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Background: Understanding how practice mediates the transition of brain–behavior 
networks between early and later stages of learning is constrained by the common 
approach to analysis of fMRI data. Prior imaging studies have mostly relied on a 
single scan, and parametric, task-related analyses. Our experiment incorporates a 
multisession fMRI lexicon-learning experiment with multivariate, whole-brain analysis to 
further knowledge of the distributed networks supporting practice-related learning in 
schizophrenia (SZ).

Methods: Participants with SZ were compared with healthy control (HC) participants 
as they learned a novel lexicon during two fMRI scans over a several day period. All 
participants were trained to equal task proficiency prior to scanning. Behavioral-Partial 
Least Squares, a multivariate analytic approach, was used to analyze the imaging data. 
Permutation testing was used to determine statistical significance and bootstrap resam-
pling to determine the reliability of the findings.

results: With practice, HC participants transitioned to a brain–accuracy network 
incorporating dorsostriatal regions in late-learning stages. The SZ participants did not 
transition to this pattern despite comparable behavioral results. Instead, successful 
learners with SZ were differentiated primarily on the basis of greater engagement of 
perceptual and perceptual-integration brain regions.

conclusion: There is a different spatiotemporal unfolding of brain–learning relationships 
in SZ. In SZ, given the same amount of practice, the movement from networks sug-
gestive of effortful learning toward subcortically driven procedural one differs from HC 
participants. Learning performance in SZ is driven by varying levels of engagement in 
perceptual regions, which suggests perception itself is impaired and may impact down-
stream, “higher level” cognition.
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inTrODUcTiOn

Learning impairments in schizophrenia (SZ) are widespread, 
impact functional outcome, and may mediate response to various 
types of cognitive rehabilitation strategies. Despite considerable 
efforts to remediate cognitive impairments via cognitive train-
ing, pharmacologic and brain stimulation treatments, effect sizes 
thus far have been modest (1, 2). The unknown aspects of the 
neural dynamics of learning and the impact of practice in SZ 
continue to constrain the search for the optimal therapeutic brain 
targets. Prior practice-related neuroimaging experiments in SZ 
have relied primarily on single scanning sessions and univariate, 
task-related (vs. behavior-related) analyses (3–8). However, brain 
substrates associated with practice-related learning are dynamic 
and widely distributed in space and time. Thus, to measure these 
substrates using fMRI, one should use multivariate whole-brain 
imaging analytic techniques, a direct brain–behavior (vs. brain–
task) approach to analysis, and multiple scanning sessions with 
sufficient in-scanner practice to measure the unfolding of brain 
changes in vivo.

In healthy control (HC) individuals, practice-related learning 
typically follows a characteristic staged process: early, rapid, and 
effortful learning engaging widespread cortical–subcortical areas 
with a later shift to more automatic processes and a reduced num-
ber of prefrontal regions (4, 5, 9–13). This process is characteristic 
of both motor skill and cognitive skill-based learning where 
ongoing practice leads to incremental learning of associations. 
Similarly, dual-processing models of practice-related learning 
postulate a domain-general cognitive-control network that scaf-
folds early learning, but gradually disengages with practice as 
skilled, automatic processing emerges (14, 15). As per this model, 
this shift occurs in various types of experience-driven learning 
as long as learning is intentional with the specific details varying 
depending on task requirements (14). In SZ, this shift is less clear. 
Learning remains more effortful throughout with persistent cor-
tical involvement at stages when HC persons have transitioned 
to subcortically driven automatic stages of processing. This lack 
of transition occurs both in SZ (on and off antipsychotics) and 
in those at genetic high risk for the disorder (16, 17). Persistent 
effortful learning also may reflect impairments in deep encoding 
in the disorder, particularly in verbal memory and relational-
learning paradigms (18, 19).

Several studies examining practice-related learning in SZ have 
noted exponential blood oxygenation level-dependent (BOLD) 
signal decrease in task-relevant brain areas, which has been pri-
marily driven by initial hyperactivity in these same regions (3–7). 
Koch et al. found no neural differences in task activation between 
successful learners with SZ and HC during a Sternberg working 
memory task. However, using a median split, the low-performing 
participants with SZ were more likely to show initial hyperac-
tivation in frontal, cingulate, and superior-parietal regions (7). 
Activation studies using associative learning tasks have found 
both increased and similar levels of brain activation in SZ (20, 
21). Proposed explanations for aberrant activation patterns in 
learning studies have included neural inefficiency and alternative 
compensatory pathways to achieve behavioral parity (8, 22). We 
have also suggested that some of these results could be attributable 

to non-specific task-independent effects given the potential linear 
confound of time inherent in learning studies in SZ (23).

Thus, while many studies have examined putative compensa-
tory brain strategies for learning impairments in general and 
some have examine the impacts of practice, none, to our knowl-
edge, have utilized an in-scanner multi-day practice paradigm 
that allows for direct observation of the unfolding of learning as 
it occurs in vivo across a number of learning phases. Our experi-
ment was a multisession fMRI scanning experiment wherein 
participants with SZ and HC participants learned a novel lexicon 
with in-scanner practice over the course of 1 week. We utilized 
a lexicon-learning relational paradigm because verbal learning 
impairments are common in the disorder and are particularly 
linked to functional outcome at all stages of the illness (24–27). 
Additionally, language disorders are hallmark phenomenological 
features at all stages of the syndrome (28). We used behavioral-
PLS analytic techniques, which allowed for direct measurement 
of the brain–behavior relationship. This approach allowed us to 
examine the large-scale distribution of learning in the brain as 
it unfolded over the course of practice and avoided the previ-
ously mentioned confounding effects of task-independent BOLD 
changes, common contaminants in practice-related learning 
neuroimaging experiments that we examined specifically in SZ 
in an earlier analysis of this study data (23).

MaTerials anD MeThODs

Participants
Participants were 16 patients with DSM-IV diagnosed SZ 
recruited from the outpatient clinics at the Centre for Addiction 
and Mental Health (CAMH) matched with 17 HC recruited 
via local advertisement and a research participant database at 
Baycrest Hospital. Both are teaching hospitals associated with 
the University of Toronto. All participants were right handed 
(29), native English speakers, and suitable for MRI scanning. 
Participants were comprehensively screened for and excluded 
if there were any interfering medical conditions, neurological 
disorder, or psychiatric disorder. Participants with SZ were 
clinically stable and had been prescribed an atypical antipsychotic 
medication at a stable dose for at least 3 months. The diagnosis 
of SZ was confirmed and other Axis 1 psychiatric disorders 
ruled out by the study MD (Michele Korostil) using the Mini-
International Neuropsychiatric Interview-Plus (30). The clinical 
status of the SZ participants was assessed using the Positive and 
Negative Syndrome Scale (PANSS) (31) at the initial visit and the 
Clinical Global Impressions Scale (32) at all three study visits. 
The neurocognitive status of all participants was evaluated at 
the initial visit using the Repeatable Battery for the Assessment 
of Neuropsychological Status (RBANS) (33). Five HC and four 
SZ participants were excluded from the final analysis: two due 
to improper task performance, three due to technical difficulties 
with equipment, and four due to excessive movement artifact on 
MRI scans. Thus, the final sample included 12 matched partici-
pants from each group.

The study protocol was approved by the Research Ethics Boards 
of Baycrest Hospital and the CAMH according to guidelines 
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FigUre 1 | Vocabulary learning task. Over the course of 10 “learning runs” (five runs on day 1 and five runs on day 2) with 1,200 trials total, each pseudoword 
(here: skog) appeared 20 times paired with the same picture (here: sun) and only once with other varying pictures. Participants were instructed that they would be 
learning a new vocabulary, but were not informed of the underlying learning principle and did not receive feedback throughout the experiment. Thus, they intuitively 
learned that the recurring couplings were the correct pairs. A 30-word picture-word vocabulary was randomly generated for each participant using a normed set of 
English pseudowords paired with a standardized picture of an everyday object. Each participant’s vocabulary remained the same for both scanning sessions. They 
indicated their response (“correct” or “incorrect” pairing) via a button press while in the fMRI scanner.
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from these hospitals and the University of Toronto. Participants 
provided written informed consent and were paid a stipend for 
their participation.

study Procedure
The study occurred over a 3-day period. On day 1, participants 
were assessed for suitability, and the PANSS and RBANS were 
administered. Participants were trained on the fMRI learning 
task in an MRI simulator using a parallel set of stimuli. On days 
2 and 3, participants completed the fMRI experiment in which 
they learned a 30-word novel lexicon while undergoing fMRI 
scanning. The structure of the sessions on days 2 and 3 were 
identical. The vocabulary was the same for both days and thus 
day 3 functioned as a “practice session” to consolidate the learn-
ing from the prior session. The mean interval between scanning 
sessions for all participants was 2 days.

stimuli selection and Task Design
Participants were asked to learn a novel 30-word vocabulary 
comprised of auditory English pseudowords arbitrarily paired 
with pictures of everyday objects while undergoing event-related 
fMRI scanning. The task was developed by Breitenstein and 
Knecht (34, 35) for German speakers and modified by us for 
native English speakers. In our version of the task, participants 
were informed in advance that they would be learning a new 
vocabulary over the course of the experiment. All participants 

were trained on the task in an fMRI simulator using a parallel 
set of stimuli to 75% proficiency to minimize contamination by 
“learning the task” during fMRI data acquisition. While lying 
prone in the MRI scanner, participants heard a spoken pseu-
doword in their headphones (normalized to 600 ms duration). 
Shortly after (200 ms) the onset of the auditory pseudoword, they 
saw a picture of an object (duration 1 s) followed by a fixation 
cross (2 s). This sequence constituted one trial. Participants were 
asked to indicate, via a button press on a response pad, if the 
words and pictures went together in the new vocabulary. The 
pairings were sometimes “correct” and sometimes “incorrect.” 
While participants were informed at the outset that they would 
be learning a new vocabulary, there was otherwise no feedback 
given to participants throughout the experiment. The “correct” 
pairings repeated throughout the experiment, each “incorrect” 
pairing was presented only once. Thus, the underlying learning 
principle was a higher cooccurrence of “correct” trials with a 20:1 
(correct:incorrect) ratio by the end of both scanning sessions 
(Figure 1). The lexicon was randomly generated from a matched 
set of stimuli and different for each participant. Each participant’s 
lexicon remained the same across the scanning days and, thus, 
the learning runs were additive. Each day of learning in the scan-
ner involved 5 “learning runs” (approximately 6 min in length), 
which were each comprised of 120 trials as described above for a 
total of 1,200 trials over the course of the entire experiment with 
half being “correct” pairings and the other half “incorrect.”
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fMri Data acquisition and Preprocessing
fMRI was performed on a research-dedicated Siemens Trio 3-T 
MRI scanner. T2* functional images (TE = 30 ms, TR = 2,000 ms, 
flip angle = 70°, FOV = 200 mm, in-plane voxel size = 3.5 mm × 
3.5 mm × 5.0 mm) were acquired using a single shot echo-planar 
image sequence leading to a BOLD contrast. Each functional 
sequence consisted of 28 5-mm thick slices in the axial-oblique 
plane positioned to image the entire brain. A T1-weighted 
anatomical scan was obtained using a SPoiled Gradient Recalled 
sequence (TE = 2.6 ms, TR = 2,000 ms, FOV = 256 mm, slice 
thickness = 1 mm) for coregistration with the functional images 
and to ensure that there were no significant brain abnormalities 
in any participants.

Participants’ responses were made on an MR-compatible but-
ton response pad (Fiber-Optic Response Pad system).1 Visual 
stimuli were viewed in a head-coil mounted mirror directed 
toward a rear projection screen at the foot of the scanner. 
Auditory stimuli were presented using the Silent Scan audi-
tory presentation system (AVOTEC). E-Prime Software2 was 
used to control stimulus presentation and to collect behavioral 
responses.

The functional data were processed prior to statistical analy-
sis. Slice-timing correction was done using AFNI.3 Motion 
correction was completed using AIR.4 The motion-corrected 
functional volumes within each run were averaged to create a 
mean functional volume per run. This mean functional run was 
then registered with each participant’s structural volume using 
a rigid body transformation model. The structural data were 
spatially normalized to the Common Anatomical Template 
and the end result was a direct non-linear transform from 
each initial fMRI volume into the Common Template space 
(36–38). Given the possible morphologic differences between 
the two groups, our approach helps protect against distortion 
that could be caused by the use of a standard space template 
based only on healthy brains. The functional data were then 
smoothed using a 7-mm Gaussian kernel. The voxel time series 
were further adjusted by regressing out motion correction 
parameters, white matter time series, and CSF time series, as 
in Garrett et al. (37).

Results from data analyses were transformed into MNI space 
using the FSL/FNIRT registration algorithm to find a non-linear 
transform between our anatomical template and the MNI152_T1 
template provided with FSL software.5 We used SPM56 to further 
assist with anatomical localization.

Data analysis
Behavioral Measures
Behavioral performance (accuracy and reaction time) during 
the fMRI experiments was analyzed using repeated measures 
ANOVAs.

1 http://www.curdes.com.
2 http://www.pstnet.com.
3 http://afni.nimh.nih.gov/afni.
4 http://bishopw.loni.ucla.edu/AIR5/.
5 www.fmrib.ox.ac.uk/fsl.
6 http://www.fil.ion.ucl.ac.uk/spm/.

fMRI Analyses
To identify multivariate patterns of relationships between per-
formance and brain activity, we used Behavioral-Partial Least 
Squares (BPLS) (39). PLS is a multivariate statistical method that 
identifies maximal covariance [latent variables (LVs)] between 
sets of independent measures and allows for both spatial and 
temporal interpretation. It is mathematically similar to canoni-
cal correlation analysis. PLS analysis of neuroimaging data has 
been demonstrated as an effective method in SZ experiments 
with small samples and multicollinear measures (40, 41). 
BPLS is a type of PLS that allows for direct identification of 
multivariate patterns characterizing brain–behavior (in our case 
brain–accuracy) relationships rather than relying on inference 
via task performance. In BPLS, PLS solutions are constrained to 
the part of the covariance structure directly related to behavior. 
Importantly, the approach allows for analysis of all the relation-
ships between performance on the task across two days of learn-
ing for all participants and BOLD signal in all gray matter regions 
in one model, without the need to restrict analysis to specific 
regions of interest.

A correlation matrix between accuracy for each learning run 
and the BOLD signal at each voxel for each correct trial across 
both fMRI scans (10 learning runs) was created for each subject. 
Given that the hemodynamic response function for each condi-
tion lasts for several scans, PLS utilizes a “lag window” (i.e., a 
short signal segment) to best capture the response of each voxel. 
The lag-window size was 8 (TR = 2, 16 s), beginning at the offset 
of the auditory pseudoword (600  ms from beginning of each 
trial in the learning runs). The event markers were set at the 
beginning of this lag window to best capture language-related 
activation (35). The correlation matrix was then decomposed 
using singular value decomposition to produce LVs that cap-
ture the optimal relationship between learning accuracy and 
BOLD signal across the entire brain. Essentially, behavior-PLS 
is mathematically identical to a multivariate seed-connectivity 
analysis wherein accuracy is the “seed” and the results demon-
strate how accuracy covaries with brain activity across subjects 
during the experimental learning runs. Each LV contains the 
spatial pattern displaying brain regions where BOLD activity is 
mostly strongly related to learning performance for each group. 
The LVs consist of the correlation strength (i.e., the “singular 
value”) and the weighting pattern across all brain voxels that 
optimally expresses the correlation (i.e., the “brain saliences”). 
Brain scores, akin to component scores in PCA, are summary 
measures for each participant that shows the degree to which a 
participant expresses the multivariate spatial pattern captured by 
a given latent variable.

Significance testing of the resultant multivariate relationship 
between brain functional patterns and learning accuracy was 
assessed with 1,000 permutation tests of the singular value (SV) 
associated with each latent variable. As this operation is done on 
the entire data structure simultaneously, there is no need to correct 
for multiple comparisons at the voxel level. Bootstrap resampling 
(1,000 resamples) was used as a measure of the robustness of the 
voxel contribution to the effect.

Each voxel’s bootstrapped mean salience was divided by its 
estimated SE to obtain a normalized estimate of robustness [i.e., 
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TaBle 1 | Demographics and neurocognitive tests.

hc sZ p-Value

Age (±SD) 30.8 ± 8.2 32.3 ± 10.6 0.54
Male/female (χ2) 7/5 8/4 0.67
Education (years) 17.3 ± 2.5 14.3 ± 4.1 0.039
Number languages spoken 2.1 ± 1 1.2 ± 0.4 0.007
WRAT 53 ± 3.3 50.2 ± 5.5 0.14
RBANS total (percentile scores) 67.6 ± 18.5 32 ± 28.5 0.002
Immediate memory 55.6 ± 29.8 29.8 ± 28.7 0.047
Delayed memory 50.9 ± 27.4 31.2 ± 20.4 0.062
Visuospatial/constructional 76.3 ± 20.9 49.2 ± 35.0 0.037
Language 57.6 ± 19.9 34.8 ± 26.3 0.03
Attention 68.6 ± 27.3 38.4 ± 34.4 0.03

HC, healthy control group; SZ, schizophrenia group; WRAT, Wide Range Aptitude Test; 
RBANS, Repeated Battery for the Assessment of Neuropsychological Status.
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“bootstrap ratio” (BSR)]. A BSR of 3.00 approximates a 99% 
confidence interval. Our tables and images were thresholded at 
a BSR of 3.

Correlation matrices for the brain scores for the significant 
LVs across all 10 learning runs were constructed. High correla-
tions that tracked across a series of learning runs would indicate 
consistent movement through the learning task for a given 
individual subject. For example, assuming consistent effort and 
a clear underlying learning principle of the task, behavioral per-
formance for any given subject on any given run should correlate 
with performance on subsequent runs. Similarly, one could make 
the same assumptions for brain activity and deviations from this 
could indicate a change in brain “strategy” due to changes in the 
underlying learning processes.

The mean of the brainscores for a given series of runs that 
represented a coherent brain–behavior relationship was calcu-
lated for each individual for each significant LV. The mean was 
then correlated with symptom (PANSS), neuropsychological 
scores (RBANS), and antipsychotic medication dose (CPZ 
equivalents) (42) to better understand characteristics of par-
ticipants with a given brain–behavior pattern. The approach 
also had the benefit of reducing the data so as to reduce risks 
of spurious conclusions inherent with multiple correlational 
analyses.

resUlTs

Demographic and clinical characteristics
Table  1 displays demographic and clinical characteristics of 
the study participants. Participants were matched with regard 
to sex and age and were found to differ in years of education 
and additional languages spoken. The neurocognitive assess-
ment showed significant differences between the groups on all 
subscales except for delayed memory. The SZ group was in the 
“mildly symptomatic” range of psychopathological symptoms 
as estimated via the PANSS (positive subscale  =  11.8  ±  2.6, 
negative subscale = 9.5 ± 3.1, general subscale = 24.0 ± 3.6, and 
total = 45.2 ± 6.2) (43). Using Woods’ guidelines, the mean antip-
sychotic dose in chlorpromazine equivalents for the SZ group was 
474 mg (42).

Behavioral Data
There was a significant learning effect for both groups across 
the 10 learning runs [F(4, 89) = 116.43, p = 0.0001] (Figure 2). 
Both groups showed similar learning rates over the 2 days [F(4, 
89)  =  0.80, p  =  0.53]. The SZ group scored at “chance” in the 
first run and began to acquire the lexicon in the second run. This 
behavioral difference set the stage for the remaining acquisition of 
the lexicon and explained the main group effects [F(1, 22) = 7.82, 
p = 0.011]. Aside from this initial difference, the curves tracked 
each other for the duration of the experiment and performance 
plateaued for both groups at the same time. Reaction time data 
mirrored the accuracy data with both groups showing an expected 
decrease in reaction time for correct responses across 10 runs 
[F(2.8, 61.69) = 11.79, p = 0.0001], main effects of group with the 
HC group being faster overall [F(1, 22) = 18.43, p = 0.0001], and 
no interaction of run by group.

imaging results
Behavior-PLS Analyses
The initial behavior-PLS analysis was conducted on both groups 
simultaneously. Three significant LVs emerged that character-
ized patterns of overlap and differences between brain regions, 
supporting accurate learning for both groups. Similar to a mul-
tivariate factorial ANOVA, these patterns represented group by 
learning run interactions and showed no main effects of group or 
learning run. To disentangle these interactions, we performed the 
analysis within each group, similar to how one would proceed to 
decompose an interaction effect in ANOVA.

Analysis of the HC group data extracted two significant LVs 
that characterized the brain–accuracy relationship across all 
10 learning runs (Figure 3; Tables 2 and 3). There was a clear 
demarcation for the HC group between the early (runs 2 through 
7) and late (runs 8 through 10) brain patterns supporting accurate 
learning. The first LV emerged as the most statistically robust 
spatiotemporal pattern of all patterns for both groups [p < 0.000, 
SV = 188.9, crossblock covariation (CCV) = 24.6%] (Figure 3; 
Table 2). It characterized the brain–accuracy relationship for the 
last three learning runs. There was widespread brain distribution, 
with dominant areas including subcortical regions, particularly 
dorsal striatum and thalamus bilaterally, premotor regions, 
bilateral inferior frontal (opercularis and triangularis) regions, 
left fusiform gyrus, and cingulate cortices (anterior, mid, and pos-
terior). Results should be interpreted as showing the relationship 
between engagement of brain areas covarying with performance. 
Therefore, control participants showing more relative activation 
in these regions at the end of the task were better learners overall.

The second HC LV robustly characterized the brain–accuracy 
relationship across runs two through seven (p < 0.000, SV = 176.1, 
CCV = 21.4%) (Figure 3; Table 3). This LV highlighted distrib-
uted areas used for the first phase of learning. Here, dominant 
areas for the pattern were left middle and left superior frontal, 
right inferior occipital regions, bilateral cerebellar, and bilateral 
hippocampi. Those with less relative activity in these areas dem-
onstrated better learning performance. Further analysis focused 
on smaller voxel-clusters showed that those HC with greater 
bilateral opercular activity were more successful learners of the 
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FigUre 2 | Behavioral learning curves for both groups: (a) accuracy and (B) reaction time. (c) Accuracy correlation matrices across all 10 learning runs for 
each group. The primary difference between the groups occurs in the first learning run, which is consistent with the finding that control participants began learning 
the lexicon in the first run, whereas the schizophrenia participants did not start acquiring the lexicon until the second run (see learning curves). Note that during the 
first learning run, there was 50% less “learning” opportunity than subsequent runs given that correct responses on the initial presentation of any given “correct” 
pairing would be due to chance.
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lexicon. In this LV, the first learning run did not contribute to the 
dominant pattern. As previously noted, for half of the first run, 
there was no operative learning principle given that this was the 
first exposure to a given correct pairing so here it is evident that 
there is a brain difference between a “guessing strategy” and a 
“learning strategy” per se.

Analysis of the SZ group data also extracted two significant 
LVs that characterized brain–accuracy relationships across all 10 
learning runs (Figure  4). There was some separation between 
early and later learning, but the demarcation between these 
phases was less distinct than in the HC group without a clear 
shift to a pattern incorporating widespread dorsostriatal activa-
tion. Each LV captured some information about practice-related 
learning from start to finish. In contrast to the HC group, the 
first run did not separate out from the remaining runs in either 
of the LVs.

The first LV (p < 0.000, SV = 152.2, CCV = 22.3%) (Figure 4; 
Table 4) showed that BOLD variation in: bilateral superior and 
middle temporal gyri, bilateral middle occipital gyri, bilateral cal-
carine gyri, bilateral superior frontal, right hippocampal, and left 
caudate regions related to performance for the SZ group. In this 

pattern, more relative activation in bilateral superior temporal 
gyri, bilateral occipital gyri, and right hippocampal and parahip-
pocampal areas related to greater learning accuracy. Those with 
less activity in caudate cortices compared to other participants 
with SZ were better learners of the lexicon. Additionally, there 
were differences in the directions of the correlations for some 
regions such as calcarine gyri, middle temporal gyri, and supe-
rior frontal cortices. More activity in left calcarine gyri and left 
middle temporal gyri and less activity in the same regions on the 
right correlated with better performance. In the superior frontal 
regions, more right-sided engagement and less left-sided engage-
ment correlated with better learning performance. Similar to HC, 
secondary analyses that focused on smaller cluster sizes showed 
that in this LV bilateral opercular activity positively covaried with 
learning performance.

The second LV showed the brain–accuracy relationship pri-
marily for the first four learning runs (p = 0.05, SV = 130. 00, 
CCV = 16.3%) (Figure 4; Table 5) and a pattern that differenti-
ated between start and end of the study. There was an inverse 
relationship between the brain–behavior for this strategy at the 
start of the experiment vs. the end. Dominant areas for this 
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FigUre 3 | Multivariate relationships between learning performance and blood oxygenation level-dependent (BOlD) signal for healthy control (hc) 
participants. (a) Spatial pattern for late brain–behavior relationship (LV1, lag 2, see Table 2) showing brain regions engaged in late learning processes (learning 
runs 8 through 10) and (B) correlation magnitudes (Pearson r) for this pattern. HC with more BOLD activity relative to other HC in these regions were more 
successful learners. (c) Spatial pattern for early brain–behavior relationships (LV2, lag 5, see Table 3) showing brain regions engaged in early learning and the 
corresponding (D) correlation magnitudes (Pearson r) for each learning run in this multivariate pattern. Early in the experiment (runs 2 through 7), HC who had less 
relative BOLD activity in blue regions [negative bootstrap ratio (BSR)] had higher accuracy scores. Both early and late patterns had a permuted p < 0.0001. Error 
bars on the correlation bars are the bootstrapped 95% confidence intervals. Robust voxels are displayed at a BSR > ±3.
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pattern included primary auditory and visual cortices, anterior 
cingulate cortices, cerebellum, parahippocampal and hippocam-
pal, bilateral opercular, and left middle frontal regions. In this 
pattern, participants with SZ who had more activity in primary 
auditory and visual regions and anterior cingulate cortices during 
the first four learning runs were better early learners. Conversely 
in this LV, less relative activation during the first four learning 
blocks in cerebellar, hippocampal, bilateral opercular, and left 
middle frontal regions related to better learning.

Brain–Behavior Patterns and the Relationship to 
Symptoms/Neuropsychological Tests
The brainscore matrices (Figure 5) illustrate the consistency of 
spatial patterns within each group. The HC show two distinct 
patterns characterizing movement through the experiment. The 
brainscore matrix for the second LV (top right) shows a high 
correlation between brainscores across all 10 learning runs. In 
the first LV (top left), in contrast, there is a high intercorrelation 
for brainscores from runs 8 through 10 that does not correlate 
with preceding runs, which could indicate a shift in learning 

toward another underlying process (e.g., automatization). The 
pattern for LV1 (bottom left) for the SZ group is similar to the 
correlation matrix for the LV2 for the controls, with high cor-
relation between brainscores across all runs. Again, this suggests 
consistent movement through the two experimental days for 
individuals in the SZ group manifesting this brain–behavior pat-
tern. The bottom right matrix (LV2) for the SZ group illustrates 
an alternative brain–behavior relationship manifest during the 
first learning day that did not substantively carry over into the 
second day of learning.

Table  6 lists the correlation between brainscores and neu-
ropsychological and symptom scores. There were significant 
relationships between the brainscores in LV1 for the SZ group 
in total RBANS scores and all subscales of the RBANS (exclud-
ing attention) at the 95th percentile. In other words, those with 
SZ who performed better on cognitive measures, particularly 
language, were more likely to demonstrate this brain–behavior 
relationship when learning accurately. Symptom scores were 
significantly correlated (weakly) with brainscores, but only when 
taken in total. Thus, those with a higher level of symptomatology 
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TaBle 3 | cluster peaks, coordinates, and bootstrap ratios (Bsr) for second brain–accuracy network (lV2) for healthy control participants.

lag Mni X (mm) Mni Y (mm) Mni Z (mm) Bsr cluster size (voxels) region

2 28 −93 −8 −8.6 298 R Inferior occipital gyrus
2 −38 12 49 −8.4 84 Left middle frontal gyrus
2 −24 −77 −52 −6.2 97 L cerebellum (IX)

3 −44 51 −12 −7.7 121 Left IFG (orbitalis)

4 28 −93 −8 −6 105 Right inferior occipital gyrus

5 −39 54 9 −9.7 147 Left middle frontal gyrus 
5 52 −67 −24 −7.8 438 Right cerebellum (crus 1)
5 −52 2 −43 −7 175 L inferior temporal gyrus
5 32 −17 −13 −6.7 55 R hippocampus (Prob 70% that is CA)
5 −14 −85 −50 −6.6 110 L cerebellum
5 −23 62 10 −5.4 51 L superior frontal gyrus
5 −1 41 −28 −5.1 56 L medial orbital gyrus

7 14 −85 23 −7.4 148 R cuneus
7 8 −96 −11 −5.2 64 R lingual gyrus
7 −29 −78 −57 −4.7 52 L cerebellum

TaBle 2 | cluster peaks, coordinates, and bootstrap ratios (Bsr) for first brain–accuracy network (lV1) for healthy control participants.

lag Mni X (mm) Mni Y (mm) Mni Z (mm) Bsr cluster size (voxels) region

1 −5 −28 47 8.1 137 Left middle cingulate cortex
1 33 8 24 7.5 130 Right inferior frontal gyrus (pars opercularis)
1 −24 −18 51 6.2 87 Left supplementary motor area (SMA)
1 −58 −39 5 6.1 109 Left middle temporal gyrus
1 −40 15 27 5.8 85 Left inferior frontal gyrus (pars triangularis)
1 54 −21 7 5 56 Right superior temporal gyrus

2 −5 −12 57 8.2 801 Left SMA
2 −14 −24 −1 6.6 125 Left thalamus
2 33 −3 31 5.5 96 Right precentral gyrus

3 −41 −49 −24 10.3 1,293 Left fusiform gyrus
3 −6 6 63 8.8 2,250 Left SMA
3 40 −67 29 8.6 54 Right middle occipital gyrus
3 −10 −54 −41 5.8 57 Left cerebellum (IX)

4 −13 −13 −12 8.9 1,514 Left posterior thalamus
4 21 −61 1 8.1 72 Right lingual gyrus
4 6 −49 52 7.9 195 Right precuneus
4 −14 −72 −2 7.8 114 Left lingual gyrus

5 −26 −9 −11 8.9 931 Left putamen
5 −6 12 38 8.4 916 Left middle cingulate cortex
5 −33 −62 −40 6.9 110 Left cerebellum (crus 2)
5 3 −84 −2 6.4 57 Left calcarine gyrus
5 −27 19 8 5 62 Left insula lobe

6 −31 −1 54 8.7 1,652 Left precentral gyrus
6 7 28 21 5.7 155 Right anterior cingulate cortex
6 21 −51 −29 5.7 56 Right cerebellum (VI)

7 −17 −10 13 8.6 665 Left caudate
7 −1 4 49 8 219 Left SMA
7 −3 28 24 6.3 80 Left anterior cingulate cortex

Lag refers to the period, in seconds, after stimulus onset during which the peak occurred. X, Y, and Z are the voxel coordinates of the peak in each cluster in MNI space. BSR 
represents each peak voxel’s PLS parameter estimate divided by its SE and is a measure of robustness. Positive BSR regions are areas where more blood oxygenation level-
dependent activity relates to better accuracy and vice versa. A BSR threshold of 3 (roughly 99% confidence interval) was used as a cutoff to identify cluster peaks for this table. 
Cluster size refers to the number of contiguous voxels included in the cluster.
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tended also to activate this network of regions to learn accurately. 
The brainscores for LV2 for the SZ group showed no significant 
correlations with any of the neurocognitive or symptom meas-
ures. Notably, there was also no significant correlation between 
brainscores for either LV or antipsychotic medication dosage, 

suggesting that the brain–behavior relationships were not explain-
able by medication effect.

The HC group showed a very different relationship between 
brainscores and neurocognitive measures. In the LV1, there was a 
significant relationship of moderate strength between brainscores 
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FigUre 4 | Multivariate relationships between learning performance and blood oxygenation level-dependent (BOlD) signal for schizophrenia (sZ) 
participants. (a) Spatial pattern for dominant brain–accuracy relationships that spanned both days of experiment with little modulation between days [LV1, 
p < 0.0001, crossblock covariation (CCV) = 23.3%] and (B) correlation magnitudes (Pearson r) for each learning run in this multivariate pattern. Warm colors (top 
panel, lag 3, see Table 4) illustrate brain regions engaged during learning where higher-performing participants with SZ have more BOLD activity. Cool colors 
(bottom panel, lag 7, see Table 4) show brain regions where poorer learners had more BOLD activity or conversely better learners had less relative BOLD activity. 
(c) Spatial pattern for secondary brain–accuracy relationships (LV2, p < 0.05, CCV = 16.3%) and (D) correlation magnitudes for this pattern (top panel, lag 1, 
Table 5 and bottom panel, lag 7, Table 5). Robust voxels are displayed at a bootstrap ratio > ±3.

TaBle 4 | cluster peaks, coordinates, and bootstrap ratios (Bsr) for first brain–accuracy network (lV1) for participants with schizophrenia.

lag Mni X (mm) Mni Y (mm) Mni Z (mm) Bsr cluster size (voxels) region

2 −32 −81 11 6.7 55 Left middle occipital gyrus
3 54 −19 20 4.8 61 Right superior temporal gyrus
3 −53 −30 4 4.1 52 Left superior temporal gyrus
3 16 −26 −23 4.1 63 Right parahippocampal gyrus

4 34 −75 24 4.9 129 Right middle occipital gyrus
4 −32 −82 6 3.8 51 Left middle occipital gyrus

5 −23 −71 7 5.7 93 Left calcarine gyrus

6 −9 47 8 −5.1 81 Left anterior cingulate gyrus
6 25 36 16 4.6 62 Right superior frontal gyrus
6 3 −29 19 3.9 62 Right posterior cingulate

7 55 −40 −9 −5.4 54 Right middle temporal gyrus
7 −5 5 2 −4.9 117 Left caudate (head)
7 −15 −40 72 −4.6 87 Left postcentral gyrus
7 11 −93 −3 −4.4 100 Right calcarine gyrus (area 17)
7 −14 18 55 −3.6 51 Left superior frontal gyrus
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and immediate memory [r = 0.63, CI95 = (0.27–0.87)] and between 
brainscores and total RBANS [r  =  0.45, CI95  =  (0.15–0.72)] at 
the 95th percentile. In other words, HC who scored higher in 

general on cognitive measures, and particularly on measures of 
immediate (working) memory, were more likely to demonstrate 
this brain–behavior relationship. None of the other individual 
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TaBle 5 | cluster peaks, coordinates, and bootstrap ratios (Bsr) for second brain–accuracy network (lV2) for participants with schizophrenia.

lag Mni X (mm) Mni Y (mm) Mni Z (mm) Bsr (mm) cluster size (voxels) region

1 −35 −32 12 6.1 178 Left Heschl’s gyrus (TE 1.1)
1 −19 39 −4 5.8 328 Left anterior cingulate gyrus
1 34 −70 −7 5 86 hOC4v (extrastriate visual cortex)
1 −39 8 24 4.9 94 Left inferior frontal gyrus
1 50 −20 7 4.4 78 Right superior temporal gyrus (TE 1.0)

2 3 −52 −32 −4.9 412 Cerebellar vermis (9)

3 −49 10 3 −7.2 133 Left inferior frontal gyrus (pars opercularis)
3 47 22 1 −5.1 72 Right inferior frontal gyrus (pars triangularis)
3 −45 −82 14 −5 111 Left middle occipital gyrus
3 −2 −47 37 −4.2 110 Left precuneus

4 15 −55 15 −3.9 59 Right precuneus

5 60 14 24 −8.5 379 Right inferior frontal gyrus (pars opercularis and triangularis)
5 −10 −57 −60 −7.8 2,156 Left cerebellum (IX)
5 −62 −33 38 −6.6 315 Left supramarginal gyrus
5 −39 38 30 −5.5 401 Left middle frontal gyrus
5 −18 −60 −18 −6.2 86 Left cerebellum (VI)
5 33 −17 −23 −5.8 100 Right parahippocampal gyrus
5 −22 −26 −9 −5.6 85 L hippocampus

6 −14 −76 23 −6 99 Left superior occipital gyrus
6 −53 −47 43 −4.5 59 Left inferior parietal lobule
6 15 −56 10 −4.5 126 Right calcarine gyrus
6 16 −40 58 −3.8 57 Right postcentral gyrus (area 3b)

7 −14 −56 −56 −5.8 549 L cerebellum (IX)
7 −34 55 14 −5.4 57 L middle frontal gyrus
7 43 17 27 −4.3 56 R Inferior frontal gyrus (pars triangularis)

FigUre 5 | Brainscore correlation matrices. Correlation of brainscores from the brain behavior-PLS analysis within each group. Healthy controls showed two 
distinct patterns: covariation clustering in the late learning phases (LV1) and general correlations across learning (LV2). The schizophrenia group showed a similar 
general pattern (LV1), but the secondary pattern mapped too early, rather than late, learning (LV2).
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cognitive domains were significantly correlated. Lastly, there were 
no significant correlations between the brainscores of LV2 and 
any of the RBANS scores.

summary of results
Both participant-groups benefited from practice in that they 
learned the lexicon. The differences between the behavioral 
learning curves of the two groups can primarily be explained by 
the first two runs. While the HC showed accuracy levels beyond 
chance in this first run, the SZ group did not. Beyond this point, 
the two groups demonstrated learning at the same rate over the 
course of the 2 days.

The most salient finding was that although there was anatomi-
cal overlap between the brain areas engaged for successful lexicon 
learning for both groups, the timing of this engagement and rela-
tive importance of these regions differed markedly between the 
groups. The HC group showed a clear and robust differentiation 
in brain patterns for successful lexicon learning between early 
and late stages of the experiment that were not manifest in the SZ 
group despite comparable behavioral performance and a similar 
plateauing of performance at the end of the experiment.

For the HC group, practice of the learning task over the 
2 days lead to a clear transition toward a unique network of brain 
activity supporting successful learning for the last three runs 
of the experiment. The HC pattern at this late stage was widely 
distributed and showed regional overlap with the pattern sup-
porting learning earlier in the experiment for the HC. However, 
early- vs. late-learning differences were dominated by widespread 
increased engagement in subcortical areas, particularly dorsos-
triatal and thalamic regions. At this later stage, more relative 
engagement of these areas related strongly to more accurate 
learning. Furthermore, the brainscores at this learning stage did 
not correlate with those at an earlier stage, suggesting that this 

pattern represented a fundamental shift in the brain–accuracy 
network. Lastly, the HC who were most likely to manifest this 
late pattern were those who scored highest on cognitive estimates 
of working memory abilities out of the scanner.

In contrast, the SZ group showed a different brain–accuracy 
relationship that did not transition from “early learning” to a 
clearly demarcated “late learning” phase. Instead, the SZ group 
showed patterns that differentiated successful lexicon learners on 
the basis of relative engagement of secondary sensory cortices 
involved in perceptual processing and persistent medial–tem-
poral engagement. While bilateral regions were engaged in the 
brain–accuracy networks in SZ, better learners showed greater 
laterality in a number of regions. Additionally, persons in the SZ 
group were more likely to manifest this relationship if they scored 
higher on cognitive measures and displayed more symptoms of SZ 
(via the total PANSS score). This second finding may seem non-
intuitive; however, it suggests that this particular brain–behavior 
relationship represents a coherent compensatory strategy specific 
to SZ per se.

DiscUssiOn

The multisession design of our study as well as the multivari-
ate brain–behavior analysis allowed us to observe the systems 
supporting practice-related lexicon-learning in  vivo. The two 
dominant findings include differences between early- and late-
learning brain engagement patterns related to successful learning 
for each group. Compared to the HC group, relative engagement 
in perceptual processing and persistent medial–temporal lobe 
engagement played a larger role in driving successful learning for 
the participants with SZ.

The HC participants engaged globally distributed cortical and 
subcortical regions to support accurate lexicon learning through-
out the experiment. Prefrontal regions, including left-lateralized 
middle, superior frontal, and medial orbitofrontal regions, were 
engaged in early learning processes, but were but were not part of 
the brain–accuracy relationship in the late stages for the controls. 
After a period of practice, behavior metrics plateaued and the 
HC shifted into a clearly demarcated stage of late learning at the 
end of the second day of scanning. The brainscore matrices in 
Figure 5 support this transition suggesting a fundamental shift 
in underlying processes when engaging this late brain–accuracy 
network.

In this late learning phase, neostriatal (caudate and putamen) 
engagement differentiated better from worse learners in the HC. 
The neostriatum is crucial for the incremental learning of associa-
tions through practice that underlie both motor and non-motor 
habit learning (10). A recent line of inquiry suggests that the 
associative (caudate and anterior putamen) and the sensorimo-
tor (putamen) striatum have different roles in learning and the 
shift from effortful learning toward automaticity. The associative 
striatum is active in early learning and then activity gradually 
diminishes; the sensorimotor striatum becomes engaged in the 
transition from goal-directed to automatic or habit-like perfor-
mance [see Ref. (12) for review]. Taken from this perspective, 
the latent variable characterizing late learning in our experiment 
seems to be capturing the transition from goal-directed to 

TaBle 6 | correlation between brainscores for first lV for each group 
and neurocognitive and clinical measures.

Measures control group 
brainscores (lV1)

schizophrenia 
group brainscores 

(lV1)

r 95% ci r 95% ci

Attention 0.11 (−0.18 to 0.52) 0.22 (−0.53 to 0.58)
Immediate memory 0.63 (0.27 to 0.87) 0.41 (0.19 to 0.74)
Delayed memory 0.06 (−0.42 to 0.59) 0.34 (0.02 to 0.60)
Language 0.23 (−0.07 to 0.53) 0.51 (0.07 to 0.78)
Visuospatial construction −0.04 (−0.53 to 0.48) 0.49 (0.15 to 0.81)
Battery for the Assessment 
of Neuropsychological 
Status total

0.45 (0.15 to 0.72) 0.48 (0.18 to 0.78)

Positive and Negative 
Syndrome Scale (PANSS) 
general

n/a n/a 0.37 (−0.23 to 0.66)

PANSS negative n/a n/a 0.01 (−0.76 to 0.41)
PANSS positive n/a n/a 0.34 (−0.36 to 0.62)
PANSS total n/a n/a 0.36 (0.02 to 0.81)

Medication (cpz equivalent) n/a n/a 0.16 (−0.8 to 0.84)

Values presented in bolded font are statistically significant at the 95% confidence 
interval.
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automatic performance. The experimental design does not allow 
an absolute conclusion that automaticity has occurred, but given 
the brain–behavior results this interpretation is reasonable.

There are further reasons to suggest that this LV captures 
brain–behavior relationships as the HC shift toward late-learning 
processes in our experiment. Here, as noted, key domain-general 
prefrontal regions fall away in importance, while other compo-
nents of the domain-general control network in practice-related 
learning (e.g., anterior and middle cingulate cortices, bilateral 
lingual gyri) persist (14). Medial–temporal regions also followed 
a pattern of engagement consistent with early- vs. late-learning 
processes in the relational-learning literature (44). Lastly, the 
emergent contralateral SMA-accuracy engagement at this stage 
is consistent with studies that have shown sharp increases in SMA 
just as participants’ transition to automaticity in motor-learning 
paradigms (45).

The thalamus emerged late in the brain–accuracy network 
in the HC group. As a relay station with both reciprocal and 
unidirectional connections between cortical and subcortical 
structures, the thalamus plays an important role in sensory 
processing, motor and cognitive learning paradigms, including 
language and lexicon learning (46–48). The thalamus consistently 
emerges in later learning stages in the non-declarative motor-
learning literature (49). A study looking at early vs. late changes 
in simple motor-learning task with a brief period of practice 
echoed many of our findings with the striatum, cingulate, and 
thalamic activity providing the most dissociation between early 
and late learning (50). The role of the thalamus in the language 
and lexicon-learning literature is still under debate. However, in 
general, cortico–thalamic interactions are thought to mediate 
phonologically based knowledge driven lexical processes whereas 
thalamic–basal ganglia interactions drive general rule-based 
learning, less specific to language per se (47, 51). Taken in total, 
the emergence of thalamus, putamen, and SMA and the reduction 
in prefrontal engagement in this late learning brain–accuracy 
network suggests a shift away from explicit effortful learning 
processes toward procedurally driven automatic processes for the 
HC, but not the SZ group.

Despite the same amount of inter-experiment practice, similar 
learning rates and a plateauing of performance at the end of the 
experiment, the SZ group did not transition to the same demar-
cated late-learning brain–accuracy network demonstrated by 
the HC group. These differences in cortico-subcortico-thalamic-
cerebellar circuit engagement between the two groups can be 
contextualized within the “cognitive dysmetria” model of SZ 
(52, 53). As per this model, disruptions in distributed cortico-
thalamic-cerebellar circuitry account for many of the observed 
cognitive deficits in the disorder, including those relying on 
planning, precise timing, updating, and coordination of input 
for learning purposes. Our results are in line with these findings. 
Consistent with the model, the SZ group did not transition to a 
brain–accuracy network that engaged key subcortical, thalamic, 
and cerebellar regions as in the high-performing controls with 
the best working memory capacities. Evidence is accumulating 
for the thalamus as a key node in this brain–learning network in 
SZ (54). Studies have demonstrated thalamic hypoconnectivity 
between frontal and striatal regions and hyperconnectivity in 

sensory, somatosensory, and motor regions in chronic, early, and 
at-risk for SZ groups (55–58). Additionally, recent anatomical 
studies suggest a relationship between (decreased) thalamic 
volume and language learning skills in SZ who has been here-
tofore underappreciated (59). Our results suggest that aberrant 
functional thalamic engagement also impacts practice-related 
lexicon-learning processes in SZ, but further connectivity analy-
ses are needed to fully characterize the relationship.

Instead of the early- vs. late-learning patterns observed in 
the HC, the SZ participants show a dominant brain–behavior 
relationship supporting accurate learning that spanned all 10 
learning runs. Rather than a transition toward subcortical-
thalamic-cerebellar engagement, better learners with SZ showed 
persistent engagement of medial–temporal lobe structures, more 
engagement of bilateral auditory and visual processing cortices 
and persistent superior frontal engagement in the brain–accuracy 
network. The pattern suggests that for the SZ group at this stage 
there was brain engagement consistent with effortful learning 
while moving through the entire experiment, and there was no 
transition from early frontal–hippocampal mediated processes 
to later subcortically mediated ones even as behavior plateaued. 
The correlation between this brain–accuracy network and better 
performance on a number of cognitive measures suggests that 
this represents a compensatory strategy specific to the SZ group.

Our lexicon-learning task mimics how one might learn a 
second language in real-life. Initial learning was explicit with 
instructions given to subjects that they would be trying to learn 
a new vocabulary. Encoding would therefore rely on declarative 
mechanisms as participants effortfully attended to the stimuli. As 
the task progressed, there was no feedback given, rather there 
was reliance on statistical co-occurrence with correct-pairings 
occurring more frequently than incorrect pairings. Initially, the 
HC group engaged medial–temporal and prefrontal regions to 
learn the lexicon in the early-learning stages, with better learners 
needing to engage these regions less (Figure 3). Here, less engage-
ment covarying with better performance is likely due to early 
learning, reduced novelty, and efficient encoding as HC quickly 
begin to shift toward non-declarative processes. This parallels 
the findings of Breitenstein et al. who originally developed this 
lexicon-learning task and measured BOLD signal changes across 
1 day of training in HC (35).

The situation with the SZ group was quite different in these 
regions. The hippocampus was relevant in the first (most robust) 
brain pattern that spanned all 10 of the learning runs. Unlike in 
the HC, the hippocampus did not disengage at the end of the 
early stage. In this pattern, persistent engagement related to better 
learning performance. More parahippocampal engagement in 
this latent variable also related to better cognitive performance 
out of the scanner suggesting that here these medial temporal 
regions were persistently engaged in higher-performing par-
ticipants with SZ to compensate for inefficient early learning, 
more effortful or prolonged processing (60). Certainly, deficits in 
declarative memory are well documented in SZ, with particular 
impairments in verbal memory (61, 62). There seems to be 
particular challenges in relational (vs. item) learning and these 
impairments have been shown to relate to impairments in both 
dorsolateral prefrontal cortical and hippocampal activation (19). 
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SZ group who showed more engagement in bilateral MOG (vs. 
unilateral in the HC) were more successful learners. Thus, those 
who were able to increase relative activity in bilateral perceptual 
processing regions in both auditory and visual regions relative to 
other participants with SZ while practicing the task were better 
lexicon-learners overall.

Given the potential impact of antipsychotic medications on 
brain findings in cognition (71, 72), it is important to highlight 
the lack of antipsychotic medication effect that we found. Given 
our cohort, though, we are unable to fully disentangle the role that 
antipsychotic medications play in the brain–accuracy networks; 
however, we were able to establish that the amount of medication 
did not drive our findings. Other limitations include the small 
size of our final sample. Given this, results should be viewed 
as preliminary and validated through replications with a larger 
sample in the future. That said, a number of mitigating factors 
including the robustness of our findings, the use of resampling 
statistics and direct brain–behavior measurements make the 
results, as they stand, compelling. Lastly, there were behavioral 
differences between groups on the learning task thus some of 
the results may be specific to performance rather than solely 
disease state. However, our analysis also examined the variations 
supporting accuracy for each group independently thus relying 
on within-group variance lessens the impact of performance 
differences.

In conclusion, our results point to differences in the network 
transitions from early to later learning in SZ. Where the HC par-
ticipants moved quickly away from a brain engagement pattern 
suggestive of effortful explicit learning processes and toward 
subcortically driven implicit ones, the SZ participants did not. 
This difference was in spite of similar overall learning rates. 
These results give insight into how, in more challenging learning 
situations, the capacity to successfully integrate new informa-
tion and skills could potentially fail in SZ. On the other hand, 
going forward our findings may also help construct estimates 
of learning potential for various rehabilitation strategies. For 
instance, bottom-up neuroplasticity-based cognitive rehabilita-
tion such as auditory training in which there is repeated training 
in processes such as basic tone discrimination, has been shown 
to be a very promising remediation treatment for cognitive 
deficits in SZ (73). However, there is significant heterogeneity 
in individual response to this treatment (74, 75). Our results 
both shed light on the possible underlying brain–behavior 
mechanisms in responders and may also, in the future, serve 
as a predictive biomarker for rehabilitation potential. Those 
who manifest the brain–behavior relationship characteristic of 
better learners in our experiment, with more relative engage-
ment in auditory processing regions may also be more likely 
to respond to auditory-targeted cognitive training and other 
neuroplasticity-based remediation programs.

eThics sTaTeMenT

The study was approved by two ethics committees: (1) The 
Research Ethics Board (REB) of the CAMH and (2) The REB of 
Baycrest Health Sciences. Both are teaching hospitals affiliated 
with the University of Toronto. All participants provided written 

Consistent with the meta-analytic findings of Ragland et al., the 
increased engagement of medial temporal regions in this key 
brain–accuracy network for the SZ participants in our study may 
also reflect compensation for the notable absence of dorsolateral 
and medial orbital prefrontal regions in this brain–accuracy 
network (63). While this compensatory process allowed some SZ 
participants to learn the lexicon more accurately, it did not lead 
to a transition to the striatal-thalamic-cerebellar engagement as 
seen in the HC participants.

The second latent variable for the SZ group captured an alter-
native early-learning process with spatial overlap in some regions 
with the early successful learning networks of the HC group. 
Similar to the HC group, in this network less relative activity in 
the HPC related to better learning performance. However, in the 
SZ group the pattern did not carry over into the second day as it 
did in the HC group suggesting that for the SZ group, this brain–
behavior pattern does not lead to “buildable” learned associations 
(see correlation matrix figure). The two brain–accuracy relation-
ships highlight the importance of neural context (64) by showing 
that medial temporal regions subserve different roles depending 
on the network in which they are embedded. While both of the 
patterns support more accurate learning in SZ, only the first does 
so in a tractable way that carries through the experiment.

Bilateral auditory and visual sensory processing areas were key 
regions in the dominant brain–accuracy pattern for the SZ group; 
those who had more relative activity in auditory and visual per-
ceptual processing regions were more accurate learners. Another 
way to consider this finding is that, for the SZ group, there were 
degrees of freedom in perceptual processing areas for the SZ 
group and those who could leverage activity in these areas could 
compensate and performed better whereas those who could not 
engage these regions were worse learners. These same regions 
played a similar, but much less dominant, role for the controls 
in late learning only. Thus, given the nature of the task, it is likely 
that all the controls were functioning optimally in processing 
and integrating incoming stimuli early in the task whereas the SZ 
group showed more variability in this capacity.

Auditory processing dysfunction is a common (but often 
underappreciated) impairment in SZ with broad downstream 
consequences for symptomatology, psychosocial and cogni-
tive functioning [see Ref. (65) for review]. Strongest evidence 
comes from neurophysiological studies showing tone matching 
abilities via reduced mismatch negativity (MMN) event-related 
potentials (ERPs). These ERPs are elicited when an auditory 
stimulus is different from what is anticipated given prior stimuli 
(e.g., auditory “oddball” paradigms). Reduced MMN is seen 
in SZ, in those at-risk for developing psychosis and when psy-
chosis is induced by ketamine (a NMDA-receptor antagonist) 
(66, 67). Studies also show impaired auditory gating at a basic 
filtering level (via PPI and P50 gating) in persons with SZ and 
their family members (68, 69). Less attention has been paid to 
visual processing in SZ, but evidence suggests that impairments 
in processing visual stimuli and integrating them with auditory 
cues are a frequent finding in the disorder (68, 70). In our study, 
the event markers were set to picture offset which means not 
measuring picture detection, but rather the processing and rela-
tional integration of the incoming perceptual information. The 
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