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Major depressive disorder (MDD) is the most common non-motor manifestation of 
Parkinson’s disease (PD) affecting 50% of patients. However, little is known about the 
cognitive correlates of MDD in PD. Using a computer-based cognitive task that disso-
ciates learning from positive and negative feedback, we tested four groups of subjects: 
(1) patients with PD with comorbid MDD, (2) patients with PD without comorbid MDD, 
(3) matched patients with MDD alone (without PD), and (4) matched healthy control 
subjects. Furthermore, we used a mathematical model of decision-making to fit both 
choice and response time data, allowing us to detect and characterize differences 
between the groups that are not revealed by cognitive results. The groups did not 
differ in learning accuracy from negative feedback, but the MDD groups (PD patients 
with MDD and patients with MDD alone) exhibited a selective impairment in learning 
accuracy from positive feedback when compared to the non-MDD groups (PD patients 
without MDD and healthy subjects). However, response time in positive feedback trials 
in the PD groups (both with and without MDD) was significantly slower than the non-PD 
groups (MDD and healthy groups). While faster response time usually correlates with 
poor learning accuracy, it was paradoxical in PD groups, with PD patients with MDD 
having impaired learning accuracy and PD patients without MDD having intact learning 
accuracy. Mathematical modeling showed that both MDD groups (PD with MDD and 
MDD alone) were significantly slower than non-MDD groups in the rate of accumulation 
of information for stimuli trained by positive feedback, which can lead to lower response 
accuracy. Conversely, modeling revealed that both PD groups (PD with MDD and PD 
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alone) required more evidence than other groups to make responses, thus leading 
to slower response times. These results suggest that PD patients with MDD exhibit 
cognitive profiles with mixed traits characteristic of both MDD and PD, furthering our 
understanding of both PD and MDD and their often-complex comorbidity. To the best 
of our knowledge, this is the first study to examine feedback-based learning in PD with 
MDD while controlling for the effects of PD and MDD.

Keywords: Parkinson’s disease, depression, positive feedback, negative feedback, category learning, dopamine

inTrODUcTiOn

Patients with Parkinson’s disease (PD) suffer from a variety of 
non-motor symptoms, such as sleep disturbances, autonomic 
dysfunction, gastrointestinal, urogenital and psychiatric 
problems, as well as cognitive decline (1, 2). Comorbid major 
depressive disorder (MDD) is the most frequently reported non-
motor manifestation of PD in ~40–60% of patients (3–5). Among 
patients with PD, comorbid MDD (PD-MDD) has the strongest 
association with declines in health-related quality of life (6–8) and 
cognitive function (9–12). Several cognitive domains are affected 
by PD-MDD such as episodic and working memory, language, 
visuospatial abilities, abstract reasoning, executive function, and 
reinforcement learning (13–16).

Recently, the focus of cognitive research in PD has been on 
reinforcement learning (17). A number of studies have shown 
that patients with PD exhibit deficits in associative learning, such 
as category-learning tasks where subjects learn through trial and 
error to make specific responses based on corrective feedback 
(18–21). Previous research has shown that this learning impair-
ment in PD specifically reflects deficits in learning from positive 
feedback, but with spared learning from negative feedback (22). 
We have shown similar selective deficits in learning from positive 
feedback in patients with MDD (23).

Cognitive impairment in PD and MDD patients is not limited 
to cognitive accuracy, but extends to “cognitive slowing” (24) 
where the speed of cognitive processing and responding is affected 
(25, 26). The level of cognitive slowing in PD has been shown to 
correlate with the level of motor slowing (27, 28). In other words, 
motor slowing in PD is inseparable from cognitive slowing as they 
occur in parallel (29). On the other hand, MDD does not entail 
a global deficit of the sensorimotor processing. Instead, stimulus 
preprocessing is unaffected by MDD, while response selection is 
impaired (30). However, it is unclear whether cognitive deficits in 
PD-MDD are inherited from PD, MDD, or both.

In this study, we investigate both learning accuracy and response 
time (RT) in patients with PD-MDD, patients with PD without 
MDD, patients with MDD without PD, and matched healthy 
controls (HCs). We used a new version of a computer-based 
cognitive task that dissociates learning from positive and negative 
feedback and has been well-validated in both patients with PD 
and those with MDD (22, 23). We predicted that the learning 
accuracy of patients with PD-MDD will be similar to that of 
patients with MDD, while their RT will be similar to patients with 
PD. The underlying cognitive mechanisms behind these potential 
differences were further investigated using a mathematical dif-
fusion model that describes the decision-making process as the 

accumulation of noisy evidence toward a decision threshold (31). 
To the best of our knowledge, this is the first study to investigate 
both learning accuracy and RT in patients with PD-MDD, using 
both experimental and mathematical modeling methods.

MaTerials anD MeThODs

Participants
We recruited 57 eligible Arabic-speaking participants from 
different neurological and psychiatric clinics in the West Bank, 
Palestine. The participant groups were (1) PD-MDD (n = 13), (2) 
PD without MDD (n = 17), (3) medication-naïve MDD (n = 12), 
and (4) matched HCs (n = 15).

The stages of PD, as assessed by the Hoehn and Yahr (H&Y) 
scale (32) ranged from 1.0 to 3.5 (M = 2.18; SD = 0.73). Motor 
symptoms were assessed using the Unified Parkinson Disease 
Rating Scale [UPDRS (33)] and ranged from 7 to 67 (M = 28.6; 
SD =  14.6). Duration since initial diagnosis with PD or MDD 
ranged from 0 to 15 years (M = 4.73; SD = 3.88). All PD patients 
were on dopaminergic medications at the time of testing. Out of 
the 30 PD patients, 20 were on l-DOPA/carbidopa only (9 with 
MDD and 11 without MDD), 3 on l-DOPA/carbidopa plus the 
dopamine agonist ropinirole (1 with MDD and 3 without MDD), 
3 on l-DOPA/carbidopa plus the dopamine agonist pramipexole 
(1 with MDD and 2 without MDD), and 3 on ropinirole alone 
(2 with MDD and 1 without MDD). All participants underwent 
clinical diagnostic DSM-IV-TR unstructured clinical interviews as 
well as structured clinical interviews using the Mini International 
Neuropsychiatric Interview (34) to confirm the diagnosis of 
MDD in the PD-MDD and the MDD groups, and the absence of 
MDD and other psychiatric diseases in the PD and HC groups.

Participants’ age ranged from 26 to 81 years. Participants were 
group matched for age (M = 54.4; SD = 4.5), gender (33 males 
and 24 females), and years of education (M = 12.8; SD = 2.2), as 
shown in Table  1. Inclusion criteria for HCs included absence 
of any psychiatric, neurological, or other disorders that might 
affect cognition. Exclusion criteria for all participants included 
psychotropic drug exposure; major medical or neurological ill-
ness other than PD and/or MDD; illicit drug use or alcohol abuse 
within the past year; lifetime history of alcohol or drug depend-
ence; psychiatric disorders other than MDD; current pregnancy; 
or breastfeeding. This study was carried out in accordance with 
the recommendations of the Al-Quds University Research Ethics 
Committee with written informed consent from all subjects. 
All subjects gave written informed consent in accordance with 
the Declaration of Helsinki. The protocol was approved by the 
Al-Quds University Research Ethics Committee.
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Table 1 | neuropsychological and demographic characteristics of the participants.

Parkinson’s disease (PD)-major  
depressive disorder (MDD)

PD MDD healthy control

Total number (male/female) 13 (4/9) 17 (15/2) 12 (4/8) 15 (10/5)
Age (years) 55.2 (11.9) 59.4 (12.6) 48.5 (5.1) 54.3 (12.3)
Education (years) 12.2 (3.4) 14.4 (4.6) 9.8 (3.5) 14.6 (2.7)
Time since diagnosis (years) 4.84 (3.7) 5.24 (4.0) 0 N.A.
MMSE 27.5 (1.8) 28.5 (1.1) 27.7 (1.4) 29.3 (0.7)
BDI-II 26.9 (7.7) 8.3 (5.2) 29.1 (8.7) 6.7 (5.3)
BAI 22.9 (13.7) 13.1 (8.9) 24.5 (8.2) 4.1 (3.1)
Wechsler Adult Intelligence Scale—Revised digit span 10.1 (1.8) 12.4 (2.4) 9.9 (2.1) 12.1 (2.6)
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neuropsychological Test battery
All participants completed the Arabic version (35) of neuropsy-
chological tests: the Mini Mental State Examination (36), the Beck 
Depression Inventory II (37), the Beck Anxiety Inventory (38), 
and the Wechsler Adult Intelligence Scale—Revised (WAIS-R) 
digit span test (39).

There was a significant difference between groups in MMSE 
scores (Kruskal–Wallis H = 15.117, df = 3, p = 0.002). Post hoc 
Mann–Whitney tests, with Bonferroni corrected α  =  0.008, 
revealed significant differences between the HCs and both MDD 
and PD-MDD groups (p = 0.001 and 0.002, respectively), but no 
significant differences between the three disease groups (MDD, 
PD-MDD, and PD; p  >  0.05). As expected, BDI-II scores dif-
fered significantly across groups [F(3, 56) = 43.885, p < 0.001, 
η2 =  0.71]; specifically, Tukey’s HSD post  hoc test revealed sig-
nificant differences between HC vs. MDD and PD-MDD groups, 
and PD vs. MDD and PD-MDD groups (all p < 0.001), but no 
significant differences between HCs and PD or between the MDD 
and PD-MDD (all p > 0.05). In addition, BAI differed significantly 
across groups [F(3, 56) = 15.015, p < 0.001, η2 = 0.46]. Tukey’s 
HSD on BAI results revealed significant differences between HC 
and all disease groups (all p <  0.05), PD with both MDD and 
PD-MDD (all p  <  0.05) and no significant difference between 
MDD and PD-MDD (p  >  0.05). We used one-way ANOVA 
to compare WAIS-R digit span results among groups, which 
revealed a significant effect of group [F(3, 55) = 4.548, p = 0.007, 
η2  =  0.21]. Tukey’s HSD revealed significant differences only 
between the PD and MDD groups (p  <  0.05). Independent-
samples t-test to compare UPDRS scores showed a significant 
difference between the PD-MDD and PD groups [t(28) = 2.696, 
p = 0.012, r2 = 0.21]. Finally, Mann–Whitney test on H&Y scores 
revealed a significant difference between the PD-MDD and PD 
groups (Mann–Whitney U  =  62.5, p  =  0.031, r2  =  0.15). The 
PD-MDD group had significantly higher scores than the PD 
group in both UPDRS and H&Y.

computer-based cognitive Task
Learning from Positive and Negative Feedback
All participants were administered a new and improved version 
of the computer-based probabilistic classification task that was 
used by Bódi et al. (22). For each participant, four images were 
randomly assigned to be S1, S2, S3, and S4. On each trial, partici-
pants viewed one of the four stimuli (Figure 1) and were asked 
to guess whether it belonged to category A (rain) or B (sun). On 
any given trial, stimuli S1 and S3 belonged to category A with 90% 

probability and to category B with 10% probability, while stimuli 
S2 and S4 belonged to category B with 90% probability and to 
category A with 10% probability (Table 2). Stimuli S1 and S2 were 
used in positive-feedback learning trials. Thus, if the participant 
correctly guessed category membership on a trial with either of 
these stimuli, a positive feedback of +25 points was received; if 
the participant guessed incorrectly, no feedback appeared and 
there was no point gain. Stimuli S3 and S4 were used in the 
negative-feedback learning trials. Thus, if the participant guessed 
incorrectly on a trial with either of these stimuli, a negative 
feedback of −25 points was received; correct guesses received no 
feedback or point loss. The no-feedback outcome, when it arrived, 
was ambiguous, as it could signal lack of positive feedback (if 
received during a trial with S1 or S2) or lack of negative feedback 
(if received during a trial with S3 or S4).

The task was conducted on a Macintosh Macbook, pro-
grammed in the SuperCard language. The participant was seated 
in a quiet testing room at a comfortable viewing distance from 
the screen. The keyboard was masked except for two keys, 
labeled “Sun” and “Rain” that the participant could use to enter 
responses. Participants first completed a practice phase that 
walked the participant through an example of a correct and an 
incorrect response to a sample positive-feedback learning trial 
and an example of a correct and incorrect response to a sample 
negative-feedback learning trial. These examples used images 
other than those assigned to S1–S4. The actual task contained 
160 trials, separated and randomized into four blocks. Trials 
were separated by a 2  s interval, during which time the screen 
was blank. Within each block, each stimulus appeared 10 times, 
9  times with the more common outcome (e.g., category A for 
S1 and S3 and category B for S2 and S4), and once with the less 
common outcome. Thus, positive-feedback learning trials (S1 
and S2) and negative-feedback learning trials (S3 and S4) were 
intermixed. On each trial, the computer recorded whether the 
participant made the optimal response (i.e., category A for S1 and 
S3 and category B for S2 and S4) regardless of the actual outcome.

Mathematical Modeling
Mathematical modeling of the accumulation of evidence toward 
a decision threshold (the “drift model” of decision-making) offers 
a formal tool for differentiating between many key variables that 
underlie the learning process in probabilistic category-learning 
tasks such as that employed in the current study (31). This model 
encodes behavioral variables including accuracy, mean RT, and 
RT distributions into components of cognitive processing. After 
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Table 2 | category and feedback structure of probabilistic classification 
task.

stimulus Probability 
category a (%)

Probability 
category b (%)

Feedback

S1 90 10 If correct: +25
S2 10 90 If incorrect: no feedback
S3 90 10 If correct: no feedback
S4 10 90 If incorrect: −25

FigUre 1 | The arabic-translated feedback-based probabilistic category task. (a) On each trial, the participant sees one of the four stimuli and is asked 
whether this stimulus predicts rain or sun. (b) No feedback is given for incorrect answers in positive feedback stimuli or correct answers in negative feedback 
stimuli. (c) For positive feedback stimuli, correct responses get rewarded with visual feedback and 25-point winnings. (D) For negative feedback stimuli, incorrect 
responses get punished with visual feedback and the loss of 25 points.
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stimulus onset, a decision is reached via the accumulation of 
noisy evidence to a decision threshold (the correct decision being 
reached if the evidence reaches the top threshold). The functioning 
of this model is illustrated by the schematic in Figure 2 for several 
different types of learning curves (note: these are not the data from 
our study, but rather shown for pedagogical purposes only). The 
drift rate (v) describes the rate at which evidence is accumulated 
(examples shown by jagged lines in Figure 2) for the correct deci-
sion and can be thought of as the efficiency with which evidence is 
accumulated. The threshold separation (a) describes the amount 
of evidence required to make a decision, where a larger separation 
means greater caution in decision-making because more evidence 
must be accumulated before the decision threshold is reached. The 

relative starting point (zr) is a bias parameter, where the evidence 
accumulation process may be more or less biased toward the cor-
rect decision when zr is not equal to 0.5. Non-decision time (t0) 
accommodates for time to execute motor responses (t02, in this 
case a key press) and sometimes is also thought to include initial 
stimulus processing (t01), for example, from retina through early 
occipital cortex. Not shown explicitly on Figure 2 is the difference 
in decision time for correct and incorrect responses (d); where a 
positive d indicates faster responding when the correct response 
is chosen (as would be expected if incorrect decisions were made 
based on incredibly noisy evidence).

Five variants of a diffusion model were fit to the data from 
our current probabilistic category-learning studies. The basic 
diffusion model was implemented with five parameters: a (the 
threshold separation for making a decision), zr (the starting 
point of the evidence for making a decision—also known as a 
bias parameter), v (the drift rate or slope of the information accu-
mulation process), t0 (non-decision time or time for response 
execution), and d (differences in speed of response execution for 
correct and incorrect responses), as shown in Figure 2. The five 
variations tested allowed each of these parameters to vary based 
on whether the stimulus was rewarding or punishing, in order to 
explain how differences in learning might arise at a cognitive level.
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Table 3 | average fit of each model.

Model average fit 

zr 245.41
a 248.48
v 242.40
t0 247.74
D 248.14

FigUre 2 | The diffusion model of decision-making illustrated for pedagogical purposes with several different types of learning curves [modified 
from ratcliff and McKoon (31)].
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Models were fit using a maximum likelihood approach 
implemented in fast-dm 30 (40, 41). Data were first cleaned by 
removing trials where RT was shorter than 0.3 s or longer than 
6 s [Ratcliff (42)—although the upper limit on the RT is usually 
3 s, here this was raised to accommodate for the PD groups]. The 
model with the smallest negative log-likelihood was taken as the 
best fit (since all models contained the same number of param-
eters). The models are described by one of the five parameters 
that were varied, one at a time, based on whether the stimulus 
was rewarding or punishing while the other parameters were not 
set constant. The average fit is the overall average negative log-
likelihood of the model, where smaller values indicate a better fit. 
The best fitting model was, therefore, the model where we varied 
the drift rate (v) based on whether the stimulus was rewarding or 
punishing. The fits are shown in Table 3.

statistical analysis
The normality of sample distributions (e.g., subject’s accuracy and 
reaction times) was checked using Kolmogorov–Smirnov tests of the 
sample’s empirical distribution against a reference normal cumula-
tive distribution function, with the null hypothesis that the sample 
is from a normal distribution. For the computer-based cognitive 
task, we used multivariate mixed-design ANOVA, two-way mixed-
model ANOVA, one-way ANOVA, independent-samples t-test, 
and one-sample t-test. The level of significance was set at α = 0.05. 
Bonferroni corrections were used to protect significance level.

resUlTs

cognitive Task
We checked the normality of the data used in our analy-
ses. All learning accuracy and RT data were normally 

distributed according to  the Kolmogorov–Smirnov test  
(p  >  0.1). Furthermore, we used one-sample t-test to assess 
whether subjects in different groups learned from positive and 
negative feedback better than chance (50%), with Bonferroni 
corrected α  =  0.006 to protect significance level. We used the 
percentage of optimal responses in the fourth block of trials as 
the independent variable. Subjects in the HC and PD groups 
learned significantly better than chance from positive feedback 
but those in the PD-MDD and MDD groups did not [PD-MDD: 
t(12) =  1.104, p =  0.291; MDD: t(11) =  0.831, p =  0.424; PD: 
t(16) = 3.395, p = 0.004; and HC: t(14) = 7.962, p < 0.001]. For 
negative feedback, subjects in all groups learned significantly 
better than chance [PD-MDD: t(12) = 4.629, p = 0.001; MDD: 
t(11) = 3.617, p = 0.004; PD: t(16) = 7.500, p < 0.001; and HC: 
t(16) = 7.231, p < 0.001].

We used kernel density estimates to qualitatively examine sub-
jects’ learning accuracy and RT in the fourth block of positive and 
negative feedback trials. As shown in Figure 3A, the MDD groups’ 
(PD-MDD and MDD) highest density in learning from positive 
feedback (around 60% optimal responses) was non-overlapping 
with that of the PD and HC groups, which were almost identical 
(around 95% optimal responses). In Figure  3B, although the 
density peaks in learning from negative feedback were not clearly 
separated as in positive feedback, the MDD groups (PD-MDD 
and MDD, around 60% optimal responses) were different from 
the PD (around 90% optimal responses) and HC (around 90% 
optimal responses) groups.

RT kernel density estimates exhibited a different pattern than 
learning accuracy, as shown in Figure 4. In the RT to positive feed-
back, the PD groups’ (PD-MDD and PD) density peaks (around 
2,000 ms) were different from the MDD peak (around 1,500 ms) 
and the HC peak (around 1,000 ms) as shown in Figure 4A. In the 
RT to negative feedback, as shown in Figure 4B, the density peak 
of PD-MDD group (around 3,000 ms) was different from the rest 
of the group peaks (all around 1,500 ms).

We used a multivariate mixed-model ANOVA to analyze 
our results, with feedback type (positive feedback and negative 
feedback) as the within-subject variable, groups PD (with PD 
and without PD) and MDD (with MDD and without MDD) 
as between-subject variables, and the mean percentage optimal 
response across blocks (positive feedback accuracy and negative 
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FigUre 3 | Kernel density estimates of performance on the positive and negative feedback learning task. (a) Density of subject scores in the fourth 
block of positive feedback stimuli. (b) Density of subject scores in the fourth block of negative feedback stimuli. In this and subsequent graphs, PD, Parkinson’s 
disease; MDD, major depressive disorder; PD-MDD, PD with comorbid MDD; HC, healthy control.
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feedback accuracy) as well as the average RT across blocks (RT to 
positive feedback and RT to negative feedback) as the dependent 
variables. Box’s test of equality of covariance matrices was sig-
nificant [Box’s M = 71.565, F(30, 6,029.494) = 2.034, p = 0.001]. 
Therefore, we used F and p values generated by Pillai’s Trace cri-
terion. Levene’s tests of equality of error variance and Mauchly’s 
test of sphericity were not significant.

As described below, there was a significant multivariate effect 
of PD and MDD. Furthermore, there were approaching signifi-
cance interactions between feedback type and PD, feedback type 
and MDD, and feedback type and PD and MDD (η2 represents 
effect size and β represents post hoc statistical power).

Variable(s) F df 
between

df 
error

p η2 β

MDD 11.251 2 51 0.000 0.306 0.989
PD 3.955 2 51 0.025 0.134 0.685
MDD*PD 0.737 2 51 0.484
Feedback 0.693 2 51 0.505
Feedback*MDD 2.777 2 51 0.072 0.098 0.523
Feedback*PD 2.921 2 51 0.063 0.103 0.546
Feedback*MDD*PD 2.831 2 51 0.068 0.100 0.532

Univariate between-subject tests are summarized in the table 
below. Results revealed a significant effect of MDD on the accu-
racy dependent variable but not on the RT-dependent variable. 
Conversely, PD had a significant effect on the RT-dependent vari-
able but not the accuracy-dependent variable. However, there was 
no interaction between MDD and PD in either accuracy or RT 
(η2 represents effect size, β represents post hoc statistical power).

Variable(s) DV F df 
between

df 
error

p η2 β

MDD Accuracy 22.937 1 52 0.000 0.306 0.992
RT 0.254 1 52 0.616

PD Accuracy 1.035 1 52 0.314
RT 7.457 1 52 0.009 0.125 0.160

MDD*PD Accuracy 0.019 1 52 0.891
RT 1.442 1 52 0.235

Univariate within-subject comparisons revealed a significant 
effect of interaction between feedback type and MDD on accu-
racy, a significant effect of interaction between feedback type and 
PD on RT, and an effect of the three-way interaction between 
feedback type, MDD, and PD on RT. Results are summarized 
below (η2 represents effect size, β represents post hoc statistical 
power).

Variable(s) DV F df 
between

df 
error

p η2 β

Feedback Accuracy 1.031 1 52 0.315
RT 0.535 1 52 0.468

Feedback*MDD Accuracy 5.488 1 52 0.023 0.095 0.518
RT 0.471 1 52 0.495

Feedback*PD Accuracy 1.019 1 52 0.318
RT 4.370 1 52 0.041 0.078 0.420

Feedback*MDD*PD Accuracy 0.417 1 52 0.521
RT 5.633 1 52 0.021 0.098 0.530

To explore the effect of interaction between feedback type 
and MDD on accuracy, we used two independent-samples 
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PD-MDD, PD with comorbid MDD; HC, healthy control.
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t-tests for accuracy feedback type (positive feedback and nega-
tive feedback), with the MDD group (with or without MDD) 
as the between-subject variable, and the mean percentage 
optimal response across blocks as the dependent variable (posi-
tive feedback accuracy and negative feedback accuracy). There 
was a significant effect of MDD on positive feedback accuracy 
[t(55)  =  −4.487, p  <  0.001, Cohen’s D  =  1.198; Figure  5A] 
but not on negative feedback accuracy [t(36.404)  =  −1.636, 
p = 0.133; Figure 5B].

Furthermore, we used two independent-samples t-tests on RT 
to feedback types to study the interaction between feedback type 
and PD on RT. The PD group (with or without MDD) was the 
independent variable, while RT to positive or negative feedback 
was the dependent variable. There was a significant effect of PD 
on RT to positive feedback [t(48.041) = 3.172, p = 0.002, Cohen’s 
D  =  0.850; Figure  6A] and an approaching-significance effect 
on RT to negative feedback [t(55) =  1.860, p =  0.068, Cohen’s 
D = 0.498; Figure 6B].

To investigate the effect of the three-way interaction between 
feedback type, MDD and PD on RT, we used two one-way 
ANOVA tests on RT to positive and negative feedback with group 
(PD-MDD, MDD, PD, and HC) as the between-subject variable. 
There was a significant effect of group on response in positive 
feedback [F(3, 53) = 3.322, p = 0.027, η2 = 0.161] and negative 
feedback [F(3, 53) = 2.843, p = 0.046, η2 = 0.139]. Post hoc Tukey’s 
HSD test on RT to positive feedback revealed no significant pair-
wise comparisons, although differences between PD-MDD, PD, 
MDD, and HC were approaching significance (<0.1). For RT to 

negative feedback, there was one post hoc significant difference 
between PD-MDD and MDD.

Mathematical Modeling
To analyze modeling results similar to cognitive results, we also 
used two-way mixed-design ANOVA, with extracted parameter 
type as the within-subject variable [threshold separation (a), 
non-decision time (s), difference in decision time (d), relative 
starting point (zr), drift rate for positive feedback (v1), and drift 
rate for negative feedback (v2)], MDD (present or not) and PD 
(present or not) as between-subject variables, and values for the 
six parameters as the dependent variables. Box’s test of equality 
of covariance matrices was significant [Box’s M = 71.565, F(30, 
6,029.494)  =  2.034, p  =  0.001]. Therefore, we used F and p 
values generated by the Pillai’s Trace criterion. Levene’s test of 
equality of error variance was not significant for all dependent 
variables except for v2 [F(3, 52) = 4.452, p = 0.007]. Mauchly’s 
test of sphericity also produced a significant result (Mauchly’s 
W  =  0.381, χ2  =  48.334, df  =  14, p  <  0.001). Therefore, we 
reported the Greenhouse–Geisser-corrected df in all within-
subject comparisons.

There was a significant effect of parameters [F(3.883, 
201.908) = 341.341, p < 0.001, η2 = 0.868], a significant interac-
tion between parameters and MDD [F(3.883, 201.908) = 3.939, 
p  =  0.005, η2  =  0.070], and a significant interaction between 
parameters and PD [F(3.883, 201.908)  =  2.550, p  =  0.042, 
η2 = 0.047]. There was no significant interaction between MDD, 
PD, and parameters [F(3.883, 201.908)  =  0.600, p  =  0.658]. 
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FigUre 6 | rT in milliseconds during optimally answered positive and negative feedback learning trials. (a) The mean RT during positive feedback trials. 
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FigUre 5 | Performance on the positive and negative feedback learning task. (a) The mean percentage of optimal responses for the positive feedback 
stimuli. (b) The mean number of optimal responses in overall for the negative feedback stimuli. In this and subsequent graphs, PD, Parkinson’s disease; MDD, major 
depressive disorder; PD-MDD, PD with comorbid MDD; HC, healthy control; error bars show SEM.
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Furthermore, there was neither a significant effect of MDD  
[F(1, 52) = 2.171, p = 0.147], PD [F(1, 52) = 1.309, p = 0.258], nor 
a significant interaction between MDD and PD [F(1, 52) = 1.046, 
p = 0.311].

We used six independent-samples t-tests to explore 
the interaction between parameters and MDD. The t-tests 
compared parameter values between the two MDD groups 
(PD-MDD and the MDD). There was a significant effect of 
MDD on the drift rate for positive feedback stimuli (Figure 7).  
Furthermore, there was an-approaching significance effect of 
MDD on the difference in decision time (Figure  7). Results 
are summarized below. D represents effect size as measured 
by Cohen’s D.

Dependent variable t df p D

Threshold separation (a) 0.531 54 0.597
Non-decision time (s) 0.498 54 0.989
Difference in decision time (d) −1.842 54 0.071 0.493
Relative starting point (zr) −0.253 54 0.802
Drift rate for positive feedback (v1) −3.266 54 0.002 0.878
Drift rate for negative feedback (v2) −0.53 36.694 0.960

Furthermore, we investigated the interaction between 
parameters and PD using six independent-samples t-tests. The 
t-tests compared parameter values between the two PD groups 
(PD-MDD and the PD). As described below, PD had a significant 
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effect on non-decision time and relative starting point. In addi-
tion, there was a short of significance effect of PD on threshold 
separation (Figure  7). D represents effect size as measured by 
Cohen’s D.

Dependent variable t df p D

Threshold separation (a) 1.925 54 0.059 0.516
Non-decision time (t0) 2.219 45.424 0.031 0.594
Difference in decision time (d) −0.244 54 0.808
Relative starting point (zr) −2.022 54 0.048 0.542
Drift rate for positive feedback (v1) −0.023 54 0.981
Drift rate for negative feedback (v2) 0.003 54 0.997

DiscUssiOn

The presence of MDD (in the PD-MDD and MDD groups) 
was associated with a selective deficit in learning accuracy 
from positive feedback. Conversely, the presence of PD (in 
the PD-MDD and PD groups) was associated with slower RT 
to positive feedback stimuli. Modeling results showed that the 
MDD groups had similar drift rates toward positive feedback 
and, therefore, learned less efficiently. On the other hand, the 
PD groups had higher threshold and, therefore, needed more 
evidence to make responses. To the best of our knowledge, this 
is the first study to examine learning from positive and negative 
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10

Herzallah et al. PD-MDD Impairs Reward Accuracy and RT

Frontiers in Psychiatry | www.frontiersin.org June 2017 | Volume 8 | Article 84

feedback in PD with MDD, while properly controlling for the 
effects of PD and MDD.

It is well established that PD-MDD exacerbates cognitive 
decline associated with PD (13–16). In particular, our previous 
research suggests that patients with both PD and MDD were 
significantly more impaired on associative learning than patients 
with PD alone (43). Imaging studies found that higher BDI scores 
in patients with PD were associated with lower ability to utilize 
positive feedback (44). These results are in agreement with the 
current findings that patients with PD-MDD are impaired on 
learning from positive feedback, which also extend previous 
literature in an Arabic-speaking population.

Our results show that the choice (decision making) performance 
of patients with PD-MDD resembled that of patients with MDD. 
Converging evidence suggests that MDD, similar to unmedicated 
PD, is associated with a selective deficit in learning from positive 
feedback (19, 22, 23, 45, 46). In our study, medicated patients with 
PD learned as well as healthy subjects from positive feedback, 
while medicated PD-MDD and medication-naïve MDD patients 
did not. This argues that the positive feedback learning deficit in 
PD-MDD might be attributed to the MDD part of PD-MDD.

Dopaminergic neurotransmission has been associated with 
various cognitive domains (47). Previous studies found that 
patients with PD-MDD had more pronounced dopaminergic 
dysfunction in the substantia nigra pars compacta when com-
pared to PD patients without MDD (48). Furthermore, both 
patients with PD and MDD showed reduced activation during 
reward anticipation in the putamen, caudate, nucleus accum-
bens, and dorsal anterior cingulate (49–51). Conversely, some 
studies suggested that striatal dopamine deficiency did not cor-
relate with indices of MDD in PD, suggesting an extra striatal or 
non-dopaminergic mechanism (52, 53). In our study, although 
patients with PD-MDD were on dopaminergic medications, it 
does not seem that this remediation of dopamine levels affected 
cognitive function.

Patients with PD-MDD and patients with PD were sig-
nificantly slower than MDD and HCs in responding to positive 
feedback stimuli. It is evident from our data that this deficit in 
RT is associated with the PD part of PD-MDD, not the MDD 
part. This could not be attributed to motor slowness in PD  
(25, 26) given that there was no difference between groups in 
response to negative feedback stimuli.

Relying on behavioral results only, it is not possible to tease 
apart the effects of processing speed, accumulation of cogni-
tive evidence, rate of accumulation of cognitive evidence, and 
valence. Hence, we used a diffusion mathematical model to 
further analyze our behavioral data. Modeling showed that the 
RT differences for PD and PD-MDD groups were not simply 
the result of motor differences, but could also be influenced 
by patients with PD requiring more evidence to make their 
responses, as seen by the effect of PD on the estimate of their 
threshold separation (a) (Figure 7). Patients with PD (both PD 
and PD-MDD) showed significantly greater non-decision time 
(t0) as expected. However, their decision-making also differed 
in their threshold separation (a) revealing them to be more 
cautious responders, as they require more evidence to be col-
lected before making a response. Patients with PD also tended 
to show a reduced bias; however, this did not reach significance. 
The difference in accuracy in learning from positive feedback 
seen in patients with MDD (MDD and PD-MDD groups) was 
explained by a significant difference in their drift rate for the 
positive feedback stimuli (v1). This difference was not present 
in the drift rate for negative feedback stimuli (v2) (Figure 7). 
This means that compared to HCs and patients with PD and 
not MDD, the MDD and PD-MDD groups were accumulating 
evidence for responses to positive feedback stimuli far slower, 
which could be the result of an impairment in learning from 
positive feedback. There was also a trend for a reduced d (differ-
ence in speed of response) in patients with MDD; however, this 
did not reach significance.

As shown in Figure  8, we used average parameter values 
extracted from our model to calculate predicted RT density 
functions for the four groups. The peak positions in the density 
distribution match those in Figure 4 from experimental RT data. 
As predicted, non-decision time (t0) was found to be significantly 
longer in PD and PD-MDD groups, this can be seen from the 
longer time taken for the response distribution to begin reaching 
threshold (where the distribution “takes off ” from the x-axis). 
Increased threshold separation (a) results in the distribution 
having a greater variance, as can be seen from the separation of 
the peaks along the x-axis, where the PD and PD-MDD groups 
show significantly greater threshold separation. The slope of the 
evidence accumulation for positive stimuli (v1) also differed 
between groups where patients with MDD and PD-MDD showed 
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a slower evidence accumulation rate. This can be seen from the 
height of the peaks of the distributions, with a lower peak for 
correct responses and a larger peak for incorrect responses in 
MDD and PD-MDD groups.

limitations and Future Directions
All PD patients in our study were maintained on regular doses 
of dopaminergic medication. Furthermore, the MDD group 
received no medications. There was no way to examine whether 
the PD-associated deficit predated the MDD-associated deficit, 
or the opposite, in the PD-MDD group. Future studies ought to 
focus on the effects of dopaminergic medications on cognitive 
function in PD-MDD. Furthermore, MDD should be studied 
longitudinally in medication-naïve patients with PD to investi-
gate the chronological order of cognitive deficits associated with 
PD-MDD.
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