
January 2017 | Volume 7 | Article 2061

Mini Review
published: 03 January 2017

doi: 10.3389/fpsyt.2016.00206

Frontiers in Psychiatry | www.frontiersin.org

Edited by: 
Paul Stokes,  

King’s College London, UK

Reviewed by: 
Casimiro Cabrera Abreu,  

Queen’s University and Providence 
Care, Canada  

Gianluca Serafini,  
University of Genoa, Italy  

Nicola Kalk,  
King’s College London, UK

*Correspondence:
Ulrike Ehlert  

u.ehlert@psychologie.uzh.ch

Specialty section: 
This article was submitted to Mood 

and Anxiety Disorders,  
a section of the journal  
Frontiers in Psychiatry

Received: 12 October 2016
Accepted: 15 December 2016

Published: 03 January 2017

Citation: 
Walther A, Rice T, Kufert Y and 

Ehlert U (2017) Neuroendocrinology 
of a Male-Specific Pattern for 

Depression Linked to Alcohol Use 
Disorder and Suicidal Behavior.  

Front. Psychiatry 7:206.  
doi: 10.3389/fpsyt.2016.00206

neuroendocrinology of a Male-
Specific Pattern for Depression 
Linked to Alcohol Use Disorder and 
Suicidal Behavior
Andreas Walther1, Timothy Rice2, Yael Kufert2 and Ulrike Ehlert1*

1 Clinical Psychology and Psychotherapy, University of Zurich, Zurich, Switzerland, 2 Department of Psychiatry – Child and 
Adolescent Inpatient Service, Icahn School of Medicine at Mount Sinai, New York, NY, USA

Epidemiological studies show low rates of diagnosed depression in men compared to 
women. At the same time, high rates of alcohol use disorders (AUDs) and completed 
suicide are found among men. These data suggest that a male-specific pattern for 
depression may exist that is linked to AUDs and suicidal behavior. To date, no underlying 
neuroendocrine model for this specific pattern of male depression has been suggested. In 
this paper, we integrate findings related to this specific pattern of depression with under-
lying steroid secretion patterns, polymorphisms, and methylation profiles of key genes in 
order to detail an original neuroendocrine model of male-specific depression. Low circu-
lating levels of sex steroids seem to increase the vulnerability for male depression, while 
concomitant high levels of glucocorticoids further intensify this vulnerability. Interactions 
of hypothalamus–pituitary–gonadal (HPG) and hypothalamus–pituitary–adrenocortical 
(HPA) axis-related hormones seem to be highly relevant for a male-specific pattern of 
depression linked to AUDs and suicidal behavior. Moreover, genetic variants and the 
epigenetic profiles of the androgen receptor gene, well-known depression related genes, 
and HPA axis-related genes were shown to further interact with men’s steroid secretion 
and thus may further contribute to the proposed male-specific pattern for depression. 
This mini-review points out the multilevel interactions between the HPG and HPA axis for 
a male-specific pattern of depression linked to AUDs and suicidal behavior. An integra-
tion of multilevel interactions within the three-hit concept of vulnerability and resilience 
concludes the review.

Keywords: male depression, alcohol use disorder, suicidal behavior, steroid secretion, polymorphism, methylation, 
stress reactivity, vulnerability

inTRODUCTiOn

Epidemiological studies suggest that women experience depressive disorders at two to three times 
the rate of men (1, 2). However, for men in Western countries, concomitant low levels of diagnosed 
depression alongside high rates of alcohol use disorders (AUDs) and suicide are reported (3, 4). 
Suicide and AUDs are more strongly intertwined within males than females (5). This finding is sup-
ported by a study showing that men are more likely to have elevated blood alcohol levels at the time of 
completed suicide (6). Furthermore, over 2% of traffic accidents are classified as road traffic suicides, 
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of which are committed to around 90% by men, and AUDs are 
regarded as important risk factor (7, 8). Some consider AUDs and 
suicidal behavior to be dysfunctional coping mechanism products 
of depression (9), while others with supporting longitudinal data 
show instead a more complex bidirectional relationship between 
depression and AUDs (10). Together, these data raise the question 
of whether there exists a unique and potentially underdiagnosed 
male-specific pattern of depression that is linked with AUDs 
and suicidal behavior (3, 11).

KeY COnCePT 1 | Male-specific pattern of depression
The male population generally has lower rates of depression compared to 
the female population; however, depression in men is associated with higher 
rates of alcohol dependence and suicide than the rates seen in women. These 
behavior patterns are thought to represent dysfunctional coping mechanisms 
in depression, thus creating a unique subcategory of patients.

KeY COnCePT 2 | Cross-disciplinary model
A model integrating scientific methods and evidence from both neuropsychia-
try and endocrinology, to promote a better understanding of gender-specific 
clinical manifestations such as male-specific depression.

KeY COnCePT 3 | Hypothalamus–pituitary–gonadal axis
Gonadotropin-releasing hormone is secreted from the hypothalamus and 
stimulates production of luteinizing hormone (LH) and follicle-stimulating 
hormone (FSH) in the pituitary gland. LH and FSH then stimulate production of 
estrogen and testosterone in the gonads. Testosterone tends to be lowered in 
specific subcategories of men with depression.

KeY COnCePT 4 | Hypothalamus–pituitary–adrenocortical axis
Corticotropin-releasing hormone is secreted from the hypothalamus and sti-
mulates the secretion of adrenocorticotropic hormone (ACTH) in the pituitary 
gland. ACTH then stimulates the production of cortisol in the adrenal glands. 
Cortisol tends to be elevated in patients with depression, which is considered 
a stress-related disease.

The assumption of a male depression has generated much 
investigation in the field of psychiatry. These investigations are 
high yield in determining how best to reduce male AUDs and 
suicide rates, particularly in special populations of sociopolitical 
importance such as war veterans and others (12–14). Despite 
many efforts, to date, no simple neuropsychiatric model has been 
proposed to account for men’s increased AUDs and suicide rate 
relative to their lower rates of depression.

Emerging interest in the interplay between neuropsychiatry 
and endocrinology may yield an improved cross-disciplinary 
model to account for a male-specific pattern for depression, its 
interrelation with AUDs, and suicide. In this mini-review, we 
intend to examine evidence supporting an underlying neuroen-
docrine model for a male-specific pattern for depression linked to 
AUDs and suicidal behavior. Understanding the pathophysiology 
of a male-specific susceptibility to depression, AUDs, and suicidal 
behavior might enable the allied mental health fields to develop 
tailored and highly effective combined treatments consisting of 
psychotherapeutic and pharmacological interventions.

CHAnGeS in STeROiD HORMOne 
COnCenTRATiOnS

Testosterone, the end product of the hypothalamus–pituitary–
gonadal (HPG) axis, has been investigated extensively as putative 
biomarker of depression. Studies indicate that hypogonadal men 
are more likely to develop depression (15). Testosterone treat-
ment has been shown to exhibit beneficial effects on mood in 
men (16, 17). These effects may be age-specific as low levels of 
testosterone seem to be associated with suicidal behavior in older 
men, while high testosterone levels might be associated with 
suicidal behavior in youth (18–20).

Despite these findings and a large body of literature dem-
onstrating a beneficial influence of testosterone on well-being 
and depression in men (21–24), a recent review concludes that 
the study of men as a large heterogeneous population yields 
no consistent relationship between testosterone and mood 
(25). These studies may lead some to conclude that there is 
no association between testosterone, depression, and suicide 
attempts (26). However, statistically significant findings may 
emerge when examining specific subgroups of men where an 
association between low testosterone levels and depression is 
more pronounced. For example, treatment-resistant depressive 
men, men with major depression and comorbid human immu-
nodeficiency virus infection, hypogonadal men, dysthymic men, 
and elderly men (>60 years) often have lower testosterone levels 
(25). These may be specific populations of special importance in 
exploring the relationship between testosterone to men’s mental 
health.

Additionally, depressed individuals appear to have a dysregu-
lated and hyperactive hypothalamus–pituitary–adrenocortical 
(HPA) axis. HPA axis disturbances have been linked to the 
development and maintenance of depression (27). Depression 
is considered a stress-related disease with altered glucocorticoid 
receptor (GR) signaling and reduced glucocorticoid responsive-
ness (28, 29). Cortisol, the end product of the HPA axis, gener-
ally tends to be significantly elevated in depressed subjects (30). 
Higher circadian cortisol secretion patterns were also found in 
subgroups of depressed patients compared to healthy controls (31). 
However, several moderators need to be taken into account, when 
interpreting the literature on cortisol and depression including 
methodological (time of day, challenge tests, or body substrate), 
sample-related (age or symptom severity), and depression- 
subtype (melancholic, psychotic, or atypical depression) modera-
tors (27). Highest cortisol concentrations in depressed compared 
to healthy individuals were found when assessing cortisol in the 
afternoon, using challenge tests, the use of blood or cerebrospinal 
fluid samples as compared to salivary or urine samples, older age 
and greater symptom severity/hospitalization status were given, 
and psychotic or melancholic depression was exhibited.

Other neuroactive steroids such as dehydroepiandrosterone 
(DHEA) and estradiol are also implicated in the onset and 
maintenance of depression. These agents may all have potential 
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antidepressant effects. DHEA works concomitantly as a precursor 
hormone of testosterone or estradiol while also exerting inde-
pendent effects on different body systems such as the HPA axis 
(32). Low DHEA levels have consistently been related to depres-
sive symptoms (33). Moreover, the use of DHEA as an antidepres-
sant therapy has shown some success (34). Similarly, low levels of 
estradiol have been associated with more depressive symptoms in 
men (35). Carrier and colleagues report concomitant testosterone 
and estradiol administration to exhibit antidepressant-like effects 
in male gonadectomized rats, suggesting that testosterone’s pro-
tective effect may be mediated, in part, by its aromatization to 
estradiol (36).

Similarly, in both, chronic alcohol-dependent patients and 
moderate chronic alcohol consumers reduced testosterone and 
DHEA levels and increased basal levels of cortisol are reported 
(37, 38). As alcohol intake contributes to HPA axis activation, 
chronic heavy alcohol use leads to chronic HPA axis activation 
accompanied by the loss of normal diurnal cortisol secretion 
pattern; this persists during withdrawal and is mostly reestab-
lished after 1–4 weeks after abstinence (39). In contrast, alcohol 
intake inhibits the HPG axis and suppresses testosterone 
production (40). Testosterone suppression might further con-
tribute to depressed mood leading to disproportionately high 
suicide rates seen in men with comorbid depression and AUDs 
(41). Reduced basal androgens and elevated glucocorticoids 
seem therefore to be a shared endocrine phenotype in male 
depression and AUDs.

GeneTiC RiSK COnSTeLLATiOn

Genetic factors determine steroid secretion and action, while 
steroids regulate gene expression via intracellular receptor bind-
ing (42). For example, testosterone action is modulated by the 
CAG repeat length polymorphism in the X-chromosome-bound 
androgen receptor (AR) gene. It is proposed that longer CAG 
repeat length causes lower transcriptional activity of genes acti-
vated by testosterone binding (43). A longer (>23) and a shorter 
(≤20) than average amount of CAG triplets have been suggested 
as risk alleles (44). Longer CAG repeat length is associated with 
more depressive symptoms (45). Simultaneous assessment of the 
CAG repeat length, testosterone levels, and depressive symptoms 
showed that low testosterone levels were associated with depres-
sion in men with the shorter allele only (46). However, this finding 
was not replicated (43), and for boys, testosterone was negatively 
associated with depressive symptoms only when expressing the 
longer allele (44). In addition, reduced CAG repeat length was 
associated with increased craving symptoms but was not signifi-
cantly different between AUD patients and healthy controls (47). 
The CAG polymorphism may thus be a mediator that warrants 
consideration in future studies.

The Val66Met polymorphism in the brain-derived neuro-
trophic factor (BDNF) gene causing deficient BDNF protein 
secretion affects the neuroplasticity processes crucial for depres-
sion (48). Research reports an association between the Val66Met 
polymorphism and depression (49–52). Sex steroids were shown 
to increase BDNF protein levels in human neurons suggesting sex 
steroids to have additional protective effects against depression 
due to the promotion of neuroplasticity (53). Similar effects were 
reported for other recently developed antidepressant medications 
further underlining the importance of increasing neuroplasticity 
in depressed individuals (54). However, a meta-analysis including 
28 studies questions the assumed beneficial effects of BDNF by 
postulating no association between genetic variants in BDNF and 
major depression (55). It is possible that BDNF affects depression 
only via the interaction with other polymorphisms or steroid 
secretion (56). In addition, in female suicide attempters HPA 
axis hyperactivity was associated with decreased BDNF (57). A 
trend toward decreased BDNF serum levels was also reported in 
AUD patients (58), though these results could not be replicated 
in another study (59). In sum, throughout the literature one 
encounters an inconsistent picture for the relationship between 
BDNF and depressive disorders, AUDs, and suicidal behavior.

More consistent findings have been reported for two com-
mon variants in the 5-hydroxytryptamine transporter-linked 
polymorphic region (5HTTLPR). Homozygous and heterozygous 
carriers of the short allele variant were found to be at increased 
risk of major depressive disorder. Notably, homozygous carriers 
of the short allele are also at increased risk for alcohol dependence 
(60), lending an interesting biological footprint to the association 
between AUDs, depression, and suicide in men. Examining the 
concomitant effects of another polymorphism (C1019G) from 
the serotonin receptor gene, 5HT1A and the Val66Met polymor-
phism of the BDNF gene revealed increased risk for depression 
when expressing both risk variants (61). In addition, carriers of 
the long allele with concomitant higher levels of testosterone 
showed lower cortisol secretion after threat indicating neuropsy-
chiatric resilience for this combination in humans (62). A recent 
review on genetic association studies of suicidal behavior identi-
fied 5HTTLPR and BDNF among few others as most promising 
candidates (63). Male-specific endocrine factors may play a key 
role in this association.

Recently, a genetic variant within the gene encoding for FK506 
binding protein 5 (FKBP5) was shown to be associated with major 
depression (64). FKBP5 is considered to regulate intracellular GR 
signaling (65). Furthermore, FKBP5 ablation in mice was shown 
to increase antidepressant behavior (66). As an example of the 
delicate system interplays, FKBP5 is a glucocorticoid-induced 
negative regulator of the GR, yet at the same time, it is a positive 
regulator of the AR. This concomitant action of FKBP5 suggests 
that it functions as a reciprocal modulator of glucocorticoid- and 
androgen-mediated physiology (65).

KeY COnCePT 5 | Steroid secretion
Different patterns of steroid secretion are associated with different clinical 
manifestations. For example, low circulating levels of sex steroids increase 
vulnerability for male depression, and this vulnerability is further increased by 
high levels of glucocorticoids.

KeY COnCePT 6 | Polymorphism
Differences in the DNA sequence that account for the variation between 
different individuals. For example, longer CAG repeat has been associated 
with more depressive symptoms.
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The gene NR3C1, which encodes the GR, a crucial element 
for modulation of HPA axis function, has been extensively 
examined with regard to depression. An in vitro mouse model 
showed testosterone treatment to downregulate NR3C1 expres-
sion linking androgens with NR3C1 inhibition (67). It has been 
shown that three polymorphisms (rs6198, rs6191, and rs33388) 
within the NR3C1 resulting in GR resistance are associated with 
major depression and the predominance of depression in the 
course of bipolar disorder (68). Three other single nucleotide 
polymorphisms [SNPs (BclI, N363S, and ER22/23EK)] of NR3C1 
were also associated with the increased recurrence of depressive 
disorders (69). However, there is conflicting literature reporting 
a lack of association: a 4-year prospective study investigated 683 
subjects with major depression in remission with regard to time 
until recurrence of a major depressive episode. GR polymor-
phisms (9β, ER22/23EK, BclI, TthIIIl, NR3C1-1, and N363S) were 
not associated with recurrence of depression (70). Another study 
investigating the association between polymorphisms in NR3C1 
and suicide attempts in 597 affective disorder patients reports no 
difference between groups with and without a history of suicide 
attempts (71). Recent studies show SNPs in FKBP5 and NR3C1 to 
be associated with alcohol drinking and crucial for alcohol abuse 
interventions (72, 73).

In conclusion, these results indicate subgroup-specific effects 
of polymorphisms and interaction with other SNPs, and steroid 
hormone levels to be relevant for a specific pattern for depres-
sion linked to AUDs and suicidal behavior in men. Studies 
show an interchange between candidate genes for depression 
and those within the endocrine system relevant for circulating 
levels of androgens and glucocorticoids, which warrant further 
investigation.

ePiGeneTiC RiSK COnSTeLLATiOn

Examining potential gene–environment interactions, methyla-
tion studies for the aforementioned risk alleles were investigated 
with regard to a male-specific pattern for depression. To date, 
methylation of the AR promoter region was primarily investigated 
in relation to prostate cancer, where DNA hypermethylation of the 
AR promoter region occurs leading to AR downregulation (74, 
75). As low levels of testosterone are associated with depression 
in men and hypermethylation of the AR promoter region reduces 
testosterone signaling and action at target cells, hypermethylation 
of the AR might be associated to neuropsychiatric manifestations 
in men, including depression, AUDs, and suicidal behavior.

recurrent major depression (77). Another study revealed that 
higher BDNF promoter methylation was associated with more 
depressive symptoms and increased risk of drug addiction (78). 
Therefore, BDNF promoter methylation might independently 
contribute to the etiology and maintenance of depression, AUDs, 
and suicidal behavior in men, and it may mediate the effects of 
methylation on endocrine system receptors and signaling.

Similarly, homozygous and heterozygous carriers of the short 
variant of the 5HTTLPR exhibit higher mean 5HTT methylation 
and have therefore a lower 5HTT expression in peripheral blood 
mononuclear cells (79). Higher 5HTT methylation, but not 
HTTLPR polymorphism, was associated with more stress reac-
tivity in infant macaques (80). Patients with depressive disorder 
were also shown to have a higher mean methylation level of the 
5HTT gene than healthy controls (81). However, in patients with 
alcohol dependence, no different 5HTT methylation pattern was 
found (82).

FK506 binding protein 5 and NR3C1 were shown to be asso-
ciated with depression and suicide attempts (83, 84). Roy and 
colleagues report for a sample consisting predominantly of men 
(90%) with a history of substance abuse a significant interaction 
between childhood trauma and variants of FKBP5 to raise the 
risk of attempting suicide (84). Therefore, their methylation 
status was further examined with regard to depression, indicat-
ing independent effects on risk for depression establishment 
and severity (31, 83). A 10% higher methylation rate of FKBP5 
intron 7 for individuals with a lifetime history of major depres-
sion compared to healthy controls was found (85). Maternal 
depression during pregnancy was associated with NR3C1 
hypermethylation in the newborn (86). Early-life stress-induced 
methylation of the NR3C1 was associated with subsequent 
demethylation of FKBP5, which thereby links these two stress 
responsive genes via epigenetic alterations (87). Replication of 
these findings in exclusively male samples is needed to further 
elucidate the epigenetic profile of the investigated male-specific 
pattern for depression. However, combat veterans with diag-
nosed PTSD often suffer from comorbid depression and AUDs. 
An intervention study reported that in combat veterans, who 
were receiving psychotherapy, the methylation of the NR3C1 
promoter pretreatment significantly predicted subsequent treat-
ment outcome, while FKBP5 methylation increased with regard 
to treatment (88).

Taken together, the influence of the gene–environment inter-
action causes endocrine alterations in depression and AUDs, 
which are determined by both genetic variants and epigenetic 
profiles. Examining further genetic variants and epigenetic 
profiles would be highly interesting to further capture relevant 
alterations underlying the relationship between depression, 
AUDs, and suicide in men (89, 90).

CHAnGeS in enDOCRine STReSS 
ReACTiviTY

Patterns of stress reactivity, or the physiological response of the 
individual to psychosocial stressors, may also reveal insights into 
male-specific behavioral health that intertwine with endocrine 
functioning.

KeY COnCePT 7 | Methylation
The addition of methyl groups to DNA, usually resulting in inhibition of gene 
transcription.

Brain-derived neurotrophic factor has recently become the 
focus of methylation studies associated with depression. Several 
studies indicate promoter methylation of BDNF to be associated 
with major depression (76). BDNF promoter methylation was 
shown to be associated with cortical thickness in patients with 
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Numerous studies confirmed an increase in cortisol by expo-
sure to acute psychosocial stress (28). A meta-analysis indicates 
HPA axis response to psychosocial stress of depressed subjects 
is similar to healthy controls. However, depressed subjects 
with high basal cortisol were found to have increased cortisol 
production and higher cortisol levels during psychosocial stress 
(91). Indeed, in numerous studies reduced responsiveness to 
glucocorticoids has been reported for depressed patients 
assessed via the combined dexamethasone-suppression/
corticotropin-releasing hormone (DEX-CRH) test indicat-
ing impaired GR signaling (29). This is further supported by 
meta-analytic findings of higher cortisol levels during the 
recovery period in depressed patients compared to healthy 
controls, while cortisol secretion patterns during stress were 
similar (92). This is of particular interest for a male-specific 
pattern for depression, as men show generally higher HPA 
responses to psychosocial stress, and estradiol seems to exert 
buffering effects (93). In contrast, for individuals with AUDs, 
there are blunted HPA axis responses to psychosocial stress 
and exogenous CRH provocation (38, 94). Interestingly, in 
depressed patients with suicidal behavior, blunted responses to 
the DEX-CRH test were also found in comparison to depressed 
patients without suicidal behavior (95). The existing data point 
to a chronic hyperactive HPA axis with a blunted acute stress 
response for a male-specific pattern for depression linked to 
AUDs and suicidal behavior.

Recently, sex steroids were also shown to depict a stress-
dependent rise (96). However, there are conflicting findings (97). 
In addition to cortisol, sex steroids might represent additional 
physiological markers for the stress reactivity after a psychosocial 
stressor (28, 96). Attenuated DHEA-S response during acute 
psychosocial stress has been demonstrated in healthy men per-
ceiving stress at work and patients with burnout (98, 99). Studies 
on testosterone or estradiol with regard to depression and their 
stress reactivity to psychosocial stress are scarce. Decreased 
baseline plasma testosterone was seen in adult male rats after 
an immobilization stress (100), while another study reported an 
increase in plasma testosterone after immobilization stress (101). 
In the forced swimming test estradiol significantly increased, 
while no change was observed for testosterone in rats (102). 
Taken together, conflicting literature is reported with regard to 
depressive symptoms and the reactive secretion of sex steroids in 
response to psychosocial stress.

inTeGRATiOn inTO THe THRee-HiT 
COnCePT OF vULneRABiLiTY AnD 
ReSiLienCe

In conclusion, the three-hit concept of vulnerability and 
resilience, fully described elsewhere (88), offers a theoretical 
framework integrating the interactions of the HPA and HPG axis-
related polymorphisms, methylation profiles, steroid secretion, 
and endocrine stress reactivity with regard to depression, AUDs, 
and suicidal behavior in men.

Genetic risk variants determine an initial vulnerability for 
depressive disorders, AUDs, and suicidal behavior in men. Hit one 

represents polymorphisms in the AR, BDNF, 5HTTLPR, FKBP5, 
and NR3C1, which independently increase the risk of developing 
depression, AUDs, and suicidal behavior in men. Following the 
common variant hypothesis, combinations of risk alleles such as 
a long variant (>23) of the CAG repeat length in the AR, a short 
variant of the 5HTTLPR, and one of the three polymorphisms 
of the NR3C1 (rs6198, rs6191, and rs33388) increase the risk for 
these conditions in men multiplicatively.

Early-life environment and its experience, representing 
hit two, such as adequate or inadequate nutrition, childhood 
traumas, and adverse childhood experiences, and optimal or 
lacking parent–child affective attunement and dyadic regulation 
create unique phenotypes via the interaction with multigenic 
input by epigenetic regulation. Epigenetic regulation of HPA 
or HPG axis-related gene sites help the developing organism 
adapt to altered environmental conditions. Hypermethylation 
or hypomethylation of key genes for the development of depres-
sion in men, such as the AR, BDNF, 5HTT, FKBP5, and NR3C1 
constitute independent risk and resilience factors for depression, 
AUDs, and suicidal behavior and further interact with the prior 
described genetic predisposition. This interaction forms a dif-
ferential susceptibility to later-life challenges.

Later-life environment, such as exposure to trauma or major 
critical life events such as military combat, prostate cancer, or 
divorce, is considered hit three. As shown in Figure 1, depend-
ing on the interaction of programed phenotypes with later-life 
challenges, a man would either suffer from depression, AUDs, 
or suicidal behavior or he would develop mental resilience. 
Finally, the established pattern of depression, AUDs, and 
suicidal behavior influences steroid secretion, endocrine stress 
reactivity, and the epigenetic profile. Therefore, experimental 
human studies examining HPA and HPG axis activity and func-
tion in parallel also in response to stress are needed to untangle 
the complex interactions between the genetic predisposition, 
early-life environment, and later-life challenges underlying 
this male-specific pattern of depression, AUDs, and suicidal 
behavior.

LiMiTATiOnS

Some limitations should be taken into consideration when inter-
preting the literature.

The reported studies examined biological differences between 
patients with depression, AUDs, suicidal behavior, and healthy 
controls and were not testing our proposed model specifically. 
Therefore, large-scale studies with male samples are needed to 
determine the actual overlap in depression, AUDs, and suicidal 
behavior using male-specific psychometric instruments as sug-
gested by Rice and colleagues (104). We also cannot rule out 

KeY COnCePT 8 | Three-hit concept of vulnerability and resilience
A proposed model stating that stress in early life can affect behavioral adapta-
tion to stress later in life. The first hit is genetic predisposition; the second hit is 
early-life environment, which programs phenotypes by epigenetic regulation; 
and the third hit is later-life challenges.
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that the results described here are partially confounded by a 
publication bias caused by non-publication of null results in 
this research area. A third limitation is that no restrictions were 
made with regard to inclusion of studies reporting hormonal 
data. Circadian rhythmicity, prior activities, intraindividual 
changes in subsequent days, huge interindividual differences 
in circulating concentrations, used body substrates, sampling 
techniques, and hormone-assays are potential confounding 
issues hindering the establishment of reference ranges. Finally, 
we examined only genetic, epigenetic, and endocrine data, 
while additional relevant areas such as immunological and 
functional neuroimaging data were beyond the purview of this 
mini-review.

COnCLUSiOn

The high rate of AUDs and suicides juxtaposed to the low rate of 
diagnosed depression in men led to the assumption of an under-
diagnosed male depression related to AUDs and suicidal behav-
ior. We here provide evidence for overlapping neuroendocrine 
conditions underlying these disorders in men adding a biological 
perspective to theories on socialization and masculinity trying 
to explain the discrepancy of depression diagnosis in men and 
women (105). In men, depression, AUDs, and suicidal behavior 
seem to interact dynamically and to be associated with multiple 
biological risk factors such as decreased basal androgen and 
increased glucocorticoid levels, a blunted cortisol stress response 

FiGURe 1 | Three-hit concept of vulnerability and resilience for a male-specific pattern of depression, alcohol use disorder, and suicidal behavior 
[adapted from Ref. (103)].
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