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In this short review, we want to summarize the current findings on the role of vitamin-D in 
multiple sclerosis (MS), schizophrenia, and autism. Many studies have highlighted hypo-
vitaminosis-D as a potential environmental risk factor for a variety of conditions such as 
MS, asthma, cardiovascular disease, and, more recently, psychiatric diseases. However, 
whether hypovitaminosis-D is a potential causative factor for the development or activity 
in these conditions or whether hypovitaminosis-D may be due to increased vitamin-D 
consumption by an activated immune system (reverse causation) is the focus of intense 
research. Here, we will discuss current evidence exploring the role of vitamin-D in MS, 
schizophrenia, and autism and its impact on adaptive and innate immunity, antimicrobial 
defense, the microbiome, neuroinflammation, behavior, and neurogenesis. More work is 
needed to gain insight into its role in the underlying pathophysiology of these conditions 
as it may offer attractive means of intervention and prevention.
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viTAMiN-D BiOLOGY

Vitamin-D is a member of the family of steroid hormones together with sex hormones, retinoid, 
and cortisol. Vitamin-D has pleiotropic functions and plays an important role not only in calcium 
homeostasis and bone metabolism but also in regulating immune responses and hormonal and 
metabolic processes. Furthermore, it influences neurotropic and neuroprotective processes in the 
brain and may also impact on neurotransmission and synaptic plasticity (1–4). Its receptor has been 
found expressed in most tissues and organs (5).

Vitamin-D is the only steroid hormone not synthesized from cholesterol, and this exclusive 
metabolic pathway distinguishes it from all other steroid hormones and suggests important func-
tions (Figure 1). Life on earth began approximately 3.5 billion years ago, and vitamin-D became 
pivotal to the evolution of humankind. Through its role in calcium homeostasis and the endocrine 
system, vitamin-D played an important part in our movement from the ocean to land and in the 
subsequent development of the calcified skeleton of the terrestrial Homo sapiens (6–8). Human life 
started in surroundings abundant in ultraviolet B (UVB) rays, and to this day, people living in this 
environment have average vitamin-D levels around 115 nmol/L (9). Our subsequent settlement in the 
northern hemisphere was accompanied by skin color changes to improve light absorption. During 
the past 200 years, our lifestyle changed dramatically and occurs mainly indoors, culminating in sun 
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FiGuRe 1 | vitamin-D synthesis: schematic diagram of vitamin-D synthesis.
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avoidance education, and the introduction of sun blockers over 
the last 50 years, leading to widespread hypovitaminosis-D (10).

Vitamin-D consists of two forms, vitamin-D3 and vitamin-D2, 
which are both biologically inert. The biosynthesis of the active 
form of vitamin-D (calcitriol) starts from its prime precursor 
7-dehydrocholesterol and undergoes the key photochemical 
electrocyclization in the skin by irradiation with UVB light 
(at 290–315  nm), producing an intermediate that is spontane-
ously converted into vitamin-D3 (calciferol or cholecalciferol). 
Cholecalciferol is then transported to the liver, where it is 
enzymatically hydroxylated in the side chain at position 25 
(the number refers to the position in the molecule, which 
elicits its highly specific biological properties) to produce 
calcidiol (25-hydroxyvitamin-D3). Vitamin-D2 and vitamin-D3 
absorbed from the intestine are also metabolized in the liver. 
Calcidiol is subsequently converted to 1,25-dihydroxyvitamin-D 
[1,25(OH)2D] also known as calcitriol in the kidney by the action 
of the 1α-hydroxylase enzyme (11–13). Enzyme levels are con-
trolled by the parathyroid hormone, whose secretion is in turn 
triggered by low concentrations of calcium or phosphate (14, 15). 
The latter enzymatic hydroxylation reaction, producing calcitriol, 
has also been found to occur in lymphocytes and in the brain 
in microglia and probably in other locations (16). The half-life 
of calcidiol, which is dependent on vitamin-D-binding protein 
concentrations and genotype, is approximately 15 days and serves 
as a clinical measure of vitamin-D status, whereas the half-life of 
calcitriol is much shorter (5–15 h), therefore, its local production 
is advantageous (11, 17).

THe ROLe OF viTAMiN-D iN iMMuNiTY 
AND iMMuNOMODuLATiON

Vitamin-D is known for its skeletal effects; however, in this 
review, we will focus on non-classical vitamin-D physiology 

and its involvement in immunity and inflammation (Figure 2). 
Two major observations link vitamin-D to immunity. First, most 
proliferating immune cells express the vitamin-D receptor (VDR) 
for active vitamin-D. The VDR is expressed in immune cells of 
the adaptive and innate immune system, such as T-cells, B-cells, 
monocytes, macrophages, dendritic cells (DCs), and neutrophils 
(18). Additionally, immune cells exhibit an active vitamin-D 
metabolism with the expression of the rate-limiting enzyme for 
vitamin-D synthesis, 1α-hydroxylase (CYP27B1) (19). Immune 
cells are, therefore, able to synthesize and secrete vitamin-D in 
both an autocrine and paracrine fashion, indicating that vitamin-
D plays an important role in the immune system, where it affects 
antigen presentation, innate immunity, and T-cell activation, 
differentiation, and migration (19, 20).

THe iMPACT OF viTAMiN-D ON iNNATe 
iMMuNe ReSPONSeS AND 
ANTiMiCROBiAL ReSPONSeS

Genome-wide analyses and associated ex vivo and in vitro experi-
ments have clearly demonstrated the importance of vitamin-D in 
orchestrating innate immune responses and maintaining optimal 
antibacterial responses in humans. Our innate immune system 
recognizes pathogen-associated molecular patterns (PAMPs) 
with the help of the so-called pattern recognition receptors 
including toll-like receptors (TLRs) to mount successful immune 
responses for the successful eradication of pathogens. A role for 
vitamin-D metabolism and signaling in innate immunity was 
provided by a genome-wide approach, which showed that the 
macrophage response to Mycobacterium tuberculosis involved an 
endogenous, intracrine vitamin-D system. Exposure to a TLR-
2-interacting PAMP induced the expression of both CYP27B1 
and VDR in macrophages (21). Furthermore, expression of 
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FiGuRe 2 | effects of vitamin-D: schematic diagram of vitamin-D effects on the immune system, brain, and gut.
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antimicrobial proteins (cathelicidin, β-defensin-2, hepcidin anti-
bacterial protein) can be induced by vitamin-D in macrophages 
upon pathogen encounter (22). The complex induction involved 
cooperation between VDR and NF-κB, which is the major 
transcription factor that regulates genes responsible for both the 
innate and adaptive immune responses but is also implicated 
in neuronal plasticity and memory (23). The innate immune 
response comprises a pronounced inflammatory component, and 
vitamin-D counteracted these events by promoting hyporespon-
siveness to PAMPs via downregulation of TLRs on monocytes 
(24). In addition, other vitamin-D-mediated innate immune 
functions comprise the regulation of the nitric oxide pathway, 
iron metabolism, and autophagy, an intracellular degradation 
system thought to play an important role in neurodegeneration 
(19, 25).

THe iMPACT OF viTAMiN-D ON ANTiGeN 
PReSeNTATiON AND ADAPTive iMMuNe 
ReSPONSeS

Antigen-presenting cells are important players of our immune 
response and pivotal in priming and orchestrating adaptive 
immune responses. The function of monocytes, macrophages, 
and DCs can be modulated by vitamin-D as they exhibit an active 
intracrine vitamin-D system and express VDR and CYP27B1. 
Vitamin-D was also able to influence the differentiation of DCs 
(26). Furthermore, in  vitro addition of vitamin-D to antigen-
presenting cells inhibited the surface expression of antigens 
by major histocompatibility complex (MHC) class II and its 
costimulatory molecules, leading to reduced T-cell stimulatory 
capacity (27). Several studies highlighted a role for vitamin-D 
as inhibitor of T- and B-cell proliferation (28); however, it 
has become increasingly clear that the prominent effects of 
vitamin-D involve the modulation of the T-cell phenotype of 
CD8+ cytotoxic T-cells and T-helper (Th) cells. Several T-cell 
subgroups have been characterized according to their distinct 
cytokine profiles. Interestingly, vitamin-D directly exerted its 

immunomodulatory effects on T lymphocytes by inhibiting the 
production of pro-inflammatory Th1 cytokines (IL-2, IFN-γ, 
and TNF-α, considered to be the key mediators in graft rejec-
tion and autoimmune diseases) and stimulated the production 
of anti-inflammatory Th2 cytokines (IL-4, IL-5, and IL-10), 
which have immunoregulatory functions (29). Vitamin-D also 
drove immunomodulation by suppressing inflammatory IL-17-
expressing Th17 cells and promoted the production of regulatory 
T-cells (Treg) (30). Recent studies showed that Treg function 
correlated with serum concentration of vitamin-D in multiple 
sclerosis (MS) patients (31). Of interest is also the capacity of 
vitamin-D to influence T-cell homing (32).

The action of vitamin-D on cellular immune responses has 
been the focus of much research; however, not much is known 
on the effect of vitamin-D on B-cell homeostasis. However, it 
is known that the effect is not restricted to their IgG-producing 
capacity. Vitamin-D suppressed the differentiation of plasma 
cells and class-switched memory cells and regulated B-cell IL-10 
production (33, 34).

viTAMiN-D AND THe MiCROBiOMe

The gut is the largest immune organ in the human body, and the 
gut microbiome plays an important role in health and disease. 
The gut microbiota is thought to communicate with the brain 
and regulate central nervous system (CNS) homeostasis through 
immune, vagal, and metabolic pathways. Alterations in its com-
position have been implicated in a wide range of neurological and 
psychiatric conditions including MS, schizophrenia, and autism, 
which have been reviewed in detail elsewhere (35, 36). The effect 
of vitamin-D on the microbiome, and vice  versa, is less well 
researched, but a recent genome-wide association study (GWAS) 
showed that variation in the VDR influenced the composition 
of gut microbiota (37). This finding and the importance of the 
gut–brain axis in shaping behavior and brain development war-
rants further research as it will open up a new and exciting line 
of investigation.
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viTAMiN-D AND THe BRAiN

An increasing body of evidence suggests that vitamin-D is an 
important player in mature brain function and brain ontogeny 
(38). The effects of gestational developmental vitamin-D defi-
ciency in adult offspring led to persistent effects on brain anatomy, 
neurochemistry and function, where it impacted on neuronal 
differentiation, axonal connectivity, and dopamine ontogeny 
(39). Furthermore, vitamin-D influenced neural stem cells pro-
liferation, survival, and neuron/oligodendrocyte differentiation 
supporting its remyelinating and neuroprotective effects (40). 
The effect of hypovitaminosis-D on synaptic imbalances warrants 
further study.

The VDR was found expressed in the human and rodent brain, 
and its widespread distribution suggests that vitamin-D may 
have autocrine/paracrine properties. The strongest immunohis-
tochemical staining for the VDR and 1α-hydroxylase was found 
in hypothalamus and in the large neurons within the substantia 
nigra (16). Earlier studies using radiolabeled vitamin-D showed 
accumulation in nuclei of neurons, which suggested its role in 
regulating the production of several aminergic and peptidergic 
messengers and influencing the activity of certain sensory, motor, 
and endocrine–autonomic systems (41). The receptor was also 
found expressed in oligodendrocyte-like cells, human leukocyte 
antigen (HLA)-positive microglia, and glial fibrillary acidic 
protein-positive astrocytes (42).

Microglia cells are key players of the immune system in the 
CNS and play an important role in brain infections and brain 
development. Their activation interferes with neuronal survival 
by increasing oxidative stress and decreasing neurotropic sup-
port and has been linked to MS (43), schizophrenia (44, 45), and 
autism (46). As microglia cells play a pivotal role in neuroinflam-
mation and neurodegeneration, downregulation of their pro-
inflammatory cytokine production and release of free radicals by 
vitamin-D may be neuroprotective (47).

viTAMiN-D iN MS

Multiple sclerosis is an inflammatory, demyelinating disease of 
the CNS characterized by myelin loss, inflammatory lesions, 
and varying degrees of axonal pathology. It is a leading cause of 
disability in young adults, found to be more prevalent in woman, 
and affects 2.5 million people worldwide. The etiology of MS is 
still unknown, but autoimmune processes are thought to play an 
important role (48).

Susceptibility depends on genetic and environmental risk 
factors and their interactions (49). The study of environmen-
tal risk factors is of great interest as they can potentially be 
modulated, in contrast to the genetic susceptibility. This may 
offer exciting innovative strategies for disease prevention and 
intervention. Several risk factors are the current focus in MS 
research such as hypovitaminosis-D, viral infections (Epstein–
Barr virus, human herpes virus-6, and human endogenous 
retroviruses), smoking, and the microbiome (43, 49–54). 
Interestingly, recent studies showed an association between 
vitamin-D and EBV status, which may highlight a role of 
vitamin-D in control of persistent EBV infection (51). In this 

review, we will focus on hypovitaminosis-D and summarize the 
latest findings in MS.

viTAMiN-D STuDieS iN MS PATieNTS

There is a substantial body of evidence on the role of vitamin-D 
in the development of MS. Two important prospective stud-
ies showed a protective effect of vitamin-D in MS. A nested 
case–control study in US military personnel reported that high 
serum concentrations of 25-hydroxycholecalciferol correlated 
with decreased MS risk (55). A more recent prospective study 
confirmed these findings and reported that levels of vitamin-D 
over 75 nmol/L were associated with a decreased MS risk (56).

Several observational studies have consistently shown an 
association of low serum levels of vitamin-D with increased MS 
risk and supported the findings from the prospective studies. 
Vitamin-D intake was found to moderately decrease the risk of 
MS in a large prospective study (n = 187,563) (57). In addition, 
the influence of vitamin-D on the disease course of MS is equally 
strong. Vitamin-D status correlated inversely with exacerbation 
risk in relapsing-remitting MS and suggested a beneficial effect on 
MS disease activity (58, 59). This effect was also found in patients 
on interferon-β treatment, where the lowest rate of new lesions 
was found in patients with vitamin-D levels over 100 nmol/L (60, 
61). Of interest is also a potential role for vitamin-D in the con-
version from clinically isolated syndrome, a first event suggestive 
of MS, to clinically definite MS. Low vitamin-D levels early in the 
disease course may predict higher risk of conversion to clinically 
definite MS (62).

Additional studies showed that genetic effects on vitamin-D 
pathways may also contribute to MS risk. Two recent Mendelian 
randomization studies evaluated whether genetically lowered 
vitamin-D levels influenced the risk of MS. The first study identi-
fied four single-nucleotide polymorphisms (SNPs), which were 
in or near genes strongly implicated in vitamin-D metabolism. 
Consecutive Mendelian randomization studies showed that 
genetically lowered 25(OH)D levels were strongly associated 
with increased susceptibility to MS (63). These findings were 
confirmed in a recent study, which reported strong evidence of a 
causal effect of low serum 25(OH)D on MS risk that is independ-
ent of established environmental risk factors and not subject to 
reverse causality (64). Interestingly, MS risk was found to be asso-
ciated with the gene encoding the enzyme that activates vitamin-
D (CYP27B1) and the genetic variant rs703842 in CYP27B1 in 
Caucasians (65, 66). Additional findings highlight that vitamin-D 
may also be able to regulate genes of the immune system that 
play a role in MS development. Molecular studies showed that MS 
associated loci were enriched for VDR-binding sites, including 
the promoter region HLA-DRB1 (67, 68).

Several vitamin-D supplementation trials are currently 
underway either as stand-alone or add-on therapy to disease 
modifying treatment. The largest study so far is the SOLAR 
study, which enrolled 229 interferon-β-treated MS patients 
with a 25-hydroxyvitamin-D plasma concentration below 
150 nmol/L. This double-blind placebo-controlled study of high-
dose oral cholecalciferol oil (14,000 IU/day) showed intriguing 
results. The primary endpoint “no evidence of disease activity” 
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was not improved by vitamin-D supplementation; however, the 
secondary endpoint showed a 32% reduction in the number 
of new combined unique active lesions in the cholecalciferol 
group. Furthermore, there was a trend toward absence of new 
T1 hypointense lesions in vitamin-D-supplemented patients, 
which became significant in those aged 18–30 years. Therefore, 
the results support the notion that vitamin-D supplementation 
is a safe and an effective add-on treatment in MS patients on 
β-interferon (69). The SOLAR study results support the find-
ings of an earlier smaller Finish randomized trial in which 
patients receiving 20,000  IU vitamin-D3 per week had better 
MRI outcomes than those receiving placebo (70). This study 
and observational small studies support the notion that similar 
benefit can be obtained from much lower levels of vitamin-D 
supplementation (equivalent to about 3,000–4,000 IU/day) and 
supraphysiological doses (14,000  IU/day) like in the SOLAR 
study are not needed.

viTAMiN-D iN SCHiZOPHReNiA

In the second part of our review, we will discuss the role of 
vitamin-D in schizophrenia. Schizophrenia is a debilitating 
psychotic disorder that develops most commonly during the 
late adolescent to early adulthood period across both genders, 
with females having a later age of onset. It is debilitating in the 
sense that the sufferer’s ability to function normally in society is 
heavily impaired by a range of positive (hallucinations and delu-
sions), negative (avolition, anhedonia, and alogia), and cognitive 
symptoms (71).

Schizophrenia lifetime prevalence is about 1% of the general 
population, meaning millions of people worldwide suffer from 
the disease (72). However, in some ways, this statistic fails to 
represent the true number of individuals affected by this men-
tal illness, as friends and family members will also be heavily 
impacted.

Schizophrenia manifests as a mixture of cognitive, negative, 
and positive symptoms. Positive symptoms refer to psychosis, 
such as hallucinations and delusions, while negative and cogni-
tive symptoms refer more to impairments in emotional, social, 
and intellectual functioning. Distinguishing between negative 
and cognitive symptoms is difficult, but they should be viewed 
as independent targets for intervention (73). However, both are 
linked closely and non-respondent to antipsychotics, making 
their treatment difficult (74).

An important observation, supporting the notion of a 
biological disease and, indeed, the connection between infec-
tion, immune responses, and psychosis, was made by Julius 
Wagner-Jauregg as early as 1883 (75). A relationship between 
fever and “madness” had been postulated over centuries; in 
clinical experimentation at the Vienna asylum, Wagner-Jauregg 
injected patients suffering from tertiary syphilis or dementia 
paralytica with potent immunostimulators such as tuberculin 
and malaria. Some patients made remarkable recoveries—far 
more than without treatment. Although nowadays these experi-
ments would be ethically forbidden for good reasons, they 
marked a paradigm shift in psychiatry and Wagner-Jauregg 
received the Noble prize in 1927 for his work on “pyrotherapy” 

(fever therapy). The British and American clinicians W. L. 
Templeton and Leland Hinsie went on to try fever treatment 
therapy on schizophrenic patients with observed improvement 
in some patients, however, not permanent. This line of inves-
tigation was given up due to the danger of the malaria treat-
ment and the transient nature of improvement. Looking back 
at these experiments with our knowledge of the twenty-first 
century immunology, one observes that these may have been 
the first findings signposting the role of the immune system in 
schizophrenia.

There appears to be a diffuse non-specific activation of the 
immune system in schizophrenia (76). Further evidence of 
this comes from genome-wide associations mapping to the 
MHC region in schizophrenia susceptibility and immune cells 
involved in adaptive immunity (CD19 and CD20 B-lymphocytes) 
(77, 78). Notably, in 2014, in what was at the time the largest 
genetic study of mental illness, the researcher identified 108 loci 
associated with schizophrenia. Interestingly, recent GWASs have 
now robustly identified immune-related SNPs linked to schizo-
phrenia. Recent cross genomic studies, which addressed the 
common architecture between schizophrenia and those of other 
psychiatric and non-psychiatric traits, revealed links between 
schizophrenia and MS (79). A significant genetic overlap was 
found between schizophrenia and MS mainly within the MHC. 
This study demonstrated the involvement of the same HLA alleles 
in MS and schizophrenia, but with an opposite directionality 
of effect. Intriguingly, recent population-based studies found 
that several psychiatric comorbidities including schizophrenia, 
anxiety, depression, and bipolar disorder were more common 
in MS population than in a matched control cohort (79, 80), as 
were white matter changes and myelin-related dysfunction in 
schizophrenia (81).

This work suggests that a subgroup of patients with schizo-
phrenia may demonstrate aspects of an autoimmune process. 
Interestingly, the elimination of autoantibodies against neuronal 
cell surface proteins by immunotherapy has led to symptomatic 
improvement in some cases of first-episode psychosis (82). One 
putative environmental risk factor for schizophrenia is infec-
tion. Early childhood infections of the brain increase the risk 
~5-fold (83). Even during pregnancy, particularly the second 
trimester, maternal infections correlated with an increased risk 
to the offspring later in life (84). Injecting pregnant mice with 
synthetic double-stranded DNA poly I:C, to mimic viral infec-
tions/interferon responses, and lipopolysaccharide, a highly 
inflammatory component of bacterial cell walls, elicits mor-
phological and behavioral changes characteristic of the brain in 
schizophrenia (85); however, the underlying mechanisms are not 
fully understood.

The autoimmune hypothesis is also strengthened by the 
finding of increased autoimmune disease in relatives of schizo-
phrenic patients and the inverse relationship of schizophrenia 
with rheumatoid arthritis and connective tissue diseases (86). 
Notably, a very recent study singles out the gene C4, a compo-
nent of the intricate complement system that works together 
with the immune response to regulate immune tolerance, 
autoimmunity, and anti-pathogen responses, as the strongest 
genetic risk factor for schizophrenia (87). These findings have 
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lent additional support to theories regarding immunological 
dysregulation as an underlying cause of schizophrenia. However, 
there is no evidence for a direct link between vitamin-D and C4 
levels.

The hypothesis of an active immune/inflammatory compo-
nent, which lends support to the “mild encephalitis hypothesis” 
(88) in at least a subgroup of schizophrenia patients, is of great 
interest and might prompt novel preventive or therapeutic strat-
egies, such as immunomodulation and/or anti-inflammatory 
drugs. A recent meta-analysis of anti-inflammatory medica-
tions in the management of treatment-resistant schizophrenia 
showed therapeutic effects of fish oils, N-acetyl-cysteine, and 
estradiol (89).

viTAMiN-D STuDieS iN SCHiZOPHReNiA 
PATieNTS

Several lines of evidence support a role for vitamin-D defi-
ciency in the risk for schizophrenia. Epidemiological data 
suggest that schizophrenia is more common in those born in 
winter and spring and its prevalence also rises with increas-
ing latitude (90). These findings, added to the evidence that 
dark-skinned minority groups in cold countries have a greater 
risk of schizophrenia (91), have led to the hypothesis that low 
vitamin-D (especially during early life) may be implicated in 
the genesis of schizophrenia (92). A study based on Danish 
neonatal dried blood spots supported this hypothesis (93), 
compared with neonates in the fourth quintile (vitamin-D3 
concentrations between 40.5 and 50.9 nmol/L), those in each 
of the lower three quintiles had a significantly increased risk of 
schizophrenia (twofold elevated risk).

Patients with psychosis have lower levels of vitamin-D than 
matched controls, even at the first presentation with psychosis 
(94–96). A mini-meta-analysis confirmed that schizophrenia 
patients have lower vitamin-D levels than healthy controls with 
a medium effect size (97). A systematic review (based on seven 
studies) has confirmed that those with psychosis are significantly 
more likely to have low concentrations of vitamin-D (98). 
Moreover, looking at specific schizophrenia symptomatology, 
levels of vitamin-D have been shown in some studies to inversely 
correlate with depression and negative symptoms, in patients 
with psychosis, controlling for other contributors (99).

Low vitamin-D may have also detrimental effects on brain 
development. The Dutch Hunger Winter and Chinese Famine 
studies have suggested a role for hypovitaminosis-D in the 
development of schizophrenia. However, findings regarding 
vitamin-D deficiency and its link to psychosis have the potential 
to be confounded by factors such as other nutrient deficiencies 
and ethnicity/skin tone. As a result, investigations around this 
association with schizophrenia are mainly supported by the 
more clear evidence of vitamin-D as a protective neuro-immu-
nomodulator, which strongly suggests that hypovitaminosis-D 
during development would have profound effects on offspring 
outcome (100).

Concerning the impact of low vitamin-D on the adolescent 
and adult brain, a study based on a UK birth cohort (n = 3,182) 

found an association between low vitamin-D among children 
with a mean age of nine years and an increased risk of later 
psychotic-like symptoms during adolescence (mean age 
14 years) (101). Diet also appears to be important—a large pop-
ulation-based study of Swedish women (n = 33,623) reported a 
significantly greater risk of psychotic-like experiences in those 
with low vitamin-D intake (102). Thus, the evidence suggests 
that low vitamin-D not only disrupts early brain development 
but may also compromise later periods of brain growth and 
maturation.

A prospective Finnish birth cohort study looked at one way of 
addressing this risk and found that vitamin-D supplementation 
in males during the first year of life resulted in a reduced risk of 
them later developing schizophrenia (103).

It is therefore plausible that vitamin-D may reduce inflam-
mation and enhance resilience to neurobiological or pathogen-
induced insults, which might increase risk of schizophrenia. 
Indeed, two cross-sectional studies have reported that vitamin-D 
is inversely associated with levels of C-reactive protein, a marker 
of inflammation, in psychosis (96, 104).

Despite all this circumstantial evidence, a recent Mendelian 
causation study (105), looking at SNPs associated with serum 
vitamin-D and schizophrenia in 34,241 schizophrenia cases and 
45,604 controls, found no evidence for causal effect of vitamin-
D on the risk for schizophrenia. Moreover, currently, there is 
no evidence from randomized controlled trials of vitamin-D 
supplementation in the relevant populations, although a trial 
is underway. Those randomized controlled trials are needed to 
confirm the effect of vitamin-D supplementation on inflamma-
tion in patients with schizophrenia.

viTAMiN-D iN AuTiSM SPeCTRuM 
DiSORDeR (ASD)

Autism spectrum disorders are a heterogeneous group of com-
plex neurodevelopmental disorders that undermine optimal 
brain development. A recent surveillance study identified 1 in 68 
children (1 in 42 boys and 1 in 189 girls) as having ASD. Recent 
data collated for ASD suggest that the cost is at least £32 billion 
a year (106).

While ASD is currently diagnosed on the basis of abnor-
malities in social communication and repetitive behaviors, it 
is increasingly being recognized as a whole-body disorder. The 
core behavioral characteristics such as altered communication 
and social skills, cognitive and learning deficits, and stereotypic 
behaviors are being intrinsically linked to complex biological 
processes.

Increasing evidence suggests that altered immune responses 
in ASD may be related to the severity of behavioral impairment 
and other developmental outcomes (107). Abnormal cytokine 
profiles have been described with elevated levels of pro-inflam-
matory cytokines (e.g., IL-6, IL-8, IL1β, IFN-γ, and eotaxin) 
(108). Several postmortem and neuroimaging studies have found 
chronic neuroinflammatory processes such as microglial activa-
tion in the CNS (109, 110). It has been suggested that this chronic 
immune activation could be a response to an early autoimmune 
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attack on the brain by mother-to-fetus transfer of autoantibodies 
and/or maternal infection (111–114). Research into antibody-
mediated CNS disorders may help identify a subgroup of patients 
with antibody-mediated illness, which may be relevant to autism 
and schizophrenia (115). Findings from animal models in ASD 
point toward inflammatory processes; and anti-inflammatory/
immune-modulating drugs in ASD have been trialed (116). It 
is now well established that individuals with autism have much 
higher than expected rates of a range of comorbidities, which sup-
port dysregulation of immune mechanisms, inflammation, and a 
potentially altered gut–brain axis and resemble findings in other 
inflammatory and autoimmune diseases (117). Autoimmune 
and gastrointestinal problems are often present in ASD, and 
nutritional approaches have become widely used in managing 
ASD (118).

Autism spectrum disorder is an extremely heterogeneous 
disorder. It is suggested that the origin of ASD influences the 
phenotype—thus, e.g., ASD caused by maternal infection during 
pregnancy may trigger a different set of symptoms than more 
genetically driven forms of ASD or combinations of environ-
mental (pollution, neurotoxins, etc.) and genetic factors (118). 
In addition, gender seems to play an important role as girls 
with ASD often present with milder social and communicative 
symptoms, relatively intact symbolic play skills and fewer obses-
sional interests (119). Ecological studies observed the correlation 
between the number of ASD cases and a number of environ-
mental factors such as latitude, season of birth, mother’s skin 
type, and the climate, implicating a possible role for vitamin-D 
in ASD (120).

viTAMiN-D STuDieS iN ASD

Several studies found lower vitamin-D levels in children with 
autism compared to their siblings, parents, and non-family 
controls (17, 121). Low vitamin-D levels were already present 
at birth in children later diagnosed with ASD but not in their 
healthy siblings (122). Subsequent research demonstrated 
that the vitamin-D status of mothers corresponded with their 
offspring’s vitamin-D status at birth. Low levels of vitamin-D 
during pregnancy impacted negatively on the cognitive status, 
early development, and ASD diagnosis (123).

Two studies have addressed the impact of vitamin-D sup-
plementation on ASD. One found improved core symptoms in 
children supplemented with pharmacological doses of vitamin-D 
(124). Furthermore, a preliminary study found that vitamin-
D supplementation during pregnancy and early childhood 
decreased the occurrence of ASD in siblings (125). However, 
optimal vitamin-D dosage and levels are not yet determined, and 
proper randomized trials are needed.

Several studies looked at vitamin-D-specific gene variants and 
the risk of ASD. Recently, paternal and child genetic abnormalities 
in vitamin-D metabolism in ASD were reported (126). Notably, 
paternal VDR TaqI homozygous variant genotype and VDR BsmI 
and offspring’s GC AA-genotype/A-allele were associated with 
ASD, whereas offspring’s CYP2R1 AA-genotype was significantly 
associated with decreased risk of ASD.

Further support for a role of vitamin-D comes from a recent 
study, which reported association between polymorphisms 
in the VDR gene and vitamin-D levels in ASD children (127). 
Vitamin-D levels were influenced by FokI polymorphisms and 
haplotype GTTT (BsmI/TaqI/FokI). Interestingly, this polymor-
phism resulted in compensatory higher vitamin-D levels due to 
lower VDR activity in ASD akin to the findings reported in MS 
(127, 128).

Of particular interest is the observed strong gender bias 
in ASD (four males:one female), which may be suggestive of 
abnormalities in steroid metabolism, which comprises the 
hormones cortisol, testosterone, estrogens, progesterone, and 
vitamin-D. Indeed, ASD children have significantly higher 
levels of a number of C21 and C19 steroid hormones, especially 
androgens (129, 130). Altered steroid hormone levels have also 
been identified in children with Smith–Lemli–Opitz syndrome 
(SLOS), which carries a comorbid ASD risk of 50–86% (131). 
Mutations in the DHCR7 gene that codes for the enzyme 3β–
hydroxysterol-Δ(7)-reductase, the catalyst for the final step in 
cholesterol biosynthesis (132), lead to hypo-cholesterolemia and 
often higher levels of 7-dehydrocholesterol in SLOS patients. 
Dysregulation of the steroid metabolome, in synergy with 
genetic predisposition and other environmental risk factors 
(e.g., methylation, maternal infection, neurotoxins and other 
chemicals, premature birth, paternal age), may act as a potential 
risk factor for the development of ASD, schizophrenia, and 
other mental disorder with hypovitaminosis-D being one of the 
possible hallmarks (133).

Autism spectrum disorder research and diagnosis would 
benefit from greater analysis of metabolic markers and genetic 
polymorphisms, to aid patient stratification and identify thera-
peutically relevant biomarkers to inform diagnosis, prevention, 
and treatment strategies. Collaborations between geneticists, 
immunologists, steroid chemists, endocrinologists, nutritionists, 
psychiatrists, and psychologists will be needed to decipher the 
complex pathophysiology of ASD.

CONCLuSiON

Multiple sclerosis, schizophrenia, and autism are multifactorial 
disorders caused by the effects of multiple genes in combination 
with environmental factors. As environmental risk factors are 
modifiable—in contrast to genetic susceptibility—they offer 
potential strategies for intervention and prevention. Great 
efforts are being made in identifying risk factors in these condi-
tions and vitamin-D is one of the culprits, with most evidence 
in MS, where hypovitaminosis-D seems to contribute to disease 
activity and vitamin-D supplementation studies have shown 
some promise.

There is also some evidence, albeit less clear, that hypovita-
minosis-D may act as risk factors for schizophrenia and autism, 
and further research and longitudinal studies are needed. 
Inflammatory responses appear to play a significant role in 
the etiology of both schizophrenia and autism. Whether and 
how vitamin-D contributes to the pathophysiology of these 
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conditions is unknown. Further insight into the role of vitamin-
D, in schizophrenia and autism, especially as it relates to the 
immune system, inflammation, and neuroprotection, will help 
shed light on the underlying pathophysiology of these condi-
tions and may aid the design of better treatment strategies for 
the twenty-first century.

AuTHOR CONTRiBuTiONS

U-CM, AK, and EK helped in drafting the manuscript, and 
U-CM, AK, EK, and FG helped in reviewing the manuscript.

ReFeReNCeS

1. Cui X, Gooch H, Groves NJ, Sah P, Burne TH, Eyles DW, et al. Vitamin D and 
the brain: key questions for future research. J Steroid Biochem Mol Biol (2015) 
148:305–9. doi:10.1016/j.jsbmb.2014.11.004 

2. Groves NJ, McGrath JJ, Burne TH. Vitamin D as a neurosteroid affecting the 
developing and adult brain. Annu Rev Nutr (2014) 34:117–41. doi:10.1146/
annurev-nutr-071813-105557 

3. Baeke F, Takiishi T, Korf H, Gysemans C, Mathieu C. Vitamin D: modu-
lator of the immune system. Curr Opin Pharmacol (2010) 10(4):482–96. 
doi:10.1016/j.coph.2010.04.001 

4. Bikle DD. Vitamin D: newly discovered actions require reconsideration of 
physiologic requirements. Trends Endocrinol Metab (2010) 21(6):375–84. 
doi:10.1016/j.tem.2010.01.003 

5. Wang Y, Zhu J, DeLuca HF. Where is the vitamin D receptor? Arch Biochem 
Biophys (2012) 523(1):123–33. doi:10.1016/j.abb.2012.04.001 

6. Wacker M, Holick MF. Sunlight and vitamin D: a global perspective for 
health. Dermatoendocrinol (2013) 5(1):51–108. doi:10.4161/derm.24494 

7. Wacker M, Holick MF. Vitamin D – effects on skeletal and extraskeletal 
health and the need for supplementation. Nutrients (2013) 5(1):111–48. 
doi:10.3390/nu5010111 

8. Bouillon R, Suda T. Vitamin D: calcium and bone homeostasis during evolu-
tion. Bonekey Rep (2014) 3:480. doi:10.1038/bonekey.2013.214 

9. Luxwolda MF, Kuipers RS, Kema IP, van der Veer E, Dijck-Brouwer DA, 
Muskiet FA. Vitamin D status indicators in indigenous populations in East 
Africa. Eur J Nutr (2013) 52(3):1115–25. doi:10.1007/s00394-012-0421-6 

10. Jablonski NG, Chaplin G. The evolution of human skin coloration. J Hum 
Evol (2000) 39(1):57–106. doi:10.1006/jhev.2000.0403 

11. Feldman D, Pike WJ, Adams JS. Vitamin D. Amsterdam: Elsevier (2011).
12. Fieser LF, Fieser M. Steroids. New York: Reinhold Publishing Cooperation 

(1959).
13. Kocovska E, Fernell E, Billstedt E, Minnis H, Gillberg C. Vitamin D and 

autism: clinical review. Res Dev Disabil (2012) 33(5):1541–50. doi:10.1016/ 
j.ridd.2012.02.015 

14. Holick MF, Tian XQ, Allen M. Evolutionary importance for the membrane 
enhancement of the production of vitamin D3 in the skin of poikilother-
mic animals. Proc Natl Acad Sci U S A (1995) 92(8):3124–6. doi:10.1073/
pnas.92.8.3124 

15. Cheng JB, Levine MA, Bell NH, Mangelsdorf DJ, Russell DW. Genetic evidence 
that the human CYP2R1 enzyme is a key vitamin D 25-hydroxylase. Proc Natl 
Acad Sci U S A (2004) 101(20):7711–5. doi:10.1073/pnas.0402490101 

16. Eyles DW, Smith S, Kinobe R, Hewison M, McGrath JJ. Distribution of 
the vitamin D receptor and 1 alpha-hydroxylase in human brain. J Chem 
Neuroanat (2005) 29(1):21–30. doi:10.1016/j.jchemneu.2004.08.006 

17. Kocovska E, Biskupsto R, Carina Gillberg I, Ellefsen A, Kampmann H, Stora 
T, et al. The rising prevalence of autism: a prospective longitudinal study in 
the Faroe Islands. J Autism Dev Disord (2012) 42(9):1959–66. doi:10.1007/
s10803-012-1444-9 

18. Provvedini DM, Tsoukas CD, Deftos LJ, Manolagas SC. 1,25-dihydroxyvi-
tamin D3 receptors in human leukocytes. Science (1983) 221(4616):1181–3. 
doi:10.1126/science.6310748 

19. Chun RF, Liu PT, Modlin RL, Adams JS, Hewison M. Impact of vitamin D on 
immune function: lessons learned from genome-wide analysis. Front Physiol 
(2014) 5:151. doi:10.3389/fphys.2014.00151 

20. Gottfried E, Rehli M, Hahn J, Holler E, Andreesen R, Kreutz M. Monocyte-
derived cells express CYP27A1 and convert vitamin D3 into its active metab-
olite. Biochem Biophys Res Commun (2006) 349(1):209–13. doi:10.1016/ 
j.bbrc.2006.08.034 

21. Liu PT, Stenger S, Li H, Wenzel L, Tan BH, Krutzik SR, et al. Toll-like receptor 
triggering of a vitamin D-mediated human antimicrobial response. Science 
(2006) 311(5768):1770–3. doi:10.1126/science.1123933 

22. Wang TT, Tavera-Mendoza LE, Laperriere D, Libby E, MacLeod NB, Nagai 
Y, et  al. Large-scale in  silico and microarray-based identification of direct 
1,25-dihydroxyvitamin D3 target genes. Mol Endocrinol (2005) 19(11):2685–
95. doi:10.1210/me.2005-0106 

23. Salles A, Romano A, Freudenthal R. Synaptic NF-kappa B pathway in 
neuronal plasticity and memory. J Physiol Paris (2014) 108(4–6):256–62. 
doi:10.1016/j.jphysparis.2014.05.002 

24. Sadeghi K, Wessner B, Laggner U, Ploder M, Tamandl D, Friedl J, et  al. 
Vitamin D3 down-regulates monocyte TLR expression and triggers hypo-
responsiveness to pathogen-associated molecular patterns. Eur J Immunol 
(2006) 36(2):361–70. doi:10.1002/eji.200425995 

25. Rosello A, Warnes G, Meier UC. Cell death pathways and autophagy in the 
central nervous system and its involvement in neurodegeneration, immunity 
and central nervous system infection: to die or not to die – that is the question. 
Clin Exp Immunol (2012) 168(1):52–7. doi:10.1111/j.1365-2249.2011.04544.x 

26. Brennan A, Katz DR, Nunn JD, Barker S, Hewison M, Fraher LJ, et  al. 
Dendritic cells from human tissues express receptors for the immunoregu-
latory vitamin D3 metabolite, dihydroxycholecalciferol. Immunology (1987) 
61(4):457–61. 

27. Bartels LE, Hvas CL, Agnholt J, Dahlerup JF, Agger R. Human dendritic 
cell antigen presentation and chemotaxis are inhibited by intrinsic 
25-hydroxy vitamin D activation. Int Immunopharmacol (2010) 10(8):922–8. 
doi:10.1016/j.intimp.2010.05.003 

28. Bhalla AK, Amento EP, Serog B, Glimcher LH. 1,25-Dihydroxyvitamin D3 
inhibits antigen-induced T cell activation. J Immunol (1984) 133(4):1748–54. 

29. van Etten E, Mathieu C. Immunoregulation by 1,25-dihydroxyvitamin 
D3: basic concepts. J Steroid Biochem Mol Biol (2005) 97(1–2):93–101. 
doi:10.1016/j.jsbmb.2005.06.002 

30. Barrat FJ, Cua DJ, Boonstra A, Richards DF, Crain C, Savelkoul HF, et al. 
In vitro generation of interleukin 10-producing regulatory CD4(+) T cells 
is induced by immunosuppressive drugs and inhibited by T helper type 
1 (Th1)- and Th2-inducing cytokines. J Exp Med (2002) 195(5):603–16. 
doi:10.1084/jem.20011629 

31. Smolders J, Thewissen M, Peelen E, Menheere P, Tervaert JW, Damoiseaux J, 
et al. Vitamin D status is positively correlated with regulatory T cell function 
in patients with multiple sclerosis. PLoS One (2009) 4(8):e6635. doi:10.1371/
journal.pone.0006635 

32. Sigmundsdottir H, Pan J, Debes GF, Alt C, Habtezion A, Soler D, et al. DCs 
metabolize sunlight-induced vitamin D3 to ’program’ T cell attraction to the 
epidermal chemokine CCL27. Nat Immunol (2007) 8(3):285–93. doi:10.1038/
ni1433 

33. Chen S, Sims GP, Chen XX, Gu YY, Chen S, Lipsky PE. Modulatory effects of 
1,25-dihydroxyvitamin D3 on human B cell differentiation. J Immunol (2007) 
179(3):1634–47. doi:10.4049/jimmunol.179.3.1634 

34. Heine G, Niesner U, Chang HD, Steinmeyer A, Zugel U, Zuberbier T, et al. 
1,25-dihydroxyvitamin D(3) promotes IL-10 production in human B cells. 
Eur J Immunol (2008) 38(8):2210–8. doi:10.1002/eji.200838216 

ACKNOwLeDGMeNTS

The authors would like to thank their collaborator Professor Jane 
Wills for help and advice.

FuNDiNG

This project is supported by funding from the Life Science 
Initiative “Inflammation in autism” (UCM) as part of an interdis-
ciplinary project in collaboration with Professor Jane Wills (grant 
number NSCG1Q3R).

http://www.frontiersin.org/Psychiatry/
http://www.frontiersin.org
http://www.frontiersin.org/Psychiatry/archive
https://doi.org/10.1016/j.jsbmb.2014.11.004
https://doi.org/10.1146/annurev-nutr-071813-105557
https://doi.org/10.1146/annurev-nutr-071813-105557
https://doi.org/10.1016/j.coph.2010.04.001
https://doi.org/10.1016/j.tem.2010.01.003
https://doi.org/10.1016/j.abb.2012.04.001
https://doi.org/10.4161/derm.24494
https://doi.org/10.3390/nu5010111
https://doi.org/10.1038/bonekey.2013.214
https://doi.org/10.1007/s00394-012-0421-6
https://doi.org/10.1006/jhev.2000.0403
https://doi.org/10.1016/
j.ridd.2012.02.015
https://doi.org/10.1016/
j.ridd.2012.02.015
https://doi.org/10.1073/pnas.92.8.3124
https://doi.org/10.1073/pnas.92.8.3124
https://doi.org/10.1073/pnas.0402490101
https://doi.org/10.1016/j.jchemneu.2004.08.006
https://doi.org/10.1007/s10803-012-1444-9
https://doi.org/10.1007/s10803-012-1444-9
https://doi.org/10.1126/science.6310748
https://doi.org/10.3389/fphys.2014.00151
https://doi.org/10.1016/
j.bbrc.2006.08.034
https://doi.org/10.1016/
j.bbrc.2006.08.034
https://doi.org/10.1126/science.1123933
https://doi.org/10.1210/me.2005-0106
https://doi.org/10.1016/j.jphysparis.2014.05.002
https://doi.org/10.1002/eji.200425995
https://doi.org/10.1111/j.1365-2249.2011.04544.x
https://doi.org/10.1016/j.intimp.2010.05.003
https://doi.org/10.1016/j.jsbmb.2005.06.002
https://doi.org/10.1084/jem.20011629
https://doi.org/10.1371/journal.pone.0006635
https://doi.org/10.1371/journal.pone.0006635
https://doi.org/10.1038/ni1433
https://doi.org/10.1038/ni1433
https://doi.org/10.4049/jimmunol.179.3.1634
https://doi.org/10.1002/eji.200838216


9
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