 
related to deficits in reality testing. Based on signal detection 
theory (SDT), it was suggested that patients with schizophrenia 
and AVHs show a shift in the decision criterion (the point at which 
a person decides they perceive a stimulus) (52). SDT proposes 
that detection of a stimulus is based on two premises: perceptual 
sensitivity – the general efficiency of the perceptual system and 
response bias – the subjective decision criteria to deciding that a 
perceived event is a stimulus. For example, patients with schizo-
phrenia and AVHs demonstrate higher perceptual sensitivity to 
detecting words or sounds embedded in white noise, as compared 
to non-hallucinating patients, but lower sensitivity compared to 
healthy controls (53). Further, patients with current AVHs also 
demonstrate a response bias, i.e., indicated that they were certain 
that a stimulus was presented, even when it was absent, suggest-
ing that the perception/signal detection is unimpaired in patients 
with AVHs, but there is uncertainty in the signal recognition. This 
uncertainty, accompanied by a misattribution bias and source/
reality monitoring deficits, perpetuates the attribution of thoughts 
to an external source. This may result in perceptual hypervigilance 
(54, 55) in responding to biases and lead to (strong) consolidation 
of such responses with time (56).

Substantial evidence supports the link between AVH and self-, 
source, and reality monitoring and has been provided over the 
last two decades (56, 57). Nonetheless, these early models alone 
cannot account for the presence of AVHs, as they fail to account 
for certain aspects of their phenomenology. AVHs are often 
experienced in the second and third person, they may consist of 
multiple voices that are not the voice of the experiencer, and the 
experiencers often converse with the AVHs (45, 49).

More recently, a number of models have been developed in 
order to incorporate the complex phenomenology of AVHs, by 
integrating the available neurophysiological data and adapting 
the predictive processing framework (PPF). For example, Allen 
et al. (35) proposed a neuroanatomical model founded upon a 
network of brain areas involved in both cognitive and perceptual 
processing; suggesting that hyperactivation of perceptual regions, 
including the primary and secondary auditory cortices evident 
during AVHs (38, 49, 58, 59), and in related speech and language 
areas (43, 58, 60). On the other hand, Wilkinson (61), adopted 
the PPF [e.g., Ref. (62)] to account for the phenomenology of 
AVH. In the framework of PPF, neuronal systems have evolved 
to predict statistical regularities in the environment based on 
prior experiences (63). Through successfully encoding predic-
tions in an accurate manner, they minimize prediction errors 
or deviations from these predictions, and these are seen as the 
neural systems demonstrating an attenuated response to these 
predictable events; permitting the serial updating of prediction 
to create a picture of the external world. This creates a dynamic 
internal model that can impact on neuronal activity in sensory 
systems, increasing activity to unpredicted events through a 
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failure of this predictive mechanism, with consequent alterations 
in subjective perception and elaboration into delusional belief 
formation (64).

Finally, these recent models suggest a number of cortical and 
subcortical brain networks involved in the experience of AVH 
and that verbal hallucinations involve hyperactivity in secondary 
and primary auditory cortex, accompanied by disrupted coupling 
with the cognitive processes associated with monitoring/reality 
testing.

Neuroimaging studies
Structural Brain Imaging
Structural imaging studies (i.e., studies investigating the brain 
morphology) have identified subtle but robust reductions in the 
gray matter volume (GMV) in patients with AVHs, particularly 
in areas involved in speech and language. Altered GMV in 
the superior temporal gyrus (STG) has been highlighted by 
both priori-defined region of interest (ROI) analyses (65) and 
voxel-based morphometry studies (66). Modinos et  al. dem-
onstrated that AVHs severity was significantly associated with 
GMV reduction in the left STG, including the Heschl’s gyrus. 
Structural changes have also been identified in Broca’s area and 
its homotopic contralateral area (67) and the primary auditory 
cortex (Heschl’s gyrus) (68). In addition to reductions in GMV in 
language regions, numerous studies have reported modifications 
in other brain areas, such as temporal and frontal regions (69), 
insular cortex (70, 71), thalamus (72), and cerebellum (73).

In addition to these quantitative analyses, structural imaging 
also provides complementary qualitative measures of the cortical 
morphology, such as the shape of sulci and gyri (74). Indeed, 
gyrification is considered an indirect marker of brain develop-
ment since cortical folding (i.e., gyrification and sulcation) 
begins in the tenth week of gestation and stabilizes by the end of 
the third trimester of pregnancy. The resulting complex sulcal/
gyral patterns are then stable over life (75). Studying changes in 
cortical morphology associated with AVHs provides a novel way 
to assess the impact of developmental factors on this symptom 
(76). Significant reductions in the gyrification of language-related 
areas (e.g., the superior temporal ridges, the left middle frontal 
sulcus, Broca’s area) have been identified in chronic schizophre-
nia patients with AVHs when compared with healthy controls 
(77). The phenomenology of AVHs has also been associated with 
morphological changes within the language network. Indeed, 
the spatial location of AVHs (as internal or external percepts) 
has been associated with specific sulcal deviations in the right 
temporoparietal junction (78).

Functional Brain Imaging
Functional brain imaging studies in patients with AVHs have 
provided information about the neural bases of the susceptibility 
to hallucinate (trait studies), and neural activation that is seen 
during AVHs (state studies).

Trait Studies
Trait studies measure brain activity during specific tasks in patients 
who hallucinate and those who do not. Inquiring afterward for 

the absence of AVHs while scanning is necessary to avoid any 
“state” factor to interfere with this type of paradigm.

Trait studies have revealed altered functional activity in the 
temporal lobes of patients with AVHs (8, 79). Altered activation is 
thought to emerge from a competition between AVHs and normal 
external speech for processing sites within the temporal cortex 
(80). Similarly designed studies have identified a decrease in the 
functional activity of the rostral dorsal ACC, a structure known to 
be involved in the allocation of an internal or external origin for a 
given stimulus (81, 82). These results are not only compatible with 
the misattribution models of AVHs (see Neurocognitive Models) 
but also with recent structural data (83).

State Studies
Functional brain imaging suggests that a distributed network 
of brain regions underlies the experience of AVHs (84). Speech 
production and comprehension areas have been shown to be 
involved, but in addition to this network, brain areas involved 
in contextual memory seem to play a role in AVHs. This was 
notably revealed by a coordinate-based meta-analysis of AVHs 
capture studies, which demonstrated increased activity in Broca’s 
and Wernicke’s areas, and also in the hippocampal complex (84), 
suggesting that hallucinations could result from the aberrant 
activation of memory traces within associative cortices (85, 86). 
Although it is still a subject of debate, the activation of the 
primary auditory cortex does not appear to be necessary for the 
occurrence of AVHs. Nonetheless, its activation could be related 
to specific phenomenological aspects of the hallucinatory experi-
ence, such as the feeling of reality (87).

Connectivity Studies
Brain connectivity can be studied using three different 
approaches: functional connectivity, effective connectivity, 
and structural connectivity (88). Functional connectivity relies 
on correlation measures between spatially distant brain areas 
without information on the directionality or causality of the 
interaction. In contrast, effective connectivity explores the direct 
influence of one brain region on another, and thus provides 
information regarding the causal relationship between brain 
areas in a given network. Finally, structural connectivity is 
the measure of white matter tracts connecting different brain 
regions, based on diffusion MRI and tractography algorithms. 
Many connectivity studies have confirmed the dysconnectivity 
hypothesis in schizophrenia patients and in particular those who 
report hallucinations. Indeed, abnormal connectivity between 
brain regions has been shown at rest [for review, see Ref. (89, 90)] 
and during verbal tasks by functional and effective connectivity 
studies (91, 92). This dysconnectivity appears to play a major 
role in the emergence of hallucinations but was also found to 
change according to the sensory-modality involved (93, 94). 
Diffusion MRI studies comparing patients with schizophrenia 
who experience hallucinations, non-hallucinating patients with 
schizophrenia, and healthy controls have found differences in 
the coherence of the white matter bundles connecting language 
areas (68, 95, 96). This finding was particularly noteworthy in the 
arcuate fasciculus (97).
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WhAt stRAteGY to ReLIeVe  
AUdItoRY-VeRBAL hALLUCINAtIoNs 
WIth fMRI-NeURoFeedBACK?

In this section, we propose three different fMRI-NF strategies 
dedicated to AVHs’ treatment on which our teams are currently 
working on (see Figure 2). We focus on the localization of the 
target and the type of feedback used for each strategy.

strategy 1: A Priori target Localized  
Using structural MRI
Method Used to Localize the  
fMRI-Neurofeedback Target
During fMRI-NF protocols, the brain region(s) from which the 
NF signal is derived can be informed anatomically using struc-
tural MRI data and brain atlases (e.g., Talairach and Tournoux 
coordinates) or according to macroscopic anatomical landmarks. 
This method is the easiest to implement methodologically but 
assumes a good understanding of the underlying neural mecha-
nisms and their anatomical location. The goal is to regulate neural 

activity in areas that show aberrant activations during AVHs (e.g., 
Broca’s and Wernicke’s areas) or to regulate activity in regions 
thought to be involved in compensatory or resilience processes 
(e.g., ACC). Below, we present an fMRI-NF protocol targeting the 
ACC (see Figure 2, Strategy 1).

Why Choose ACC as a Target for  
fMRI-Neurofeedback to Relieve AVHs?
Disrupted connectivity between the temporal and cingulate 
cortices has been demonstrated in schizophrenia, with AVHs 
severity correlating with the connectivity strength between the 
ACC and the STG (98, 99).

The ACC has a key role in regulating emotions, goal-directed 
behaviors, attentional processes, response selection, online source 
monitoring, and cognitive control (100, 101). Moreover, the ACC 
is involved in differentiating between self- and non-self related 
stimuli (82, 102). Furthermore, a meta-analysis of trait studies 
conducted in patients with AVHs and healthy controls revealed 
decreased ACC activity in hallucinators (79). This finding is in 
line with cognitive models of AVHs (30, 87).
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A number of studies have demonstrated that the ACC can 
be reliably regulated using fMRI-based NF (13, 17, 103–106). 
Moreover, the successful upregulation of the rostral ACC was 
associated with an increase in positive affect (103, 106) and 
improved emotional perception of voices in healthy subjects (103).

Even though the theoretical accounts differ in the different 
studies (see Neurocognitive Models), they all assume a failure of 
typical ACC functions. The monitoring of inner speech processes, 
the monitoring of retrieval processes and error detection, as well 
as the suppression of task-irrelevant stimuli are all classical ACC 
functions that should be fostered by an upregulation of the ACC 
(107, 108). However, two previous studies report increased 
ACC activation during hallucinations (58, 109). It is possible 
that increased ACC activation may be related to default-mode 
fluctuations, considering simultaneous deactivations of auditory 
cortex and Wernicke’s area in the former study and resting-state 
activations without baseline subtraction in the latter study.

The fMRI-Neurofeedback Protocol
First, an anatomically predefined ACC mask is applied. From 
this ROI, the average signal is fed back on a thermometer-like 
display after filtering and artifact reduction. A custom anatomical 
template mask of the ACC defines the ROI [details in Ref. (110)]. 
This ACC mask is taken as a part of the cingulate cortex excluding 
parts inferior or posterior to the anterior fissure. The feedback 
signal is the average BOLD signal across this ACC mask for each 
volume with 1% representing the full scale. A custom toolbox 
conducts online processing comprising motion correction and 
co-registration to a template (111). Kalman filter reduces singular 
values and high-frequency components. An exponential moving 
average algorithm removes temporal drifts.

The patient performs three fMRI-NF training runs, each 
consisting of eight regulation blocks and nine baseline blocks 
(30 s each; see exemplary run in Figure 2). Increase of ACC signal 
makes a green bar moving upwards and decreasing downwards 
[Ref. (30)]. A fixed red bar in the regulation condition serves as 
a regulation target. It indicates the upper limit of ACC upregula-
tion. The baseline condition is indicated by a blue line display. 
Mental strategies should be tried to move the green line upwards 
to the red line. During the baseline blocks, the patient counts 
backwards from 100. Every repetition time (TR; 1 s), the display 
is updated. The NF procedure is explained to subjects, including 
the delay of the NF signal for 3–5  s due to the hemodynamic 
response and data processing (<1 s).

Preliminary Data
Patients with schizophrenia can learn to regulate the ACC to a 
comparable level than healthy controls, albeit involving different 
networks and cognitive strategies (30). Moreover, a recent article 
involving three schizophrenia patients suggests that even with 
ongoing AVHs, patients are able to learn ACC regulation (110). In 
this work, patients seemed to be very interested in the methodol-
ogy and were eager to learn. Since the target groups were patients 
with long-standing symptoms, a core preposition was a good 
patient–therapist relationship and only limited impairments in 
cognitive functions. RWTH Aachen University is just performing 

a clinical trial study investigating the effect of fMRI-NF training 
in schizophrenia patients with ongoing AVHs.

Previous fMRI-NF studies have demonstrated that upregu-
lation of a single area can elicit alterations of functional and 
effective connectivity (112, 113). Further studies may elucidate 
whether ACC upregulation also induces changes of the network 
dynamics. In the long term, it may be even more effective if fMRI-
NF could target several regions aiming to regulate the functional 
connectivity between these regions. This would allow fMRI-NF to 
address the neural dysconnectivity that is proposed to underpin 
AVHs (114). This approach would also enable the regulation of 
connectivity and activity with the salience network, also proposed 
to be dysfunctional in people with AVHs (115–117).

strategy 2: Region of Interest defined 
Using a Functional Localizer
Method Used to Localize the  
fMRI-Neurofeedback Target
The target chosen for fMRI-NF can also be functionally defined. 
In this case, the patient is asked to undertake a functional task 
within the scanner, and activated areas are then used as the 
ROI(s) for fMRI-NF. The choice in the “functional localizer” task 
should be based on an a priori hypothesis that is well validated 
in previous studies.

Why Use a Functional Localizer for  
fMRI-Neurofeedback to Relieve AVHs?
As already mentioned, in schizophrenia, both state and trait 
brain imaging studies have revealed aberrant neural activation 
in patients with AVHs. Resting-state or “non-task” studies 
suggest that several speech-related areas are linked with such 
experiences, as well as the ACC and the hippocampal complex 
(see What Do We Know about the Neural Basis of Auditory-
Verbal Hallucinations?). Similarly, task-related paradigms have 
identified frontotemporal dysconnectivity in patients with AVHs, 
specifically between the left STG and the dorsal ACC (99) and the 
medial prefrontal cortex (118), regions thought to be involved in 
self-other source monitoring. Disruption of these mechanisms 
is consistent with cognitive models that postulate aberrant 
bottom-up and top-down processes in AVHs.

Any of these regions could potentially be defined as a target 
to create a ROI mask for fMRI-NF. However, rather than using 
a structural or anatomically defined mask, a functional localizer 
task can be used to define the ROI (119). The choice of an appro-
priate task for the functional localizer should be informed by 
previous imaging studies, i.e., studies consistently discriminating 
the target ROI from other brain activity.

For example, two meta-analyses of AVHs in schizophrenia 
demonstrated that the human voice sensitive region of the left 
and right STG is associated with the experience of AVHs (66, 79). 
Therefore, this region could serve as a potential ROI mask (see 
Figure 2, Strategy 2). The functional localizer task would need to 
be designed to specifically identify the human voice responsive 
auditory cortex [i.e., the task reported in Ref. (120)]. This could 
be obtained by running of blocks of words (activation) and non-
word speech analogs (baseline).
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The fMRI-Neurofeedback Protocol
After completing data acquisition, the effective signal change 
measured within the functional localizer tasks is analyzed with 
univariate fMRI methods, such as the general linear model. The 
difference between the average BOLD signal of the activation 
block and the baseline block should be used to create the ROI 
mask. Several programs offer tools for online analysis, e.g., the 
AFNI software (http://afni.nimh.nih.gov/afni/). Here, the mask 
is created by eyeballing the resulting 3D cluster and manually 
specifying the statistical thresholds until a cluster of the required 
size/shape is present in the target ROIs. Ideally, the cluster size 
choice should be informed by previous meta-analytic studies. The 
mask should also include a control region to serve the averaging 
out of non-specific brain activation. A randomized controlled 
trial should also include a control group utilizing a control ROI 
mask, and each participant should complete both the target and 
control ROI localizer tasks, in spite of group assignment.

A new mask ROI can be created during each scan, or a 
retrospective method can be used, whereby the mask obtained 
during the first visit is used during subsequent neurofeedback 
trainings. The retrospective method requires the alignment of 
the different time-series data obtained from different scans. Some 
MRI scanners allow the realignment of previously obtained data 
with the current images. However, if this option is not available, 
most online analysis software have inbuilt algorithms that allow 
to realigning images obtained during different scanning sessions. 
The advantage of the retrospective method is the reduction of 
scanning time and therefore participant discomfort as well as 
global costs. In addition, the ROI mask does not change shape 
or size.

In terms of the neurofeedback training, this procedure remains 
the same as during anatomically masked ROI real-time fMRI, i.e., 
feedback is provided during the entire training run but remains 
static during rest (no-regulation blocks). Similarly, participants 
need to be informed about the inherent delay in feedback due to 
the hemodynamic response and adhere to standardized instruc-
tions. To enhance motivation and the likelihood of successful 
signal downregulations, participants are instructed to devise their 
own strategy to downregulate their signal (29, 121).

strategy 3: Pattern Recognition  
Using a Multivariate Classifier
Method Used to Localize the fMRI-NF Target
The two previous strategies rely on imaging-based “trait markers” 
(i.e., persistent traits or vulnerability markers that can also be 
detected in the presymptomatic and remitted phases of mental 
disorders). The patient is trained to gain control of areas known 
to be involved in the AVHs’ pathophysiology. When using such 
a methodology, the occurrence of hallucinations in the scanner 
during neurofeedback sessions is not necessary.

However, because hallucinations are acute symptoms, notably 
characterized by intrusiveness and phasic activity, they can also be 
targeted with a different type of strategy based on “state markers” 
(i.e., which correlate with symptomatic states). Here, the objective 
is to train the subject to self-regulate the activity of brain areas 
that reactivate during symptomatic states. Machine-learning, and 

particularly the recent development of “linear Support Vector 
Machine” (lSVM), offers several advantages in this context. 
Indeed, this technique classifies functional or anatomical patterns 
using a multivariate strategy. A training session allows the optimal 
classifier to be built on the basis of a training dataset, for which 
the periods of interest (e.g., symptomatic vs. asymptomatic) have 
been identified and provided (122). A validation session is then 
needed to test the performance and possible generalization of this 
classifier to new data based on an independent sample. Several 
interesting results for diagnosis or therapeutic response predic-
tion purposes have been published, notably in bipolar disorder 
(123) or schizophrenia (124). However, this is not the only way 
to use such tools in psychiatry. Classifiers can quickly detect the 
emergence of subjective symptoms by detecting specific patterns 
of brain activity identified during symptomatic periods (see 
Figure 2, Strategy 3).

Why Use Classifiers for fMRI-NF to Relieve AVHs?
Using fMRI classifiers, it is now possible to detect the onset of 
subjective symptoms together with the associated brain activa-
tion patterns (125, 126). For example, our group developed such 
a classifier to detect AVHs occurrence while scanning a patient 
with a 71% accuracy (127). This algorithm is currently under 
optimization and already reaches 80% accuracy. Even if no data 
are currently available on the use of this kind of classifier in fMRI-
NF protocols, the fine-grained activity patterns obtained could 
theoretically be used as the signal fed back to the patient. Future 
studies should allow specifying the minimal necessary accuracy.

However, to be eligible for this strategy, the patient’s halluci-
nations must exhibit some specific features. The most important 
criterion is frequent occurrence. Indeed, the symptom must 
occur several times during the fMRI session. Moreover, data 
analysis and patient interviews must allow the identification of 
“symptomatic” and “asymptomatic” periods to build an efficient 
classifier. In our case, we chose to build a subject-independent 
classifier based on the AVHs presence or absence, determined 
with the methodology described in Ref. (87). This strategy 
presents substantial benefits compared with a subject-dependent 
pattern classification of fMRI signals, notably a considerable 
time-saving (128).

The fMRI-Neurofeedback Protocol
Unlike the two methods described above, this strategy does not 
imply a block paradigm. Indeed, the visual feedback provides an 
information in real time about the current state of the participant 
(hallucinating or not) all along the session. The visual feedback 
may be a thermometer whose signal intensity is based on the level 
of activation in the ROIs (given by the discriminative maps of 
the classifier). But, other possibilities emerged from recent work 
on AVHs. Our team recently proposed a method to distinguish 
between the different periods in the occurrence of AVHs (117). 
Even if we are at a very preliminary stage, this could theoreti-
cally allow for the implementation of a multi-classifier strategy 
with the possibility to discriminate multiple “brain-states” as, in 
our case, (i) “No hallucination” (“Off ” period on Figure 2), (ii) 
“Transition” (“Trans” period on Figure 2; i.e., period immediately 
preceding the AVHs occurrence), (iii) “Hallucination” (“On” 
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period on Figure 2), and (iv) “End” (“End” period on Figure 2; 
i.e., period immediately following the AVHs occurrence). This 
technique can provide a feedback indicating which “brain-state” 
is identified. For example (as presented in Figure 2), a four-part 
diagram presenting the four brain-states can be used. If the 
“hallucination” period or “transition” period is identified, the 
participant must adapt his/her mental strategy to go back to 
“end” or “no hallucination” periods. This kind of feedback could 
also be combined with a thermometer display (to provide both a 
continuous and a discrete variable to the subject).

LIMIts ANd FUtURe dIReCtIoNs

fMRI-Neurofeedback  
experimental designs
The most obvious limitation of the available studies testing fMRI-
NF protocols are their small sample sizes, making generalization 
difficult. For AVHs, no study assessing the efficacy of fMRI-NF is 
currently available. Nevertheless, the improved understanding of 
the neural underpinnings of AVHs seen in recent years and the 
preliminary results presented here should inform future studies.

The gold-standard to assess new treatments is the double-
blind, randomized controlled trial design. However, a major 
issue in fMRI-NF protocols is to achieve complete “blindness” in 
patients, because an active collaboration is needed during the ses-
sions. This directly questions what could be an ideal control con-
dition? Four kinds of control conditions have been described in 
the literature (11) (i) mental task outside of the scanner, (ii) sham 
feedback using brain signal of interest from previous participant, 
(iii) sham feedback using inverse brain signal of interest, and 
(iv) sham feedback using brain signal from an unrelated region. 
The first solution appears unsatisfactory because patients in the 
control group are not exposed to fMRI-NF. Using a brain signal of 
interest from previous participants may generate frustration and 
retention since participants may unravel the non-contingency of 
the feedback, which would unblind them and reduce their engage-
ment with the intervention. Moreover, for patients with severe 
AVHs, this kind of feedback could increase anxiety, letting them 
think that they have no control on their neural activity. Using an 
inverse brain signal of interest is unethical in the specific case of 
AVHs treatment. Indeed, this kind of sham feedback aims to test 
if inverse brain modulation prompts opposite behavioral changes. 
As a consequence, the expected change would be a worsening 
of AVHs symptomatology. Neurofeedback from a non-interest 
region should be the “least bad” solution for a control condition in 
fMRI-NF protocols to treat AVHs. The selection of a non-interest 
region appears crucial here and could be a difficult challenge, 
given the complexity (and spread) of the brain networks involved 
in AVHs (unfortunately, no data are currently available on the 
potential non-interest ROI that could be used for protocol, testing 
the efficiency of fMRI-NF in AVHs).

Another significant challenge to adequately assess neurofeed-
back effectiveness is to develop dedicated post-session scales that 
are able to identify the specific cognitive coping strategies used 
by the patients during the session. Such individualized strategies 
could then be applied in psychotherapy, potentially leading to 

the development of neuroimaging-guided programs. A rigorous 
evaluation of the strategies used to cope with AVHs during the 
fMRI-NF sessions could then be helpful to optimize general 
hallucination-focused psychotherapy programs. We believe that 
this may constitute an interesting two-way relationship between 
conventional psychotherapy and fMRI-NF: fMRI-NF is a pre-
cious tool to optimize hallucination-focused psychotherapy 
programs, while the identification of brain changes after psy-
chotherapy allows for the identification of new neurofeedback 
targets.

Finally, testing whether brain self-regulation persists after 
the fMRI-NF protocols is a crucial issue. The “transfer session” 
(see Figure  1) may provide information about the capacity of 
participants to self-regulate the target region(s) without feedback. 
Furthermore, it will be very important to determine how long 
this capacity persists after the fMRI-NF and how long the clini-
cal improvement is maintained. To date, no formal follow-ups 
of symptoms were conducted with the patients. The question 
of the potential long-term effects of these treatments is clearly 
under-assessed in fMRI Brain–Computer Interface research in 
general (113) and no data are currently available for patients with 
schizophrenia.

fMRI-Neurofeedback Protocols
In addition to the non-invasive nature of fMRI-NF, one of its 
prominent features is to put the patient at the heart of the process. 
On one hand, the active participation of the patient in fMRI-NF 
may contribute to the reinforcement of their feeling self-efficacy 
[which constitutes an important therapeutic factor (129)]. On 
the other hand, this active nature may be source of limitations 
in schizophrenia patients with strong negative symptoms, who 
may lack motivation. Although some data seem to indicate that 
patients suffering from schizophrenia are able to achieve volun-
tary control of their own brain activity during fMRI-NF (29, 30), 
these results need to be confirmed in studies with larger samples. 
Given the importance of motivation in neurofeedback protocols, 
it seems very relevant to consider factors interfering with reward 
processing, such as negative symptoms and antipsychotic medi-
cation. The effort required by patients to undergo the fMRI-NF 
training should not be underestimated as well as the mixed 
motivation of the patients, since there often exists some positive 
aspects to the hallucinatory experiences, which the patients may 
fear losing as a result of the training. Future research will have to 
determine what the best experimental settings/instructions are 
for patients suffering from refractory AVHs together with severe 
negative symptoms.

Considering task design, the most of fMRI-NF studies 
use a block design (i.e., alternating periods of upregulation or 
downregulation with rest periods during neurofeedback runs, 
see Figure 1). However, the optimal number of blocks per run, 
the ideal duration of regulation blocks, and the best number of 
sessions to obtain a maximal efficacy in the treatment of AVHs 
remain unknown. Future research should determine if patients 
suffering from schizophrenia (particularly those who exhibit 
severe cognitive impairment) may benefit from special arrange-
ments in fMRI-NF protocols to minimize the attention span and 
the tiredness.
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Informal reassessments during clinical visits that were 
 conducted during the pilot study of the currently ongoing study 
with schizophrenia patients with AVHs (see above) revealed 
that none of the patients reported adverse events, and two of 
the patients claimed to have developed different strategies in 
dealing with their AVHs up to few weeks after the training (110). 
However, during contact and assessment occurring more than a 
month after the training, none of the patients had the impression 
that fMRI-NF training had had any influence on their symptoms. 
Individual variability and fluctuation in the disease course may 
override the – so far rather small – effects of the fMRI-NF train-
ing. This may change with better targeted fMRI-NF protocols. 
However, based on clinical impressions, we would suggest that 
at least monthly booster session would be advisable for clinical 
trials.

From a methodological point of view, uncertainty lies also 
about the instructions to be given before the session. It remains 
unknown if explicit (the participant is asked to use specific mental 
strategies for self-regulation) or implicit (the participant is only 
asked to upregulate or downregulate with the feedback provided) 
instructions should be preferred. Implicit instructions are ideal 
in general population, because they favor the development of 
individualized strategies to achieve voluntary control of the target 
region(s). However, the identification of an optimal strategy may 
be difficult for patients with severe AVHs, which could lead to 
a rapid decline in motivation. That is why providing specific 
explicit strategies could be useful to enhance the efficacy of fMRI-
NF to treat AVHs. Strategies inspired from CBT could allow the 
participant for achieving voluntary control more quickly.

Finally, considering the definition of the fMRI-NF target, 
many other neural networks may serve as target for the fMRI-NF 

training. Interestingly, one of the most robust effects of  fMRI-NF 
training seems to be changes in connectivity [e.g., Ref. (112, 130)]. 
Indeed, the first fMRI-NF studies attempt to train network con-
nectivity directly (131, 132). Considering the importance of net-
work function on the AVHs phenotype, connectivity fMRI-NF 
will be one of the next targets for treatment approaches to AVHs.

CoNCLUsIoN

Although a number of studies are currently investigating the 
efficacy of fMRI-NF for AVH, as for today, efficiency data from 
randomized controlled trials are lacking (11). In this paper, we 
focused on specific fMRI-NF strategies to treat AVHs and selected 
three of them that appear most feasible, emphasizing the need 
for preliminary studies. Indeed, considering the potential cost 
necessary to implement fMRI-NF, proof-of-concept studies are 
urgently required to define the optimal strategy for application in 
patients with AVHs. This technique has the potential to establish 
a new brain imaging-guided psychotherapy for patients that 
do not respond to conventional treatments and take functional 
neuroimaging to therapeutic applications.
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