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Schizophrenia is a psychiatric disorder characterized by hallucinations, delusions, 
disorganized thinking, and impairments in cognitive functioning. Evidence from post-
mortem studies suggests that alterations in cortical γ-aminobutyric acid (GABAergic) 
neurons contribute to the clinical features of schizophrenia. In vivo measurement of 
brain GABA levels using magnetic resonance spectroscopy (MRS) offers the possibility 
to provide more insight into the relationship between problems in GABAergic neuro-
transmission and clinical symptoms of schizophrenia patients. This study reviews and 
links alterations in the GABA system in postmortem studies, animal models, and human 
studies in schizophrenia. Converging evidence implicates alterations in both presynap-
tic and postsynaptic components of GABAergic neurotransmission in schizophrenia, 
and GABA may thus play an important role in the pathophysiology of schizophrenia. 
MRS studies can provide direct insight into the GABAergic mechanisms underlying the 
development of schizophrenia as well as changes during its course.
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BACKGROUND

Schizophrenia is a severe chronic psychiatric disorder characterized by hallucinations, delusions, 
disorganized thinking, and impairments in cognitive functioning, affecting approximately 1% of 
the population. Several lines of evidence suggest that abnormalities of specific cortical inhibitory 
neurons and its neurotransmitter γ-aminobutyric acid (GABA) could play an important role in 
the pathophysiology of schizophrenia (1). The current evidence on GABAergic abnormalities in 
schizophrenia is mostly based on postmortem studies and has not yet provided a conclusive answer 
about GABAergic alterations and activity in schizophrenia. In vivo measurements of GABA in 
schizophrenia may reveal additional insights. The aim of this study is to review the findings of 
postmortem and animal studies on different components of GABAergic neurotransmission and 
in vivo magnetic resonance spectroscopy (MRS) findings on GABA levels in the brains of patients 
with schizophrenia. To collect relevant literature, a PubMed search was performed using the follow-
ing terms: ((schizophrenia [tiab] OR schizophrenic* [tiab]) AND (glutamate decarboxylase [tiab] 
OR glutamic acid decarboxylase [tiab] OR GAD [tiab] OR GAD67 [tiab] OR GAD65 [tiab] OR 
GABA [tiab] OR gamma-aminobutyric acid [tiab] OR glutamate [tiab] OR glutamergic [tiab] OR 
gene expression [tiab])).
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FiGURe 1 | Metabolism of GABA. After synthesis in the presynaptic terminal of GABA neurons, GABA is packaged into vesicles by the vesicular GABA transporter, 
which is embedded in the vesicular membrane. The synaptic activity of GABA is terminated when GABA is taken up by GABA transporters embedded in the plasma 
membranes of neurons and astrocytes. When GABA is taken up by neurons, it can be either repacked in vesicles for neurotransmission or it can be degraded by 
the enzyme GABA transaminase to succinic semialdehyde (SSA). After conversion of SSA to succinate, it enters the TCA cycle and is subsequently converted into 
glutamate. The following conversion of glutamate to GABA by GAD65 and GAD67 completes the GABA cycle.
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NeUROBiOLOGY OF GABA

Presynaptic GABA Synthesis and Release
GABA is synthesized by decarboxylation of glutamate by glu-
tamic acid decarboxylase (GAD) (Figure  1) (2). Based on its 
molecular weight, it is possible to distinguish two isotypes, the 
65 kDa isotype GAD65 and the 67 kDa isotype GAD67, which 
are involved in different aspects of GABAergic neurotransmis-
sion (3). GAD65 is responsible for rapid synthesis of GABA 
during periods of high synaptic demand; it is predominantly 
located on axon terminals and synaptic vesicle membranes and 
is thus primarily associated with packaging and release of GABA 
(4–7). GAD67 is responsible for basal GABA levels (4, 5) and 
the majority (80–90%) of GABA synthesis (8); it is located in the 
cytosol and is thus primarily associated with GABA synthesis 
and non-vesicular release (6, 7).

After synthesis in the presynaptic terminal, GABA is pack-
aged into vesicles by the vesicular GABA transporter (VGAT), 
which is embedded in the vesicular membrane (9). A presyn-
aptic action potential can induce a Ca2+-mediated fusion of the 
vesicle membrane and the presynaptic neuron membrane, which 
leads to release of GABA into the synaptic cleft. Alternatively, 
after strong depolarization or altered ion homeostasis, specific 
GABA transporters (GAT) may reverse their direction resulting 
in non-vesicular release of GABA (9, 10).

Postsynaptic GABA Receptors
After release into the synaptic cleft, GABA exerts its inhibitory 
activity by binding to two types of receptors, such as GABAA and 
GABAB receptors. GABAA receptors are ligand-gated Cl− chan-
nels and produce most of the physiological actions of GABA (11). 
GABAA receptors have a pentameric subunit structure derived 
from different gene families and include α, β, γ, δ, ε, π, and θ 
subunits. Some of these subunits have several isoforms (α1–6, 
β1–3, and γ1–3) (12). In most cases, the pentamers of sub units 
include a pair of α subunits and a pair of β subunits in combina-
tion with a fifth subunit (γ or δ) (13).

GABA Transport
The synaptic activity of GABA is terminated when GABA is 
taken up by GAT that are embedded in the membranes of neu-
rons and astrocytes (10). In humans, four types of GAT can be 
distinguished, GAT-1 to 3 and the betaine GABA transporter 
(BGT-1). GAT-1 is widely expressed in the brain, predominantly 
in presynaptic GABA neurons, and is thus primarily responsible 
for GABA reuptake (9, 10). GAT-3 is primarily responsible for 
GABA uptake into local astrocytes (14). In contrast to GAT-1 and 
GAT-3, GAT-2 and BGT-1 play a very limited role in GABAergic 
neurotransmission (10).

When GABA is taken up by neurons, it can either be repacked 
into vesicles or it can be degraded to succinic semialdehyde  
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TABLe 1 | Postmortem studies on glutamic acid decarboxylase (GAD) in 
schizophrenia.

Reference Brain region Findings Comments

Akbarian  
et al. (16)

Dorsolateral prefrontal 
cortex (DLPFC) (BA9)

GAD67  
mRNA ↓

Impagnatiello  
et al. (34)

Superior temporal 
gyrus (STG) (BA22)

GAD67  
protein ↓

Benes  
et al. (35)

Anterior cingulate 
cortex (ACC) (BA24)

GAD65-IR 
terminals =

DLPFC (BA9)

Guidotti  
et al. (30)

DLPFC (BA9) GAD67  
mRNA ↓

Schizophrenia  
and bipolar disorder

GAD67  
protein ↓

Mirnics  
et al. (24)

DLPFC (BA9) GAD67  
mRNA ↓

Volk  
et al. (27)

DLPFC (BA9) GAD67  
mRNA ↓

Hakak  
et al. (36)

DLFPC (BA46) GAD 67  
mRNA ↑

Elderly patients

GAD65  
mRNA ↑

Knable  
et al. (23)

DLPFC (BA9) GAD67  
mRNA ↓

Hashimoto  
et al. (5)

DLPFC (BA9) GAD67  
mRNA ↓

Dracheva  
et al. (37)

DLPFC (BA46) GAD67  
mRNA ↑

Elderly patients

Primary visual cortex 
(VC) (BA17)

GAD65  
mRNA ↑

Woo  
et al. (28)

ACC (BA24) GAD67  
mRNA ↓ 

Schizophrenia  
and bipolar disorder

Hashimoto  
et al. (19)

DLFPC (BA9) GAD67  
mRNA ↓

Fatemi  
et al. (38)

Cerebellar cortex GAD67  
protein ↓

Schizophrenia,  
bipolar disorder,  
and major depressionGAD65  

protein ↓

Veldic  
et al. (25) 

DLPFC (BA9) GAD67  
mRNA ↓

Schizophrenia and  
bipolar disorder

Straub  
et al. (39)

DLPFC GAD67  
mRNA ↓

GAD67  
protein =

Veldic  
et al. (26)

DLPFC (BA9) GAD67  
mRNA ↓ 

Woo  
et al. (29)

DLPFC (BA9) GAD67  
mRNA ↓

Hashimoto  
et al. (20)

DLFPC (BA9) GAD67  
mRNA ↓

Hashimoto  
et al. (21)

DLPFC (BA9) GAD67  
mRNA ↓ACC (BA24)

Primary motor cortex

Primary VC

(Continued )
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(SSA) by the enzyme GABA transaminase. After conversion of 
SSA to succinate, the latter enters the TCA cycle and is subse-
quently converted into glutamate (10, 15). The following conver-
sion of glutamate to GABA by GAD65 or GAD67 completes the 
GABA cycle (Figure 1).

ALTeReD GABAergic 
NeUROTRANSMiSSiON 
iN SCHiZOPHReNiA

GAD67 in Schizophrenia
One of the most consistent postmortem findings in schizo-
phrenia is a reduction of mRNA encoding for GAD67 in the 
dorsolateral prefrontal cortex (DLPFC) in layers 1 through 5 
(3–5, 16–29), which results in a reduction of GAD67 protein 
levels although this has been less extensively studied (Table 1) 
(4, 30, 31). Since the majority of studies reported unaltered or 
increased neuronal density, it is unlikely that the reduction of 
GAD67 mRNA can be attributed to a decrease in the number 
of neurons in schizophrenia (16, 27, 32, 33). Rather, the density 
of neurons expressing a detectable level of GAD67 mRNA is 
decreased (27); expression of GAD67 mRNA is decreased below 
a detectable level in 25–35% of GABAergic neurons, while the 
remaining neurons have GAD67 mRNA levels similar to controls 
(27, 29). It has therefore been suggested that impaired GAD67 
gene expression is limited to a certain subset of GABAergic neu-
rons (27, 31). This subset could concern the chandelier, double 
bouquet, or wide-arbor neurons, which can be distinguished by 
the presence of specific calcium-binding proteins (Box 1) (1).

The subset that is affected in schizophrenia appears to include 
parvalbumin-containing GABAergic neurons. In schizophrenia, 
parvalbumin mRNA expression is reduced in prefrontal cortex 
(PFC) layers 3 and 4, but not layers 2, 5, or 6 (5, 27, 29, 51). The over-
all expression of parvalbumin mRNA is decreased whereas the 
density of neurons expressing detectable levels of parvalbumin is 
unaltered (5, 52, 53), implying that the reduction of parvalbumin 
mRNA is not accompanied by a loss of parvalbumin-containing 
neurons. The reduced parvalbumin mRNA expression is asso-
ciated with the decreased density of GAD67 mRNA-positive 
GABAergic neurons. 50% of the parvalbumin-positive neurons 
lack detectable amounts of GAD67 mRNA (5), whereas calretinin 
mRNA (which is expressed by a different subset of neurons—see 
Box 1) expression and the density of calretinin-positive neurons 
remain unchanged in schizophrenia (5, 54). These findings imply 
that the reduced GAD67 mRNA expression may be selective for 
the parvalbumin-containing subgroup of GABA neurons in the 
PFC (5). Recent evidence suggests that GAD67 protein levels 
are unaltered in the chandelier neurons, suggesting that other 
parvalbumin-containing neurons, such as the basket cells, are 
involved (31).

The observed alterations regarding parvalbumin are not likely 
to be caused by exposure to antipsychotic medication. Long-
term exposure to haloperidol and benzotropine did not lead to 
an altered expression of parvalbumin mRNA (5). Furthermore, 
transcript levels for parvalbumin were reduced to the same extent 
in the DLPFC of medication-naïve patients compared to patients 
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TABLe 2 | Postmortem studies on GABA transporters (GAT)-1 in schizophrenia.

Reference Brain region Findings

Woo et al. (65) Dorsolateral prefrontal  
cortex (DLPFC) (BA9)

GAT-1-IR cartridges of 
chandelier neurons ↓

Pierri et al. (66) DLPFC (BA46) GAT-1-IR cartridges of 
chandelier neurons ↓

Ohnuma et al. (64) DLPFC (BA9/10) GAT-1 mRNA ↓
Volk et al. (59) DLPFC (BA9) GAT-1 mRNA ↓
Konopaske et al. (62) Auditory association  

area (BA42)
GAT-1-IR cartridges of 
chandelier neurons =

Hashimoto et al. (20) DLPFC (BA9) GAT-1 mRNA ↓
Hashimoto et al. (21) DLPFC (BA9) GAT-1 mRNA ↓

Anterior cingulate cortex  
(BA24)
Primary visual cortex 
Primary motor cortex

BOx 1 | Subsets of GABAergic neurons.

Based on molecular, morphological, and physiological features, it is possible 
to distinguish different subsets of cortical GABA neurons, with the double bou-
quet, basket, and chandelier cells being the most abundant cortical GABAergic 
interneuron subsets (1, 18). The subpopulations have different influences on 
the regulation of information processing in the dorsolateral prefrontal cortex 
(DLPFC), partly because the axons of the GABAergic interneurons synapse 
at different locations on the pyramidal neuron (1, 41, 42). Furthermore, it is 
possible to identify certain morphological and functional subgroups of GABA 
neurons which contain different calcium-binding proteins (43–45).

Chandelier neurons synapse at axon initial segments (AIS) of pyramidal 
neurons and therefore provide inhibitory inputs to the AIS. These synaptic con-
nections are formed in such a way that vertical arrays, so-called “cartridges,” 
are formed (1, 46). Furthermore, these neurons contain the calcium-binding 
protein parvalbumin (5, 47).

Basket or wide-arbor neurons synapse at cell bodies and proximal den-
drites of pyramidal neurons. Similar to chandelier neurons, basket cells in the 
prefrontal cortex contain the protein parvalbumin (43).

Double bouquet neurons contain the calcium-binding protein calbindin 
and target the distal dendrites of pyramidal neurons (1, 48).

A third calcium-binding protein, calretinin, is expressed by approximately 
50% GABAergic neurons, mainly double bouquet cells, in the DLPFC (43).

Since the parvalbumin-containing chandelier and basket neurons synapse at 
the AIS and soma, respectively, they provide a much stronger inhibitory regulation 
of the pyramidal neurons as compared to double bouquet cells, which synapse 
at the distal dendrites (49, 50). Given the heterogeneity in synaptic targets and 
specific features of the different subclasses of GABAergic neurons, altered 
interactions between different GABAergic neurons and pyramidal neurons may 
influence neuronal activity and hence functional output in different manners.

Reference Brain region Findings Comments

Thompson  
et al. (3)

ACC (BA24) GAD67  
mRNA ↓  
(OFC, caudate, 
nucleus 
accumbens)

Schizophrenia,  
bipolar disorder, and 
major depression

Orbital frontal cortex 
(OFC) (BA45)

STG (BA22)

Caudate

Putamen

Nucleus accumbens

Medial dorsal 
thalamus

Anterior thalamus

Duncan  
et al. (17)

DLPFC (BA9/46) GAD67  
mRNA ↓

Curley  
et al. (4)

DLPFC GAD67  
mRNA ↓

GAD67  
protein ↓

Kimoto  
et al. (22)

DLPFC (BA9) GAD67  
mRNA ↓

Glausier  
et al. (40)

DLPFC (BA9) GAD65  
mRNA =

Rocco  
et al. (31)

DLPFC (BA9) GAD67  
protein ↓

GAD67 protein 
unaltered in chandelier 
neurons

TABLe 1 | Continued
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(BG) (55–58) but not in the PFC; however, D2-receptor density 
in the PFC is much lower than in the BG (20, 27).

GAT-1 in Schizophrenia
The transporter protein GAT-1 is present in the presynaptic 
neuron and is responsible for the synaptic reuptake of GABA  
(19, 59). It plays a role in both tonic and phasic GABA-mediated 
inhibition (60, 61). GAT-1 terminates the synaptic activity 
of GABA and regulates the duration and efficacy of synaptic 
GABAergic neurotransmission (62); therefore, reduced GAT-1 
levels suggest increased availability of GABA in the synapse 
(63). Several studies found reduced mRNA levels encoding 
for the GAT-1 protein in schizophrenia. GAT-1 mRNA levels 
are decreased in GABAergic neurons in the DLPFC (Table 2) 
(20, 21, 59, 62, 64). Together with the diminished expression 
of GAD67 mRNA, it is unclear whether this results in a net 
increase or decrease of the inhibitory tone on pyramidal cells 
(63). Moreover, GAT-1 mRNA expression is reduced below 
detectable levels in a subset of GABAergic neurons and rela-
tively unaltered in the majority of the GABAergic neurons (59). 
The affected subset appears to include parvalbumin-containing 
neurons (1, 59). The reduction of GAT-1 mRNA expression 
is limited to layers 2 through 5, the same layers in which 
parvalbumin-containing neurons are found (59, 65).

The subset of GABAergic neurons where reduced GAT-1 
mRNA levels are detected is possibly the subset of chandelier 
neurons (see Box  1). A marker of chandelier neurons is their 
GAT-1 immunoreactivity; the density of GAT-1 immunoreactive 
cartridges is decreased in schizophrenia, while markers of other 
axon terminal populations remain unchanged (65, 66). The lower 
density of GAT-1 immunoreactive cartridges implies decreased 
GAT-1 protein, which is associated with decreased GAT-1 mRNA 
levels. Putting together these findings, reduced GAT-1 mRNA 
levels may therefore account for the decreased density of GAT-1 
immunoreactive axon cartridges in chandelier neurons (59). 
The reduction of GAT-1 immunoreactive cartridges cannot be 
attributed to a reduction of chandelier neurons, since the den-
sity of GABAergic neurons [identified by parvalbumin (52, 53) 
and VGAT (67)] is unchanged. Thus concluding, the density of 

receiving antipsychotic medication (20). Animal studies have 
shown that treatment with dopamine D2-receptor antagonists 
influences the expression of GAD67 mRNA in the basal ganglia 
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TABLe 3 | Postmortem studies on postsynaptic GABA receptors in 
schizophrenia.

Reference Brain region Findings

Hanada et al. (71) Dorsolateral 
prefrontal cortex 
(DLPFC) (BA9)

GABAA receptor binding ↑

Caudate

Benes et al. (76) Anterior cingulate 
cortex (ACC)

GABAA receptor binding ↑

Akbarian et al. (16) DLPFC (BA9) GABAA α1–5 receptor subunit 
mRNA =
GABAA γ2-receptor subunit  
mRNA =

Benes et al. (69) DLPFC (BA10) GABAA receptor binding ↑
Huntsman et al. (79) DLPFC (BA9) GABAA receptor γ2 subunit  

mRNA ↓
Impagnatiello et al. 
(34)

DLPFC (BA9) GABAA receptor α1 subunit  
mRNA ↑
GABAA receptor α5 subunit  
mRNA ↑

Dean et al. (70) DLPFC (BA9) GABAA receptor binding ↑
Ohnuma et al. (64) DLPFC (BA9) GABAA receptor α1 subunit  

mRNA ↑BA10

Mirnics et al. (24) DLPFC (BA9) GABAA receptor β1, γ2/3, π 
subunit mRNA ↓

Ishikawa et al. (72) DLPFC (BA9) GABAA receptor α1, β2/3 subunit ↑
Ishikawa et al. (83) DLPFC (BA9) GABAB receptor 1 protein ↓
Vawter et al. (47) DLPFC 

(BA9 + BA46)
GABAA receptor δ subunit  
mRNA ↓

Volk et al. (46) Prefrontal cortex GABAA receptor α2 subunit  
protein ↑

Hashimoto et al. (20) DLPFC (BA9) GABAA receptor α1/4, β3, γ2, δ 
subunit mRNA ↓

Hashimoto et al. (21) DLPFC (BA9) GABAA receptor α1, δ subunit 
mRNA ↓ACC (BA24)

Primary visual  
and motor cortices

Maldonado-Avilés 
et al. (80)

DLPFC (BA9) GABAA receptor δ subunit mRNA ↓
GABAA receptor α4 subunit  
mRNA =

Duncan et al. (17) DLPFC  
(BA9/BA46)

GABAA receptor α5 subunit  
mRNA ↓
GABAA receptor α1/2 subunit 
mRNA =

Beneyto et al. (78) DLPFC GABAA receptor α2 subunit  
mRNA ↑
GABAA receptor α1/5, β2  
subunit mRNA ↓
GABAA receptor α3, β1, β3 =
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chandelier neurons containing GAT-1 protein in the DLPFC in 
patients with schizophrenia was reduced whereas the density of 
parvalbumin-containing neurons remains unaltered. This find-
ing suggests that the reduced levels of GAT-1 mRNA are limited 
to the chandelier neurons (29, 65).

Long-term exposure to therapeutic blood levels of halop-
eridol in monkeys did not result in changes in the expression of 
GAT-1 mRNA or the expression of GAT-1 protein (65, 66, 68), 
nor did effects of alcohol abuse or benzodiazepine use explain 
the findings (20, 21).

Postsynaptic GABA Receptors 
in Schizophrenia
GABAA receptors are ligand-gated chloride ion channels and 
produce most of the physiological actions of GABA (11). GABAA 
receptors have a pentameric subunit structure and the subunits 
are derived from different gene families encoding for different 
subunits including α1–6, β1–3, γ1–3, δ, ε, π, and θ (12). The 
pentamers of subunits include in most cases a pair of α subunits 
and a pair of β subunits in combination with a fifth subunit (γ or 
δ) (13). Early studies demonstrated increased binding of musci-
mol, a selective GABAA receptor agonist, in pyramidal neuronal 
cell bodies in patients with schizophrenia (69–71); however, 
muscimol can bind to all types of GABAA receptor subunits. 
Recent advancements in technology have enabled investigation 
of deficits of individual GABAA receptor subunits (72).

Subunits of the α-type can be characterized by their sub-
cellular localization within the central nervous system. Over 
95% of the GABAergic synapses on the axon initial segment 
(AIS) of pyramidal neurons contain the α2 subunit, while only  
15% of cortical GABA receptors contain the α2 subunit (73, 74).  
It appears that this subunit is characterized by high affinity,  
fast activation, and slow deactivation (75). Given its anatomical 
position and functional features, the GABAA α2 subunit serves 
as a major source for inhibitory tone on pyramidal neurons 
(46). Parvalbumin-containing neurons, which appear to 
exhibit a reduced expression of GAT-1 and GAD67 mRNA in 
schizophrenia, target the AIS of pyramidal neurons. Indeed, it 
has been demonstrated that in schizophrenia, the GABAA α2-
receptor subunit is upregulated in the AIS of pyramidal neurons 
(46, 69, 76). This increase in α2 subunit density may occur in 
response to reduced extracellular GABA concentrations due 
to diminished GABA synthesis (1, 46). Furthermore, GAT-1 
immunoreactive cartridges and the density of α2 subunits at the 
postsynapse of pyramidal neurons demonstrate an inverse cor-
relation, which implies that GABAA α2 subunits are upregulated 
at the AIS of pyramidal neurons and GAT-1 is downregulated 
to provide a synergetic compensation for the diminished 
GABAergic activity (46). In contrast to GAD67 mRNA and 
GAT-1 mRNA, mRNA expression levels of postsynaptic GABAA 
α2-receptor subunits seem to be unaltered (16, 17). Reductions 
of α2-receptor subunits are exclusively found at the AIS syn-
apses; the lack of upregulation of α2 subunit mRNA might be 
explained by the fact that inhibitory synapses at the AIS of 
pyramidal neurons make up less than 10% of the total number 
of inhibitory synapses of the pyramidal neuron (16, 77).

mRNA levels of the GABAA α1, γ2, α4, α5, and δ receptor subu-
nits are suggested to be downregulated in the DLPFC of patients 
with schizophrenia (Table 3) (20, 21, 47, 78–80). However, two 
studies reported an increase of α1 subunit mRNA expression  
(34, 64), one study revealed an increase of α5 subunit mRNA (34), 
one study observed an increase of the GABAA receptor α1 subunit 
protein (72), and one study demonstrated no change of the α4 
receptor subunit (80). In contrast to the a2 subunit localized at the 
AIS of pyramidal neurons, GABAA receptors containing the α1, 
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FiGURe 2 | Pre- and postsynaptic GABAergic alterations. The reductions  
of GAD67 mRNA, parvalbumin mRNA, and GAT-1 mRNA levels in the 
parvalbumin-containing chandelier neurons seem to result in a compensatory 
postsynaptic upregulation of α2-receptor at the axon initial segment of the 
pyramidal neuron. Presynaptic alterations in neurons targeting the dendritic 
domain of the pyramid neuron might also be accompanied by abnormalities 
of the postsynaptic GABA α1, α5, and γ2 and the extrasynaptic α4 and δ 
receptor subunits.
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α5, γ2, and δ (often co-expressed by α4) subunits are predomi-
nantly localized in the dendrites of pyramidal neurons (73, 81, 
82). The observed alterations in the postsynaptic GABAA recep-
tors do not seem to be a consequence of an increased number of 
neurons, because the majority of studies have reported no change 
or an increase in neuron density (27, 32, 33, 51).

Animal studies in which rats were exposed to benzodiazepines 
did not reveal changes in the expression level of α2 subunit 
mRNA or protein levels and long-term exposure to haloperidol 
or olanzapine did not result in altered α1, α2, α5, β2, or δ subunit 
mRNA levels (20, 78, 84). Postmortem studies show that α1 and δ 
subunits are reduced to the same extent in the DLPFC of patients 
who were not taking antipsychotic medication at the time of 
death, which is unlikely to be driven by the effects of alcohol 
abuse or benzodiazepine use (20, 21). (For an overview of pre- 
and postsynaptic GABAergic alterations, see Figure 2.)

widespread GABAergic Alterations 
in Schizophrenia
There is sufficient histological–pathological evidence to link 
impairments in GABAergic neurotransmission in other cortical 
regions than the DLPFC to pathologies and cognitive dysfunc-
tions observed in schizophrenia (63).

Similar to the DLPFC, the anterior cingulate cortex (ACC), 
primary visual cortex (VC), and primary motor cortex are 
characterized by the same deficits in GABAergic gene expres-
sion as seen in the DLPFC, including selective involvement of 
parvalbumin-containing subsets of GABA neurons. The largest 

declines were reported for the levels of mRNA encoding for 
parvalbumin (21). These brain areas also exhibit a decrease of 
GAD67 mRNA, GAD65 mRNA, GAT-1 mRNA, and GABAA 
receptor α1 and δ subunits (1, 21, 28). Calretinin levels remained 
unchanged (21). GABA-related transcript expression is suggested 
to be decreased to the same extent in all aforementioned brain 
regions, so there possibly is no preferential involvement of the 
DLPFC (21). The reduced expression of GABAA receptor α1 and 
δ subunits in these cortical areas also imply that reduced phasic 
and tonic inhibition, respectively, might be a feature shared by 
multiple cortical regions.

Furthermore, in addition to the ACC, primary VC, and primary 
motor cortex which demonstrated similar GABAergic expression 
deficits as the DLPFC, the orbital frontal cortex (OFC), superior 
temporal gyrus (STG), striatum, and thalamus show a dimin-
ished GAD67 mRNA expression as well (3). In addition, the STG 
and auditory gyri demonstrated reduced GAT-1 protein levels 
(34). Reduction in GABAergic activity in the OFC could lead to 
disturbances related to emotional and cognitive functioning and 
may therefore underlie symptoms regarding social withdrawal 
and apathetic behavior (85). In addition, abnormalities in the 
STG could contribute to deficit auditory processing and auditory 
hallucinations (3). These findings imply that the aberrations seen 
in the DLPFC may not be due to alterations in DLPFC circuitry 
only, but that the altered transcript levels appear to be the conse-
quence of a common upstream mechanism that operates across 
multiple cortical areas.

integration of Postmortem Findings  
on GABAergic Neurotransmission
A possible integrative model for the alterations in GABA neu-
rotransmission is that a subset of prefrontal GABA neurons is 
affected in schizophrenia. In contrast to the reduced GAD67 
and the consequent attenuation of inhibitory GABAergic 
neurotransmission, the reduction of GAT-1 mRNA expression 
tends to increase the synaptic activity of GABA (63). In addition, 
GABAA receptors are upregulated in postsynaptic pyramidal 
neurons, which suggests a compensatory increase in response 
to the decreased extracellular GABA concentrations (46, 70, 76). 
However, based on postmortem studies, it is not possible to  
identify the initial deficit in the pathological chain and, therefore, 
two scenarios are possible (see Figure 2).

The most likely scenario is an overall reduced GABAergic 
activity in schizophrenia. This implies that the initial step in this 
specific pathologic process is the presynaptic reduction of GABA 
synthesis, followed by a secondary, compensatory reduction of 
reuptake by means of GAT-1 and by compensatory upregulation of 
postsynaptic GABA receptors (1, 18, 86). This synergetic attempt, 
to improve the GABAergic neurotransmission at the synapse of 
the pyramidal neuron AIS, serves to compensate for the initial 
deficit in synthesis of GABA. Consistent with the theory that the 
reduction of synthesis is the first step in the pathological chain, 
mice lacking the GAT-1 gene do not develop diminished levels 
of GAD67 mRNA. This indicates that the reduction of GAD67 
is the initial event (87). Furthermore, GABA hypofunction due 
to decreased synthesis reflected by the diminished levels of 
GAD67 mRNA was imitated in rats by means of pharmacological 
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blockade of prefrontal GABAA receptors. This resulted in impaired  
working memory performance, a cognitive function characteristi-
cally disturbed in patients with schizophrenia (88, 89). However, 
it is still controversial whether the compensatory mechanisms 
are sufficient to overcome the decreased GABA synthesis.  
In other words, it is unknown if the net effect of the diminished 
presynaptic synthesis on the one hand and the decreased reup-
take increased postsynaptic reception on the other hand result 
in an increase or decrease of the inhibitory tone on pyramidal 
cells by GABAergic neurons (63). In conclusion, the most likely 
scenario is that reduced presynaptic GABA production results 
in a reduced reuptake of GABA and in upregulated postsynaptic 
GABA receptors in schizophrenia.

Alternatively, an excessive increase of GABAergic activity 
due to both primary diminished reuptake and upregulated post-
synaptic receptors may also be an initial step in the pathological 
process followed by secondary compensatory downregulation 
of GAD67 mRNA in chandelier neurons due to the excessive 
GABAergic activity. Furthermore, the effects of pharmaceuticals 
involved in GABAergic neurotransmission seem to be in line 
with the hypothesis of excess GABAergic activity. For example, 
lorazepam, a positive allosteric modulator of GABAergic neu-
rotransmission, results in a deterioration of working memory 
aberrations while flumazenil, a partial inverse agonist, leads 
to improvement of the working memory deficits (63). Thus, 
according to this scenario, excessive GABAergic activity could 
be the result of an initial postsynaptic upregulation of the GABAA 
receptor and downregulation of the presynaptic GABA reuptake 
transporters as a first step in the pathological chain (63).

Finally, the aberrations seen in the DLPFC may not be due to 
alterations in DLPFC circuitry, but instead reflect transcript levels 
that are a consequence of a common upstream mechanism that 
operates across multiple cortical areas in schizophrenia.

In conclusion, the most likely scenario involves reduced GABA 
concentrations due to a compromised production of GABA 
reflected by the diminished concentration of GAD67 mRNA. 
However, due to the observation that presynaptic GAT-1 is reduced 
and postsynaptic receptors are upregulated, postmortem studies 
do not provide a conclusive answer about the net GABAergic  
concentrations and activity. Therefore, in  vivo studies could 
provide additional insights into GABA levels in clinical states 
contribu ting to a more definitive formulation about the patho-
logical cascade and GABAergic alterations in schizophrenia.

IN VIVO MRS OF GABA iN 
SCHiZOPHReNiA

GABA can be measured in vivo using proton MRS (1H-MRS). 
MRS provides a means to non-invasively identify and quantify 
metabolites in tissue and can be carried out with an MR scanner. 
MRS makes use of the magnetic properties of nuclei, e.g., the 
proton (1H). Because the magnetic properties of a nucleus are 
influenced by its chemical environment, it is possible to iden-
tify signals from different molecules within the MR spectrum. 
However, measurement of GABA with 1H-MRS is challenging 
since its low concentration results in a relatively small signal 
which is overlapped by more intense signals from more abundant 

metabolites. It is possible to separate the GABA signal from 
other, more intense signals with spectral editing techniques.  
With spectral editing the magnetic properties of a specific mol-
ecule are used to improve detection of that molecule.

Based on presynaptic and postsynaptic GABAergic altera-
tions in postmortem studies, it is possible to identify numerous 
brain areas such as the ACC, primary VC, primary motor cortex, 
OFC, BG, STG, thalamus, but especially the DLPFC in which  
it is expected to measure altered GABAergic concentrations 
by 1H-MRS. As mentioned before, postmortem studies do not 
provide a conclusive answer about the net GABAergic concentra-
tions and activity. Therefore, 1H-MRS could provide additional 
insights, contributing to a more definitive formulation about the 
pathological cascade and GABAergic alterations in schizophrenia. 
However, up until now MRS studies on GABA in schizophrenia 
are rather scarce and only cross-sectional. Moreover, the current 
literature is inconsistent regarding the measured GABA levels in 
different brain regions of patients with schizophrenia. Currently, 
seven studies reported GABA reductions (90–96), six studies 
reported unchanged GABA levels (90, 92–94, 97, 98), and two 
studies reported increased levels (Table 4) (97, 99). Since GABA 
levels may differ in early (90, 91, 93, 94) and chronic schizo-
phrenia (91, 93, 94, 98, 99), brain levels might also be dependent 
on the stage of the disease. Recent meta-analysis showed no 
changes in GABA levels in patients with schizophrenia in any 
given brain region, however, when averaging GABA levels across 
all measured brain regions per study, GABA appeared to be  
lower in patients compared to healthy controls (100).

The fluctuating and inconsistent findings of the few MRS 
studies that have been published so far in schizophrenia could 
be explained by several factors such as small and heterogeneous 
sample sizes, low magnetic field strengths resulting in a less 
robust measurement of GABA, methodological limitations lead-
ing to relatively large voxel volumes and marginal adjustments 
with regard to gray and white matter differences (Table 4) (15). 
Moreover, most studies measured GABA referenced to creatine 
and although this is a common approach, fluctuations in creatine 
concentrations could be, to a certain extent, responsible for the 
observed GABAergic findings. However, the most prominent 
limitation compromises the undetermined role of antipsychotic 
medication use with regard to GABA levels measured by 1H-MRS.

GABA AND ANTiPSYCHOTiC 
MeDiCATiON

In 38 chronic schizophrenia patients, higher GABA concentra-
tions were found in the left BG in patients using typical antip-
sychotics as compared to patients using atypical antipsychotics 
(82). Furthermore, a positive correlation was reported between 
GABA concentration in the left BG and anticholinergic medica-
tion (98). It is thus possible that antipsychotic medication influ-
ences GABA concentrations and different types of medications 
could have differing effects (98).

However, in patients diagnosed with schizophrenia and using 
antipsychotic medication at baseline, the use of atypical antipsy-
chotics did not have any effects on GABA concentrations in the 
left BG, frontal lobe, and parieto-occipital lobe during a follow-up 
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TABLe 4 | In vivo magnetic resonance spectroscopy studies of GABA in schizophrenia.

Reference Findings Antipsychotic medication, % of patients Comments

early SZ Chronic SZ Mixed 
population

early SZ Chronic SZ Mixed 
population

Goto et al. (90) ACC: Atypical 100% 
(risperidone, 
olanzapine, 
aripiprazole, 
quetiapine)

Patients were examined at 
baseline and after 6 months of 
antipsychotic treatment

baseline =
6M =
baseline–6M =
BG:
baseline ↓
6M ↓
baseline–6M =
POC:
baseline =
6M =
baseline–6M =

Ongur et al. (99) ACC ↑ Unknown 100% 1 early SZ patient (0.5%)
POC ↑

Tayoshi et al. (98) ACC = Typical ± atypical 
42%

BG = Atypical only 58%

Yoon et al. (96) VC ↓ Typical 8%
Atypical 54%
Unmedicated 
38%

Kegeles et al. (97) MPFC: Atypical 100% Typical 20%
unmed. ↑
med. =
unmed.–med. =
DLPFC: Atypical 80%
unmed. =
med. =
unmed.–med. =

Kelemen et al. (91) VC: Typical 11% Patients were examined at 
baseline and after 6 months of 
antipsychotic treatment

baseline ↓ Atypical 89%
6M ↓

Marsman et al. (92) PFC ↓ Atypical 100% Min.–max. disease  
duration: 1–213 monthsPOC =

Rowland et al. (93) ACC = ACC ↓ Atypical 100% Typical 20%
ACC early-
chronic =

Atypical 80%

CSO = CSO =
CSO early-
chronic =

Rowland et al. (94) ACC = ACC ↓ Typical 3.5% Typical 13%
Atypical 86% Atypical 58%

ACC early-
chronic ↓

Typical + atypical 
3.5%

Typical + atypical 
19%

Unmedicated 7% Unmedicated 10%

Wang et al. (95) PFC ↓ Drug naïve 100% All first-episode SZ

ACC, anterior cingulate cortex; BG, basal ganglia; POC, parieto-occipital lobe; PFC, prefrontal cortex; MPFC, medial prefrontal cortex; DLPFC, dorsolateral prefrontal cortex; CSO, 
centrum semiovale; VC, visual cortex.
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period of 6 months (90). At baseline, the concentration of GABA 
in the left BG in these first-episode patients was decreased (81), 
but this reduction was not reversed after 6 months of treatment 
with antipsychotic medication (84). Interestingly, clinical condi-
tion, assessed by PANSS scores, did improve during this time 
period. This suggests that medication use has no profound effect 
on GABA concentrations in patients with schizophrenia although 

there does occur a clinical improvement (90, 101). However,  
it is also possible that the medication regimen prevented further 
progressive reduction of GABA concentrations in these patients. 
Studying patients not taking antipsychotic medication may pro-
vide valuable additional insights regarding this matter. A recent 
study addressed this topic and evaluated GABA concentration in 
16 unmedicated patients, consisting of 9 medication-naïve patients 
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and 7 patients with no antipsychotic medication use 14 days prior 
to the investigation. This study observed higher GABA concentra-
tions in never- and unmedicated patients compared to medicated 
patients (97). This implies that medication use might lead to a 
normalization of GABA concentrations (97). However, as men-
tioned before, medicated patients did not show any alterations 
regarding GABA concentrations after 6 months of antipsychotic 
therapy (90). Possibly, patients that were minimally treated at 
baseline differed from those that were medication naïve (90, 101), 
and the normalization of GABA concentrations due to antipsy-
chotic treatment takes place at the beginning of the treatment.  
To formulate a conclusive answer, future studies are required, 
which assess both within-subject medication and medication-
naïve study designs. In conclusion, many factors contribute to the 
inconsistency in literature and future studies need to take these 
factors into account to reconcile the fluctuating findings.

GABA AND COGNiTiON

The observed changes in GABAergic neurotransmission may 
have functional significance (96). GABA measurement in the 
VC revealed reduced concentrations, and this decrease was posi-
tively correlated with orientation-specific surround suppression 
(OSSS) (96). OSSS is a behavioral measure of visual inhibition, 
and it is believed that this process relies on GABAergic neuro-
transmission in the VC (85). Furthermore, poorer performance 
on attention tests was correlated with decreased GABA concen-
trations in patients with schizophrenia (93). These observations 
are consistent with the GABA deficit hypothesis, which states 
that reduced GABAergic neurotransmission results in cognitive 
deficits, and imply that MRS is able to measure the pool of corti-
cal GABA that has a direct relationship with GABA-mediated 
functions (15). Since the GABAergic expression deficits exhibit 
a widespread cortical involvement, it is likely that such aberra-
tions generalize to other cortical areas (21, 96).

On the other hand, recent research showed a negative associa-
tion between level of cognitive functioning and GABA level in 
the PFC in schizophrenia patients (92). Together with the finding 
that GABA levels are reduced in schizophrenia and albeit the 
finding that intelligence levels are lower in patients compared to 
matched healthy controls (102), this may imply that the GABA 
deficit hypothesis mainly applies to patients with lower intel-
ligence (92). Alternatively, patients with higher intelligence may 
have better treatment compliance, possibly resulting in lower 
GABA levels (92).

iNTeGRATiNG POSTMORTeM AND  
IN VIVO GABA FiNDiNGS iN 
SCHiZOPHReNiA

The reported elevation of GABA levels in the MPFC by 1H-MRS  
in unmedicated patients seems to be inconsistent with the 
results of postmortem studies, which exhibit an impaired GABA 
synthesis of parvalbumin-containing subclasses of GABA neu-
rons reflected by diminished GAD67 mRNA levels (97). This 
discrepancy could be explained by the extensive exposure of 

the postmortem brain samples to antipsychotic medication in 
predominantly chronically ill patients (18). Furthermore, the 
observed elevated GABA levels in the MPFC might also be an 
overcompensation of other subclasses of GABA neurons (97). 
The NMDA-receptor hypofunction hypothesis puts forward 
that an intrinsic deficit of GABA neurons, including impaired 
GABA synthesis, results in disinhibition of pyramidal neurons. 
The deficit regulation of pyramidal neurons by GABAergic neu-
rotransmission leads to glutamate elevations (48, 103). Therefore, 
the remaining unimpaired subclasses (subclasses other than the 
parvalbumin-containing subclass) could be stimulated by the 
increased glutamergic activity, and this could serve as a compensa-
tion for the diminished synthesis in the parvalbumin-containing  
subclass (97).

Recent advantages in ultrahigh-field MR techniques allow for 
a more robust assessment of GABA levels, and future studies must 
point out whether in vivo measurement of GABA corresponds 
with the observed GABA deficiencies in postmortem tissues 
and whether the GABAergic deficits occur in a pan-cortical 
manner. Moreover, futures studies might point out if GABA 
concentrations predict functional outcome and if alterations in 
GABA concentrations relate to therapy response. It is clear that 
GABA measurement by in vivo MR spectroscopy could be of 
great value, but it is also evident that further work is needed 
to provide additional information on the validation of MR 
spectroscopy of GABA in schizophrenia.

CONCLUSiON

Converging evidence implicates alterations in both presynaptic 
and postsynaptic components of GABA neurotransmission to 
fulfill an important role in the pathophysiology of schizophrenia. 
Multiple research sites using in situ hybridization, DNA microar-
ray, or real-time quantitative PCR have consistently found reduced 
levels of GAD67 mRNA or a reduced density of neurons positive 
for GAD67 mRNA in the DLPFC as one of the most consistent 
findings with regard to pathological changes in schizophrenia. 
This decrease is the consequence of a reduction of GAD67 mRNA 
in a subset of GABA neurons. The affected neurons appear to 
include the parvalbumin-containing neurons. Parvalbumin-
positive cells in the DLPFC include chandelier cells, targeting 
the upregulated α2-receptor subunit at the AIS of the pyramidal 
neuron. Furthermore, since GAD67 mRNA expression deficits 
were also observed in layers without parvalbumin expression, 
other subclasses may attribute to the observed GABAergic gene 
expression deficits as well. Furthermore, since other brain regions 
demonstrated similar GABAergic gene expression deficits as the 
DLPFC, disturbances in GABAergic neurotransmission could 
be the consequence of a common upstream effect. Therefore, 
identifying a common pathophysiology might give rise to new 
pharmacological opportunities in the treatment of schizophrenia. 
Measurement of GABA levels in vivo by means of MRS offers the 
possibility to approach the illness from a unique perspective and 
provides additional insights in the relationship between deficit 
components of GABA neurotransmission and GABA-mediated 
inhibitory activity. However, the current literature is inconsistent 
regarding the measured GABA levels in different brain regions 
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