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Schizophrenia has long been considered one of the most intractable psychiatric condi-
tions. Its etiology is likely polygenic, and its symptoms are hypothesized to result from 
complex aberrations in network-level neuronal activity. While easily identifiable by psychi-
atrists based on clear behavioral signs, the biological substrate of the disease remains 
poorly understood. Here, we discuss current trends and key concepts in the theoretical 
framework surrounding schizophrenia and critically discuss network approaches applied 
to neuroimaging data that can illuminate the correlates of the illness. We first consider 
a theoretical framework encompassing basic principles of brain function ranging from  
neural units toward perspectives of network function. Next, we outline the strengths
and limitations of several fMRI-based analytic methodologies for assessing in vivo brain 
network function, including undirected and directed functional connectivity and effective 
connectivity. The underlying assumptions of each approach for modeling fMRI data are 
treated in some quantitative detail, allowing for assessment of the utility of each for
generating inferences about brain networks relevant to schizophrenia. fMRI and the
analyses of fMRI signals provide a limited, yet vibrant platform from which to test specific 
hypotheses about brain network dysfunction in schizophrenia. Carefully considered and 
applied connectivity measures have the power to illuminate loss or change of function at 
the network level, thus providing insight into the underlying neurobiology which gives rise 
to the emergent symptoms seen in the altered cognition and behavior of schizophrenia 
patients.
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iNTRODUCTiON

Schizophrenia is the consummate “epigenetic puzzle” (1). Psychiatrists, for the most part, know 
it when they see it in the clinic (2), yet its biological origins are utterly obscure, given that its 
etiology and genetic bases are poorly understood. We seem to know much but understand very 
little (3). Scientists have settled on the view that schizophrenia is a polygenic disorder (4, 5) 
where multiple genes (that themselves exert pleotropic effects) confer vulnerability, but wherein 
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the frank symptoms of the disorder themselves emerge from a 
complex (and plausibly in-deterministic) genetic-development-
environmental interplay (6–9).

Lack of understanding of causative pathways (in addition 
to other factors such as phenotypic heterogeneity) is a limiting 
constraint on efforts at prevention, early intervention, and/or 
treatment of schizophrenia (10). Yet, as is evident in other fields 
of medicine (most notably cardiology and oncology), successful 
medical treatment and management does not necessarily depend 
on identifying deterministic causal pathways toward disease. 
Rather, understanding of vulnerability measures is sufficient, as 
long as there is a clear characterization of the pathophysiologic 
mechanisms underlying the disease. A grasp of basic biological 
mechanisms drives the development of targeted therapies while 
simultaneously providing objective biomarkers that can inform 
treatment efficacy (11, 12). Psychiatry has long been criticized 
for focusing on emergent effects of disease, while having an insuf-
ficient focus on understanding mechanisms of disease. As a result, 
many emergent effects are insufficiently constrained by analytic 
approaches designed to explicitly characterize mechanisms. The 
argument is that these limitations essentially limit nosology and 
treatment (13). Here, we reiterate the widely held view that the 
mechanisms of diseases like schizophrenia will most profitably 
be understood by focusing on, to put it simply, how the brain is 
“not working.” More pertinently, we accept the position that the 
current state of acquiring and modeling brain signals suggests 
that brain–behavior relationships may best be understood from 
the position of macroscopic brain network interactions (14), a 
scale that may most proximately map cognitive and sensorimo-
tor function to its underlying correlates. We are aligned with the 
position that these investigations are a matter of discovery, and 
subscribe to the distinction between “true” models of brain func-
tion (whatever those may be) and “likely” models of brain func-
tion (15), where the former are theoretical constructs, whereas 
the latter are empirically discoverable from neuroimaging data. 
We will assert that these ontological subtleties are of direct (and 
not merely academic) relevance to the study of schizophrenia: if 
understanding brain mechanisms subserving normal function is 
a process of discovery, by corollary, understanding these in the 
context of schizophrenia is also a process of discovery. Moreover, 
this process is constrained by quantitative models, and the 
assumptions therein, that are applied to any class of neuroimaging 
data. Thus, understanding disconnection in schizophrenia is an 
inference, and the class of models applied will provide constraints 
on the type of inference that can be drawn (16).

What follows is a compendium of previously advanced ideas 
motivating schizophrenia as a syndrome of functional discon-
nection, or more accurately, “dysconnection”: this is generally 
understood as the abnormal integration of signals across the brain 
(17). These ideas are not novel to this review and, in fact, have 
remained in place since the earliest conceptions of schizophrenia 
itself. However, over time the idea of dysconnection, once a 
general construct, has been systematically hewn to a point where 
it can be seen as having clear bases in translational neuroscience 
(18–20). We willfully restrict our scope to the approaches used in 
the analyses of functional magnetic resonance imaging (fMRI) 
signals. Thus, while much of what we review strictly extrapolates 

to fMRI studies in schizophrenia, many of the quantitative 
approaches that we review are not specific to fMRI time series 
analyses.

Much has been written about fMRI, its neurophysiological 
bases, the relative advantages of the signal, and its limitations 
for assessing brain function (21–24). Moreover, the comparative 
merits and demerits of different imaging techniques for discover-
ing connection and disconnection in the brain is a viable topic 
but beyond our scope (25, 26). As a technique, fMRI is neither 
mercurial nor worthless; rather the technique provides access to 
credible signals that under appropriate analytic constraints can 
tell us something interesting about how the brain works.

ORGAN SYSTeMS AND PHeNOTYPeS

As understood from the early origins of psychiatric taxonomy, 
the body’s only organ system of direct relevance to schizophrenia 
(and indeed all psychiatric illnesses) is the brain, and the brain’s 
functional properties were seen as the most salient in this regard 
(27, 28). Psychiatric phenotypes have always fundamentally been 
defined by behavioral abnormalities (29). If the “mind–body” 
problem is narrowly defined as the problem of understanding 
how mental states emerge from the physical states of the body 
(30, 31), then understanding pathophysiological mechanisms 
underlying schizophrenia is a special case of the mind–body 
problem. That is, if “neural” processes drive normal behavior, 
then abnormal behavior (i.e., such as those observed in schizo-
phrenia) must result from abnormal neural processes. A chal-
lenge then is to identify abnormal neural mechanisms that lie in 
a straightforward relationship with the phenotypic characteristics 
of schizophrenia itself. Given that the dialectic regarding the 
mind–body problem remains active, it is self-evident that under-
standing neural mechanisms associated with schizophrenia is a 
non-trivial problem.

The term “dysconnection” itself can be construed as having at 
least two somewhat distinct meanings. In one, the term represents 
the sense in which Blueler and Kraepelin thought of schizophre-
nia: a kind of “splitting of the mind” (32, 33). In all likelihood, 
this meaning carried only a vague relationship to neurobiological 
considerations. In his writing, Bleuler clearly related the idea to 
loss of cohesion in intellectual faculties, but the work of these 
great neurologists predated modern neuroscience, and thus they 
were not privy to the multitude of experimental methods and 
theoretical ideas available now. Indeed, in their time, understand-
ing of brain function was largely grounded in phrenological/
localizationist theories wherein the outputs of individual brain 
regions, emergent as their “functions,” were assumed to map onto 
anatomical structures in relatively direct ways (34, 35).

A second, more literal sense of dysconnection (or “disconnec-
tion” as originally proposed), is quite explicitly neurobiological: 
in this view, schizophrenia is an emergent behavioral phenotype 
resulting from profound alternations in the connectivity of the 
brain’s anatomic and functional pathways (18, 36, 37). Just as 
structural connectivity loosely constrains the brain’s functional 
architecture (38, 39), impaired anatomical connectivity most 
likely offers loose constraints on the inability of the brain in 
schizophrenia to integrate functional signals across regions in 
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both non-task and task-active states (40, 41). It has been asserted 
that normal perception and cognition rely on a cortico-cortical 
phase synchronization mechanism that operates in conjunction 
with reentry to provide context for local cortical computations 
by way of inter–areal interactions (42). This mechanism normally 
provides a balance of integration and segregation to complex 
dynamic cortical networks, and schizophrenia is likely to be 
marked by a shift toward segregation such that local cortical areas 
express their information content without benefit of the context 
normally provided by interaction with other areas (43,  44). 
A modern view of the dysconnection syndrome constitutes a 
program for neurobiological discovery and offers the promise 
for arriving at fundamental insights on brain mechanisms that 
mediate the emergence of the illness.

FROM LOCALiZATiON TO NeTwORK 
FUNCTiON: NeUROLOGY AND 
NeUROPSYCHiATRY

The localizational model was in part driven by the technolo-
gies available for collecting data from the brain. In essence, the 
model relied on systematic analyses of functional loss in patients 
with localizable neurological lesions (45). Lesion-based models 
were characterized by rudimentary system’s-based approaches 
toward brain–behavior relationships, the Wernicke-Geschwind 
model of speech comprehension and production (46) serving as 
a good example. However, their accuracy was compromised by 
impoverished data and, more fundamentally, by the untenable 
(yet implicit) assumption that brain regions existed in fairly spe-
cific one-to-one relationships with overt behavior (34). Among 
others, Wernicke and Luria should be given credit for creating a 
hybrid model that distinguishes between elementary functions 
expressed by individual brain regions and complex functions that 
are properties of distributed systems of brain areas (42). Thus, 
as we understand it now, early neurology turned out to be an 
impoverished framework for understanding both the complexi-
ties of normal brain function and the complexities of disorders 
like schizophrenia.

The “neuron theory,” largely motivated by the work of Santiago 
Ramón y Cajal (47), emerged in the late nineteenth century. The 
theory experimentally developed the idea of neurons as functional 
units, the extracellular outputs of which reflect basic properties 
of behaviors (both simple and relatively complex). The neuron 
theory has been a (perhaps the) sina qua non of modern neuro-
science. The explosion of single unit extracellular recordings has 
provided a wealth of insight into the complex response properties 
of single units and the extent of (particularly sensorimotor) func-
tion that these responses explain (48, 49). Nonetheless, theories of 
structure–function relationships based on single unit recordings 
are ultimately subject to the same ontological limitations as phre-
nology (50). Cognition and behavior (normal or pathological) are 
far too complex to reduce to single brain regions, let alone units. 
Indeed, as connectivity is a basic property of neurons (which 
connect through axons and synapses), connectivity studies are 
a natural direction for neuroscience. If anything, neurological 
models, neuron theories, and lesion studies provide evidence of 

only one of the multiple organizing principles of brain function 
at the macroscopic scale: the principle of relative specialization 
of function. This principle suggests that brain regions are more 
likely to sub serve one class of functions than another (51, 52). 
Relative specialization is a question of degree. There is little about 
the brain that is strictly “categorical.” Rather, it is more likely that 
the degree of specialization is relatively strong in sensorimotor 
or modality specific regions (“unimodal” regions), but relatively 
weak in regions involved in sensorimotor integration and “higher” 
behaviors [or “heteromodal” regions (53, 54)]. Clearly then, a dif-
ferent and parallel principle of functional brain organization is 
needed that more directly speaks to the emergence of complexity, 
and by corollary, the emergence of complex disorders of the brain.

If we treat the single neuron theory as the first revolution in 
modern neuroscience, the application of complex systems theo-
ries, and the operationalization of these analytic frameworks for 
understanding the brain must constitute the second (55). Ludwig 
von Bertalanffy’s work on general systems theory continues to 
reverberate in modern neuroscience (56) as the drive to explain 
processes in terms of interactions between the components of 
a system gains force (57). This is particularly pressing in terms 
of understanding how cognitive ontologies arise from the brain 
(39, 58). The functional integration of signals across brain regions 
presents itself as a parallel organizing principle of brain function 
(52, 59), and if complex cognitive ontologies arise from brain 
network interactions, and schizophrenia itself is in part defined 
as a “cognitive” illness (10), then it is reasonable to assert that the 
disorder results from impaired functional integration of signals 
across brain regions, i.e., brain network dysfunction.

The history of neuroscience is characterized by a synergistic 
relationship between methods and theory (60, 61). Theoretical 
advances in the neurobiology of schizophrenia have been cru-
cially driven by developments in in vivo whole brain functional 
neuroimaging, in particular fMRI. fMRI is based on complex 
hemodynamic spatiotemporal signals (62, 63) that themselves 
lie at the apex of a series of complex neuronal (and presumably 
neurochemical) processes; these processes exist in uncertain rela-
tionships with the overt fMRI signal (22, 61). Thus uncovering 
brain network function and dysfunction from fMRI time series 
data has been termed a process of “reverse engineering” and “net-
work discovery”; what must be engineered or discovered are the 
hidden states of brain function that give rise to fMRI signals (55, 
64). If understanding brain network interactions is a process of 
quantitative discovery, then understanding of what the inferred 
processes are must be grounded in quantitative models applied to 
fMRI time series data (65).

MODeLS FOR iNFeRRiNG NeTwORK 
FUNCTiON: wHAT CAN Be iNFeRReD?

Distinct classes of analytical techniques have been fruitfully 
applied to fMRI time series data (38, 66, 67), and much of what 
follows is a synthesis of published and influential reviews. Our 
goal is to selectively sample and distil for the reader quantitative 
bases of analytic methods, and reveal what they render as know-
able about brain connectivity and, by extension, dysconnectivity. 
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Ultimately, connectivity is an inference that is based in the 
quantitative models used to assess it. This inference inherits the 
advantages and limitations of the models applied to discover 
these patterns in overt fMRI signals. In understanding brain net-
work dysfunction in schizophrenia (or any psychiatric condition) 
exposure to the fundamentals of the analytic methods is a neces-
sity for understanding what is being modeled (and ultimately 
inferred).

Functional connectivity (FC) and effective connectivity (EC) 
are two broad classes of analytic methods for assessing connectiv-
ity. FC generally refers to the statistical relationship (in the time 
domain) of two spatially distinct signals. In fMRI data, these 
analyses typically constitute calculations of bivariate temporal 
correlations usually at zero-lag thus ignoring potentially useful 
information about timing relations between BOLD time series 
drawn from distinct regions of interest, wherein strongly corre-
lated or anti-correlated regions are “functionally connected” (68). 
In general, co-variations in time series signals are heavily used 
in assessing functional relations between elements of complex 
systems (69) and provide a useful though limited framework for 
network discovery. In the context of fMRI data, these methods 
have been noted for some limitations. First, they are sensitive to 
the variability of hemodynamic response functions (HRFs) across 
brain regions. Second, due to the limited temporal information in 
the signal, they generally must rely on “zero-lag” analyses, thus 
ignoring potentially useful information about timing relation-
ships between BOLD time series. Moreover, they lack functional 
transitivity, in that the techniques are insensitive to divining func-
tional relationships between regions that are correlated with a 
mediating time series (55, 70, 71). Coherence is a complementary 
measure of FC that estimates linear time–invariant relationships 
between multiple time series even at phase delays. As a spectral 
analog of bivariate correlational analyses, coherence accounts for 
phase relations in the cross-correlational function (while limited 
by the bandwidth of the hemodynamic response) (72). Finally, we 
also note the value of Wiener–Granger Causality (73), a method 
for inferring functional relationships between regions based on 
temporal predictability between time series. Granger Causality 
has also been referred to as directed FC (dFC), distinguishing it 
from undirected FC (uFC) methods that depend on correlative 
statistics (74, 75).

The standard notion of EC is that it captures the effect that 
one neuronal population exerts over another (regardless of the 
scale at which these interactions are assessed) (52). More specifi-
cally, true EC depends on capturing the relatively precise timing 
relationships between neuronal populations (76), thus depend-
ing on the applied models to capture the temporal dynamics of 
neuronal populations. Implicit within the definition of EC is 
that these techniques explicitly seek to model “causative” rela-
tions between brain regions and that they depend on generative 
network architectures of the brain. A causal relationship is both 
an ontologically different claim than simple statistical covaria-
tion, but importantly therefore also includes information about 
the direction of influences between regions (77). Moreover, EC 
entails a notion of estimated “coupling”: that is, the determina-
tion that a causal influence exists between neuronal populations 
fundamentally relies on constructing a generative model of 

that coupling. This means that understanding EC is a question 
of model comparison: what model of the brain is most likely 
to have generated the observed data, where each model itself 
constitutes a hypothesis of brain function in that context (78). 
The implicit and explicit assumptions of each approach and the 
models implemented therein exert constraints in inferences 
regarding brain network connectivity, and by extension, about 
dysconnectivity in schizophrenia. Beyond this, modeling can 
help unravel the physiological mechanisms underlying causal 
influences in the brain. That is, what is the effect exerted by the 
neurons in one brain area on those in another area. It is plausible 
that inter-regional interactions are modulatory, shaping the 
activity generated by the internal dynamics of the local area (42). 
To evaluate this hypothesis, we need to be informed by (a) the 
location on the recipient neurons of the synapses coming from 
transmitting neurons in other areas and (b) the neurophysiologi-
cal effect of inter-regional influence (e.g., how does it change the 
sub threshold membrane potential?). Moreover, model structure 
plays an important inferential role. The likely generative model 
for schizophrenia may be different than that for controls, and the 
differences in model structure may provide valuable information 
regarding the architecture of the disease (41). These issues are 
revisited later.

UNDiReCTeD FUNCTiONAL 
CONNeCTiviTY TeCHNiQUeS BASeD 
ON BivARiATe CORReLATiONAL 
APPROACHeS

Bivariate correlational approaches toward fMRI time series data 
are by far the most commonly applied measure of assessing 
temporal relationships between regions of interest. These meth-
ods make weak assumptions regarding functional transactions 
between regions, are frequently used in an exploratory manner, 
and do not provide measures of coupling in the manner of other 
techniques (see more on this aspect below) (75). Generally con-
sidered, this class of FC analysis mines statistical dependencies in 
the time domain (for fMRI data) between disparate time series. 
This approach is represented in:

 
ρ

σ σx y
x y

x y
,

,
= ( )cov

 

In this generic form, the correlation coefficient, ρx,y, of two 
independent time series x and y, is equal to the covariance of x 
and y normalized by the product of the SDs, σ, of both signals. FC 
is an emergent statistical property of inter-relationships between 
time series, such as provided by the fMRI BOLD signal. Crucially, 
FC analyses have not usually relied on biophysical models linking 
neuronal with hemodynamic responses (79), which means the 
notion of “coupling” in uFC analyses does not extend beyond 
the statistical realm. Thus, as with any emergent statistical result, 
the only “model” of function tested by uFC methods is the null 
model, that is, testing against an absence of significant correla-
tion between brain regions. As a result, these methods make 
few assumptions about temporal context, the temporal scale, or 
resolution of any putative underlying process.
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The weak assumptions relating to processes, however, also 
confer some advantages for this class of FC measures. There is 
greater statistical reliability with shorter time series than measures 
that make stronger assumptions or that require more precisely 
modeled time series (as will be seen with Granger Causality 
techniques). Moreover, weak assumptions also mean that uFC 
analyses are relatively robust to contributions of filtering or slice-
time correction applied to fMRI data that can artificially disrupt 
the fine-scale temporal structure of the signal, thus producing 
spurious causality (we discuss the relationship between temporal 
information and causal inference in detail below).

uFC TeCHNiQUeS BASeD 
ON COHeReNCe

Coherence is a complementary approach to time-domain uFC 
that has enjoyed widespread use with EEG data, but has been 
generally under-utilized for fMRI analysis, largely because lim-
ited temporal information in the fMRI signal preempts complex 
spectral analyses of fMRI signals. Coherence is a frequency-
domain measure of how well one signal linearly predicts a second 
in a time–invariant fashion. The most common approach defines 
coherence as the magnitude of the cross-spectrum of two signals, x 
and y, normalized to the power spectra of each signal. Specifically, 
magnitude squared coherence, Cohxy, at a given frequency, f, can 
be defined as

 Cohxy
xy

xx yy

f
P f

P f P f
( ) =

( )
( ) ( )

2

 

where Pxy is the cross-spectrum, and Pxx and Pyy are the power 
spectra of both signals. As with correlation, the metric is scaled 
( 0 1≤ ≤Coh fxy ( ) ), such that 0 represents no linear relationship 
between the two signals, and 1 represents the ability to perfectly 
predict one signal from the other. In order to reduce the variance 
and edge artifacts that can be introduced by windowing data 
in the time domain prior to a Fourier transform, coherence is 
often calculated using Welch’s modified periodogram averaging 
method (80). An estimation of the interregional coherence can 
then be calculated for each resulting frequency bin or averaged 
over the frequency range inhabited by the hemodynamic response 
function (HRF), typically defined as 0–0.15 Hz (70).

The time–invariant property of coherence allows the measure 
to assess relationships between time series beyond the zero-lag 
constraint. As previously noted, variations in the shape of the 
HRF along with time delays may offset the temporal progression 
of two related BOLD responses in functionally related brain 
regions. This property of fMRI signals presents a challenge for 
the sensitivity of correlation analyses, because correlations will 
decrease toward 0 as a function of increasing lag between two 
otherwise synchronized signals. For example, if two brain regions 
are co-modulated by a task, but with a time delay or with different 
hemodynamic responses, they may be synchronized with a phase 
lag. This can be generalized as the relationship between a sine 
function, sin( )t , and a second identical, but phase-shifted sine 
function, sin( )t + θ . As the phase shift, θ, progresses from 0 to 

π
2

,  

the zero-lag correlation decreases to 0, then further to −1 as θ 
approaches π. However, a linear relationship still exists between 
the two signals, and coherence between the two sine waves will 
remain at 1. In other words, coherence allows for phase shifts or 
temporal lags when scoring the FC. Thus, while both zero-lag 
correlation and coherence are able to capture the relationship 
between the signals when the phase lag is near 0 or π, lags around 
π
2

 are lost to zero-lag correlation [for more details on this method, 
see Ref. (71, 80)].

Spurious non-zero values of coherence can arise in the analysis 
of physiological time-series data simply due to the spectral prop-
erties of the signals (81). An effective method for correcting this 
bias is the use of surrogate data sets (81–83). Here, the time series 
data are shuffled, thus disrupting the phase relationships but pre-
serving the statistical distribution of the spectral content. After 
multiple iterations, the mean and SD of the surrogate results can 
be compared to the experimental results. Any values of coherence 
exceeding the 95th percentile of the surrogate data distribution 
can be considered significant.

Correlative analyses are undirected by definition  –  hence 
the label “undirected FC” above. An interpretational limita-
tion is that these methods are agnostic regarding directional 
influences between network nodes. Undirected connectivity/
coherence analyses have a different footprint in the analyses of 
electrophysiological signals where within- and inter-regional 
coherence can be assessed at multiple frequencies (84, 85), each of 
which reflect somewhat distinct functional properties of cortical 
function. The temporal resolution of fMRI data does not afford 
this luxury. Nonetheless, there has been an exuberant profusion 
of undirected FC techniques applied to the resting state fMRI. 
Combined with graph-theoretic methods, these applications have 
provided insight on network disorganization in schizophrenia 
(40, 44). A valuable extension of this work would be in under-
standing how these altered network hierarchies in schizophrenia 
are expressed in disconnection in a task-active state. However, 
such extension would require integrating multiple areas of focus, 
including within-subjects acquisition of resting and task-based 
data, and the implementation of multiple techniques for estimat-
ing connectivity (outlined herein). Nevertheless, we suspect that 
the value of uFC analyses alone in inferring disconnection in 
schizophrenia is limited. The applied statistical model for uFC is 
relatively impoverished and identifies emergent statistical prop-
erties of fMRI signals [see Ref. (16) for a more comprehensive 
treatment of these questions]. These emergent statistical proper-
ties are removed from biophysical models linking accumulative 
neuronal with hemodynamic responses (86) and therefore may 
be distant from mechanisms of brain function.

Understanding directional relations between network constit-
uents is important for multiple reasons. While various brain areas 
have reciprocal structural connections, it is highly unlikely that 
directional relations will simply reflect structural connections. 
Moreover, for a variety of reasons, structural connectivity only 
offers lose constraints on the functional integration of signals. In 
terms of functional organization, it is very likely that the direc-
tion of information flow in the brain is of critical importance for 
organizing cognitive functions and consciousness. This has been 
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demonstrated from numerous studies of connectivity in both 
EEG and fMRI (87, 88). Moreover, directional effects are also 
important in the context of brain network hierarchies (53, 54). 
Control regions of the brain, including the dorsal prefrontal 
cortex and the anterior cingulate cortex enjoy higher hierarchi-
cal status within the overall system (74, 89, 90), suggesting that 
their functional transactions are likely to be asymmetric (91). 
Capturing these asymmetries will prove highly valuable, particu-
larly in schizophrenia, which has frequently been characterized 
as a disorder of cognitive control (92–94). These considerations 
motivate quantitative FC methods that explicitly attempt to 
capture directional interactions between network constituents 
in health and schizophrenia. We next consider two directed 
FC methods, Granger Causality (73) and psychophysiological 
interaction (PPI) (95, 96).

FC TeCHNiQUeS BASeD ON 
DiReCTiONAL APPROACHeS

Psychophysiological interaction
Since its introduction in 1997, PPI has constituted a widely used 
approach to directed FC (95). PPIs are constructed by extracting 
a time series from a seed region of interest and multiplying its 
activity with a stimulus function or regressor encoding the psy-
chological context (95). This computation generates a regressor 
term that is used to capture variance in the time series of target 
voxels, as explained by the seed region, within the context of the 
task. Technically, signals that are highly predictable will produce a 
significant PPI effect but PPIs are readily distinguished from cor-
relative methods. This follows because they test for second order 
dependencies. In other words, they test for a linear dependency of 
activity in the target region on activity in the seed or source region 
that itself depends upon another (psychological) variable. It is this 
high order, or interaction, effect that breaks the symmetry and 
endows PPI analyses with a directed nature. Strictly speaking, 
one could argue that PPIs reflect a simple (GLM) model of EC. 
However, we associate a PPI analysis with the inference that there 
are statistically significant second order dependencies; namely 
the interaction. As such, we will treat PPI analyses as a form of 
directed FC (i.e., statistical dependence).

The GLM approach to assessing PPIs provides a potentially 
more nuanced framework for modeling the time series data as it 
allows the model to co-vary out confounds. This is accomplished 
via a point-wise multiplication of the seed time series with a 
stimulus function and the inclusion of various sources of noise 
in the model (96). This product time series is then the interaction 
between the BOLD time series and the psychological task – the 
eponymous PPI. The interaction time series, along with both the 
task model and HRF time series, can then be used as regressors 
in the GLM, which separates the variance in the target signal 
associated with the psychological task, the HRF, and the interac-
tion between the two signals (the psychological regressor and the 
response in the seed region). The equation below captures the 
directional bases of PPIs:

 y ay b y u cu Xi = + ×( ) + +0 0 β 

The above is readily distinguishable from the typical GLM 
applied in activation models by the presence of the asymmetric 
interaction term y u0 ×( ), in which regressing y u0 ×( ) on yi  is 
asymmetric with regressing y ui ×( ) on y0  (55).

As with all modeling of fMRI signals, PPIs constitute an 
a priori conceptual model of brain function. The implicit model 
is that contextual interactions between seeds and targets can be 
characterized within a statistical framework. In this context, the 
choice of seed and the psychological context are free parameters 
of the model, and these choices must be well motivated by prior 
knowledge regarding task characteristics and the putative net-
work profiles of the seed in an integrative network (94, 95, 97, 98). 
The simplicity of the PPI framework is advantageous as it affords 
rapid exploration of network profiles in normal and clinical 
populations (and differences between them). Nevertheless, this 
simplicity is also a limitation because comprehensive network 
interactions are rarely subsumed by pairwise interregional inter-
actions. Moreover, PPIs are not defined by biophysical models 
linking neuronal with hemodynamic responses, and therefore 
they do not provide measures of neuronal coupling, limiting their 
neurobiological interpretation (95, 96).

Granger Causality
In treating the brain as a complex system, computational 
neuroscience has successfully coopted analytic tools that were 
initiated for other disciplines, where many data properties are 
shared with fMRI data  –  particularly the idea that functional 
aspects of the system interactions are “hidden” in time series 
data. Notable examples from physics and electrical engineering 
include time-frequency analyses, graph theoretical approaches, 
and information theoretic measures. GC is a measure of directed 
FC, which has its roots in the analysis of economic data (99). 
Since its import into the field of neuroscience, GC has been used 
extensively in estimating directed connectivity relationships in 
multiple modalities of brain imaging including EEG, MEG, and 
fMRI (73). GC can, in brief, by described by:
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where, Σ1 1= Var( )tε  and Σ2 2= Var( )tε . In GC, the estimated dFC 
depends on the model order and the estimated time lag between 
modeled time points in the two signals. Accordingly, appropri-
ate specification of the time lag between different observations 
and the order or number of past observations included in the 
auto-regression model above are crucial for properly testing for 
GC influences. Generally, the appropriate time lags and model 
orders are unknown (although they can be estimated using 
procedures based upon mutual information and Bayesian model 
comparison). This means the ability of GC to make inferences 
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about FC  –  based on relatively slow dynamics  –  is potentially 
challenging [see Ref. (100, 101)]. It should be noted that correla-
tion also suffers from a dependence on time lag, and important 
correlations may be missed by over-reliance on the lag-zero value.

In general, GC evaluations may cover a range of time lags up 
to a maximum value in order to search the parameter space for 
the correct lag. This approach has been demonstrated for transfer 
entropy, an information theoretic extension of GC. Lee et al. (87) 
define the information flow between two nodes as the maximum 
normalized transfer entropy found by scanning the time delay 
parameter space. This method has been successfully applied to 
electroencephalograph data in humans (87), as well as electro-
corticograph data in rodents (102), allowing researchers to track 
changes in cortical information flow across changes in states of 
consciousness. However, given the limited temporal resolution 
of fMRI, the model order rarely extends beyond one time step.

Because GC relies on the temporal progression of time series 
to estimate causality, it is crucial that the ordering of the time 
series data remain unmodified. The convolution process used in 
finite- and infinite-response filters alters each data point based 
on both the previous data points and those succeeding it. After 
filtering, then, the value at any given time has been influenced 
not only by its past but also by its future, thus undermining the 
basic assumption of causal inferences. Convolution with a HRF 
can also affect the structure of time series, notable because as 
referred to earlier, HRFs can differ across brain regions. Several 
lines of work somewhat mitigate against these concerns. There 
is evidence that GC is invariant to HRF convolution (103), and 
as noted earlier, assessing directional asymmetries (i.e., direction 
is used as a condition of interest in the GLM) of GC coefficients 
between regional pairs can better constrain the interpretation of 
causal effects (104).

Notwithstanding the directed nature of the applied models, as 
with PPI, GC is limited by a lack of adequate bases in physiological 
underpinnings. The dynamics of interacting neural populations 
is considerably removed from the signals recorded by fMRI and 
subsequently entered into a GC calculation, and there is no extant 
physiological model to bridge it. Nevertheless with appropriately 
constrained research questions and experimental designs, GC (as 
with PPIs) provides a quantitative characterization of directional 
pairwise interactions between constituents of brain networks. 
These insights can provide meaningful perspectives on the nature 
of dysconnection in schizophrenia.

eFFeCTive CONNeCTiviTY TeCHNiQUeS

The term “effective” connectivity is the source of much confu-
sion, but can be more clearly understood from the perspective 
of interactions between constituents of a complex system. From 
a mechanistic perspective, EC has been defined as the influence 
that one neural system exerts over another (76). EC models 
thus attempt to embody dynamic and timing relationships 
between system constituents, typically using elements of control 
theory (52). Because there is no reasonable sense of a “true” and 
veridical model of brain function that can be wholly derived 
from observed data (15), EC relies on a method for evaluating 
competing model architectures for a set of network nodes, any 

of which is a plausible generator of the observed data, but have 
inherently differing likelihoods of having done so (78). This com-
petitive (and ultimately Bayesian) framework is essential for the 
process of model discovery and is largely absent from previously 
considered techniques of directed and undirected FC (though 
some elements are present in the evaluation of directional asym-
metries using GC). These motivations for divining neuronally 
plausible network-based mechanisms are by themselves insuffi-
cient unless a mapping from neuronal responses to the generated 
hemodynamic response is implemented (86). Dynamic Causal 
Modeling (DCM) incorporates a Bayesian framework for net-
work discovery while using biophysical models relating neuronal 
to hemodynamic responses.

Dynamic Causal Modeling
Dynamic causal modeling was introduced as a seminal frame-
work for discovering mechanistic brain network function from 
fMRI (and other) data (105) and has subsequently received 
significant methodological inspection of its biophysical and 
probabilistic bases, and its reliability (106, 107). In its original 
conception, DCM represented the brain as a bilinear system 
(a lower order approximation for non-linearity) in which the 
inputs are the experimental conditions and the outputs are the 
hemodynamic response measured using fMRI. Because DCM is 
explicitly interested in modeling dynamics and changes in these 
dynamics in response to inputs, elements of control theory are 
incorporated where changes in network states are modeled using 
the following state differential equation:

 
dx
dt

A u B x Cu
j
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j
j= +







+

=

( )∑
1

 

To be clear, this equation describes the dynamics of “network 
states” rather than of any physiological metrics. In other words, 
this is not an explicit physiological model. The state equation 
represents three differentiable components with large distinct 
bio-psychological extensions: here, A represents the matrix of 
endogenous coupling between brain regions. Simply speaking, 
this can be construed of as the hypothesized functional connec-
tome underlying the evaluated model. The connections within 
any model represent a hypothesis on the pattern of connectivity. 
How the model is “wired” depends on a combination of priors 
that include reliably known connective pathways and/or explicit 
hypotheses for discovering which pathways may or may not exist 
independent of task-induced experimental changes. The variable 
B( j) represents the modulatory response in the network con-
nections due to changes in experimental conditions uj. Finally, 
C represents the direct driving input on particular regions as 
induced by the experimental conditions.

Network discovery with DCM relies on the identification of 
generative network architectures with the highest evidence given 
the observed fMRI data, thus testing hypotheses on an a priori 
defined model space. Thus, the space comprises neurobiologi-
cally plausible competing models, each representing hypotheses 
on the connective-architecture of the investigated neural system 
(78, 108, 109). Therefore, rather than using traditional goodness-
of-fit metrics to assess the viability of an individual model, DCM 
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relies on evaluating these multiple neurobiologically plausible 
competing network models, wherein across competing models, 
specific network connections may be permuted, and these 
permuted connections specifically serve as hypotheses. Thus, 
across models, connections can be constrained or informed by 
known properties of neuroanatomy (110) or may be permuted 
with some agnosticism regarding the specifics of the underlying 
anatomy itself. More importantly, the method provides a plausible 
approach toward understanding how brain networks “work,” by 
incorporating principles of both relative specialization and func-
tional integration. By corollary EC methods provide a compelling 
context for understanding cases (such as schizophrenia) in which 
the brain does “not work” (111).

CHALLeNGeS FOR iNFeRRiNG 
CONNeCTiON AND DYSCONNeCTiON

Understanding causal antecedents of disease have historically 
driven the promise of successful medical intervention or pre-
emption. This concept of deterministic causality is a fundamental 
assumption in medicinal discovery and practice. Illnesses have 
causes that can be determined and addressed. These causes may 
cut across biological, environmental, and epidemiological levels 
(112), yet it is commonly assumed that the causative pathway 
is, in fact, deterministic. Moreover, many medical successes 
have benefit from the relative simplicity of the structure–func-
tion relationships within the organs of relevance. For example, 
advances in cardiac or pulmonary treatment benefit from the 
relatively straightforward relationships between the structures 
of the heart or the lung, and their expression in function. 
Unfortunately, the brain proffers no simplicity in this regard. 
Rather, its structure (to the extent that it is fully knowable) 
provides relatively light constraints on its emergent functional 
interactions, and even more indeterminacy with respect to how 
overt behavior arises. This “degeneracy” is a significant chal-
lenge to assessing the brain’s structure–function relationships 
(35) and degenerate structure–function mappings (i.e., many to 
one mappings) can also be observed in the relationship between 
functional and effective connectivity. In other words, there are 
many connectivity architectures of EC that can produce the same 
FC. We will consider an example based upon a common source 
below. Technically, this means that inferring EC from FC can be 
an ill-posed problem that necessarily calls for prior constraints 
and (abductive) inference, as we have carefully intimated in the 
Introduction.

For instance, should connectivity between two regions be 
established via a statistical model, the conclusion that the two 
regions have a direct relationship can always be undermined by 
the hypothetical existence of a third, undetected member of the 
system, though this possibility can be somewhat mitigated by 
knowledge of the anatomical connectivity structure of the areas 
under consideration (thus, region C may only be a candidate 
driver if it is anatomically known to project to regions A and B). 
Thus, a bivariate correlation between regions A and B, may be 
driven by (1) a functional or causal relationship in which A causes 
B and/or B causes A, or (2) regions A and B are both modulated 

by a third region, C, such that A and B are synchronized without 
directly interacting. If there is a different time delay between C 
and A than between C and B, this can even appear as a phase–lag 
relationship between regions A and B thus presenting as a directed 
FC relationship. However, given that methods such as GC are 
based on predictability, they can be used to establish a driving role 
for area C (113). Thus, demonstrating a directed relation based on 
any measure of predictability is superior to phase-lag measures in 
terms of what can be inferred. Nevertheless, although multivari-
ate GC can account for a third time series and its influence on the 
system, this can only be modeled when the third time series has 
been identified and is measurable. If the third node in the system is 
unknown, then contribution toward the inference of connection 
remains unknown. These limitations are a particular example of 
the general problem of causal inferences in brain networks, and as 
has been forcefully argued and extensively discussed (114, 115), 
deriving deterministic causal inferences regarding brain network 
interactions may be a fundamentally untenable exercise. Not only 
might the etiology of schizophrenia remain obscure, but even 
the inference of brain network mechanisms that might inform 
the proximate causes of the illness may suffer from fundamental 
challenges. The potential contribution of hidden or latent nodes 
is, in principle, not a problem for models of EC like DCM. This is 
because one can use Bayesian model comparison to evaluate the 
probability of a hidden common source – by comparing models 
with and without hidden nodes.

wHAT ASPeCT OF DYSCONNeCTiON iN 
SCHiZOPHReNiA CAN Be UNDeRSTOOD 
FROM THe ANALYSeS OF fMRi SiGNALS?

Figure  1 summarizes the methods visited in this overview, 
arranged in a two-dimensional conceptual space. The space 
carves out quadrants within which the methods are defined by 
their directionality (directed vs. undirected network interactions) 
and the relative “strength” of the methods (functional or effective 
connectivity), where “strength” can reasonably be construed of as 
the degree to which the parameters of connectivity models can be 
linked to biophysical processes or computation in real neuronal 
networks.

This is a parsimonious representation, yet provides a 
panoramic (and somewhat self-evident) overview of the dif-
ferent aspects of network dysfunction that can be inferred 
from each class of analytic approaches applied to fMRI 
time series data. Though we emphasize that the axes do not 
approach metric properties, we use weak ordinality to arrange 
the methods within the space to allow some contemplation 
of their strengths and weaknesses. For example, directed 
analyses may provide more interpretational value than 
undirected analyses, and EC approaches may, in principle, 
be more desirable than FC approaches. A crucial dimen-
sion not represented is tractability of implementation –  
both in terms of designing analyses and computationally 
implementing them. We note that this tractability is unevenly 
distributed within this space, yet is an issue of concern in the 
search for inferring dysfunction in schizophrenia. We also note 

http://www.frontiersin.org/Psychiatry/
http://www.frontiersin.org
http://www.frontiersin.org/Psychiatry/archive
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that the motivation for this review relates to schizophrenia, yet 
the extensions are general across psychiatric illness (though 
the networks of focus within the brain may be idiosyncratic to 
the phenotypes of interest).

Is schizophrenia itself tractable? It is unclear whether all 
aspects of the etiology of this complex condition are knowable, 
yet inferring dysconnection in schizophrenia is a special case 
of inferring brain network function. In that sense, inferring the 
dysconnection syndrome is perhaps no more or no less tractable 
than understanding how macroscopic brain network interactions 
can be related to other overt or covert behaviors. We suggest that 
if fMRI has told us anything of significant value, it is that macro-
scopic brain network dynamics expressed at the scale of seconds 
can be successfully modeled to infer aspects of brain function. 
Theory and technique now offer avenues for inference and dis-
covery that did not exist even in the recent past. The methods 
covered herein (and others) offer the prospect of inference and 
discovery that suggests the promise of significant mechanistic 
understanding of schizophrenia.
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