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Alterations within mesocorticolimbic terminal regions commonly occur with alcohol use 
disorder (AUD). As pathological drug-seeking behavior may arise as a consequence 
of alcohol-induced neuroadaptations, it is critical to understand how such changes 
increase the likelihood of relapse. This report examined resting-state functional connec-
tivity (RSFC) using both a seed-based and model-free approach in individuals in treat-
ment for AUD and how dysregulation of network connectivity contributes to treatment 
outcomes. In order to provide a mechanism by which neural networks promote relapse, 
interactive effects of mesocorticolimbic connectivity and AUD risk factors in treatment 
completers and non-completers were examined. AUD group showed stronger RSFC 
between striatum, insula, and anterior cingulate cortex than controls. Within the AUD 
group, non-completers compared to completers showed enhanced RSFC between (1) 
striatum–insula, (2) executive control network (ECN)–amygdala, and (3) basal ganglia/
salience network and striatum, precuneus, and insula. Completers showed enhanced 
RSFC between striatum-right dorsolateral prefrontal cortex. Furthermore, completers 
and non-completers differed in relationships between RSFC and relapse risk factors, 
where non-completers exhibited positive associations between craving intensity and 
RSFC of striatum–insula and ECN–amygdala. These findings provide evidence for 
interactions between corticolimbic connectivity in AUD and craving and establish an 
important link between network connectivity and dynamic risk factors that contribute 
to relapse. Results demonstrate that relapse vulnerability is attributed to craving dys-
regulation manifested by enhanced connectivity in striato-limbic regions and diminished 
corticostriatal connectivity.

Keywords: alcohol-use disorder, relapse, treatment, craving, mesocorticolimbic, resting-state fMri

inTrODUcTiOn

Identification of neural phenotypes related to risk for relapse is important for understanding the nature 
of alcohol-use disorder (AUD) and its response to treatment. AUD is associated with widespread 
neural adaptations, but how these changes correspond to phenotypes that promote relapse is unclear. 
Cognitive domains, such as executive control and reward processing, likely interact to contribute 
to the maintenance of alcohol seeking and problem drinking. Enhanced reward sensitivity and the 
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motivational drive that promote reward-seeking behavior may in 
part result from impairments in executive control. Similarly, an 
increase in attentional bias to salient drug stimuli may enhance 
craving and subsequent relapse (1). The behavioral sequelae of 
alterations in the balance of cognitive control and reward-seeking 
behavior are key features of substance-use disorders and common 
barriers to treatment success.

Neuroimaging studies have shown functional neuroadapta-
tions in key regions and networks responsible for cognitive 
control and reward salience during decision-making and cue-
induced craving (2, 3). These functional deficits are, however, 
task specific, and it is, therefore, important to understand if this 
neural dysregulation is a manifestation of adaptations in intrinsic 
connectivity associated with AUD. Studies of resting-state func-
tional connectivity (RSFC) have contributed new insights into 
drug-related adaptations through identification of abnormalities 
in the functional organization of brain systems. In AUD, how-
ever, the results are mixed. Some studies have reported higher 
connectivity within the cognitive control network and lower 
connectivity in the reward network compared to controls (4, 5), 
while others suggest that alcohol-dependent individuals exhibit 
greater connectivity in networks comprised of striatum, amyg-
dala, and insula (6). Network efficiency has also been examined 
and alcohol-dependent individuals show weaker within reward-
motivational network connectivity and expanded executive 
control network (ECN) connectivity compared to controls.

As RSFC impairments in AUD are still unclear, in part, 
due to differences in participant demographics across studies 
along with different approaches in identifying RSFC networks 
(7), this study used two methods to investigate RSFC. For 
a specific targeted examination of dopaminergic terminal 
regions, a seed-based analysis was used. This study examined 
whole-striatal connectivity, as alcohol-motivated behaviors are 
likely to depend on both ventral and dorsal striatum, where the 
ventral striatum is involved in stimulus–reward associations and 
the dorsal striatum is critical in goal-directed and compulsive 
alcohol-seeking behavior (8). In addition, animal models show 
that high alcohol drinking rats have lower markers of dopamine 
signaling in dorsal and ventral striatum (9) and that cue-induced 
dopamine release was seen in both ventral and dorsal striatum 
(10) demonstrating a role for whole striatal dopamine signaling 
in action selection and control over self-administration. This 
study also implemented an independent component analysis 
(ICA) as a model-free approach. As the ECN is implicated in 
cognitive control and goal-directed attention and the salience/
reward network is proposed to bias network attention toward 
rewarding and motivating stimuli, these networks are thought 
to underlie psychological dysfunctions associated with addic-
tion in reward as well as affective and cognitive processing (11). 
This study, therefore, examined executive control and reward/ 
salience networks for large-scale network dynamics in AUD.

As RSFC may provide a marker for deficits in brain func-
tion, studies have examined how abnormalities of RSFC relate 
to neuropsychological assessments of cognition, anxiety, and 
depression or how it is affected by alcohol use. For example, a 
measure of impulsivity is associated with greater RSFC between 
the salience network and the ECN in AUD (6). Greater and 

more expanded ACC–frontostriatal connectivity and expanded 
network connectivity is positively associated with visuospatial 
working memory and slower perceptual motor processing, 
respectively, while measures of depression and anxiety are related 
to restricted and expanded connectivity of reward and ECNs 
(12). While these findings provide a theoretical framework for 
how neural network adaptations in AUD and the relationship 
to cognitive or neuropsychiatric constructs may lead to relapse,  
the interactive effects of RSFC, risk factors for relapse, and treat-
ment outcomes have not been explored. For example, a study 
reported that relapse was associated with reduced baseline RSFC 
between a nucleus accumbens seed and insula and dorsolateral 
prefrontal cortex (DLPFC), which was negatively related to 
alcohol-use measures and performance on an affective Go/
No-Go task; the link, however, between RSFC abnormalities and 
specific addiction-related phenotypes that contribute to relapse 
was not directly examined (5).

Craving is a critical component in AUD and has been shown 
to predict relapse in individuals undergoing residential addiction 
treatment (13–15). Moreover, individuals with higher craving 
intensity during treatment endorsed more alcohol-related prob-
lems and not only had an increase in the likelihood of relapse 
but relapsed more quickly (15). In addition, these relapse predic-
tors interact, such that the likelihood of alcohol consumption is 
associated with higher craving and greater loss of control (16). 
These studies suggest that craving and loss of control lie along 
a continuum of alcohol severity and vulnerability to relapse. 
Task-based fMRI studies have addressed factors important in the 
maintenance of addiction and have examined neural responses 
during cognitive control and craving reactivity. Investigating 
whether abnormal intrinsic activity occurs in the absence of 
tasks, however, may provide an important brain indicator for the 
propensity of craving dysregulation and impaired control over 
alcohol use. The examination of neural networks in the context 
of these meaningful outcome measures and the mechanisms 
contributing to treatment-related domains would provide a better 
account of the inter-relationships of brain function, psychologi-
cal states, and outcome measures.

This study, therefore, examined how RSFC differs between 
individuals who successfully can and cannot complete treat-
ment for AUD and how differences are attributed to AUD 
characteristics that are predictive of relapse. Striatal-seed based 
and independent component analyses were used to identify dif-
ferences in network structure between treatment completing and 
non-treatment completing individuals with AUD. We expected 
that non-completers would have weaker RSFC in regions and 
networks responsible for cognitive control and stronger RSFC 
in reward/salience networks. We also hypothesized that craving 
would be negatively associated with RSFC of cognitive control 
networks but positively with RSFC of reward/salience networks.

MaTerials anD MeThODs

Participants
Forty-three volunteers diagnosed with AUD, recruited from the 
VA Portland Healthcare System (VAPORHCS) and community 
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substance abuse treatment programs and 26 healthy controls 
recruited with online advertisements, completed the study and pro-
vided written informed consent, as approved by the VAPORHCS 
and Oregon Health & Science University Institutional Review 
Boards. Exclusion criteria, determined by medical history and 
laboratory blood tests were: systemic, neurological, cardiovascu-
lar, or pulmonary disease, head trauma with loss of consciousness, 
MRI contraindications, use of antidepressants or medications 
known to have dopaminergic mechanisms (e.g., antipsychotics, 
antidepressants, antiparkinsonian agents), sedative-hypnotics 
(barbiturates, benzodiazepines, zolpidem), or anticholinergics. 
Past or Current Axis I diagnoses, other than depression or PTSD, 
nicotine dependence for either group and alcohol dependence 
for the Alcohol group, assessed with the Structured Clinical 
Inventory for DSM-IV-TR, were exclusionary. Ten participants 
(9 AUD and 1 control) were excluded based on these criteria, 
and data from 2 AUD and 2 control participants were excluded 
for excessive motion. Final analyses included data from 43 
AUD and 26 control participants. Participants received $50 gift  
cards to a local retail chain for completing visit 1 (screening)  
and visit 2 (scan) and the AUD subjects received $20 for each 
follow-up visit.

The Alcohol group were primarily recruited from residential 
treatment facilities and reported abstention from alcohol for 
1–4  weeks before scanning. Following the baseline scan, AUD 
subjects maintained a weekly drinking diary for 3 months and 
were asked to report any alcohol or drug use, which was veri-
fied by their treatment provider. The diary, medical records, and 
information from the subject’s treatment provider were assessed 
at monthly follow-up visits. Participants (n = 16), who completed 
the 3-month study without relapse or with minor lapses, as 
defined by a maximum of two consecutive days of non-heavy 
drinking (<5 drinks per day) were considered Completers. Non-
completers (n = 27) included subjects who dropped out of the 
study or reported relapse, defined as at least one or more days of 
heavy drinking (>5 drinks per day) (17).

Measures of addiction  
and craving severity
Craving was assessed at the day of the scan with the Visual  
Analog Scale measuring craving intensity on a scale of 0–100.

Mri imaging acquisition
Imaging was performed on a 3 Tesla Siemens TIM Trio MRI scanner. 
A localizer scan was acquired to guide slice alignment during ana-
tomical and functional scans. A T2*-weighted echo-planar image 
(EPI) was acquired (24 slices, 4 mm thick, gap width = 1 mm, TR/
TE/α = 2,000 ms/40 ms/80°, matrix = 128 × 128, FOV = 240 mm2, 
170 volumes, in-plane pixel size of 1.875  mm2), while subjects 
stared at a white cross on a black screen. One high-resolution 
T1-weighted anatomical magnetically prepared rapid acquisition 
gradient echo (MPRAGE; 144 slices 1  mm thick, TR/TE/TI/ 
α = 2,300 ms/4.38 ms/1,200 ms/12°, FOV = 208 mm × 256 mm) 
was acquired for co-registration with functional images and 
statistical overlay.

resting-state fMri image Processing: 
seed-Based approach
Image analysis was performed using FSL 5.0.2.1 (www.fmrib.
ox.ac.uk/fsl). Images were realigned to compensate for motion 
(18), and high-pass temporal filtering (100 s) was applied. Data 
were skull-stripped and spatially smoothed (5-mm FWHM 
Gaussian kernel). Images were further pre-processed to include 
additional nuisance regressors: average signal of cerebrospinal 
fluid and white-matter, and two metrics of motion-related 
artifact—motion scrubbing with frame-wise displacement and 
a combination of the temporal derivative of the time series  
and root-mean-squared variance over all voxels (19). Global 
signal regression was not applied. The EPI images were registered 
to the high-resolution MPRAGE image and then into standard 
Montreal Neurological Institute space, using a 12-parameter 
affine transformation. An anatomically defined region of interest 
(ROI) from the Harvard-Oxford Subcortical atlas of the whole 
striatum was used as the seed. The seed was transformed into 
each subject’s native space by applying the inverted transforma-
tion matrix of EPI to MPRAGE to standard space. The mean time 
series across all voxels within the striatum seed from preproc-
essed images were used as covariates in separate whole-brain, 
voxel-wise resting-state correlation analyses.

analysis
Whole-brain voxel-wise analyses of striatum RSFC was con-
ducted. Completers and non-completers were combined and 
compared to controls to investigate the RSFC differences in 
alcohol-use disorder. Separate analyses within the AUD group 
were conducted to compare completers to non-completers 
and to examine the linear relationship with alcohol-use status. 
Non-completers, completers, and healthy controls were mod-
eled separately. For within- and between-group mixed-effects 
analyses, all whole-brain fMRI statistics were corrected for mul-
tiple comparisons by using cluster-correction with voxel height 
threshold of Z > 2.3 and cluster significance of P < 0.05. As there 
were significant differences in age, sex, and years of education 
between the Alcohol and control groups, these variables were 
modeled as nuisance covariates. Smoking status, however, was 
not used as a nuisance covariate. As there were very few healthy 
controls who smoked, the distribution of the effects of smoking 
status would, therefore, not be sufficient to accurately model  
and control for smoking status.

Model-Free resting-state fMri image 
Processing: ica
Resting-state data from completers and non-completers were 
submitted to an ICA using Multivariate Exploratory Linear 
Optimized Decomposition into Independent Components with 
FSL. Data were preprocessed and registered as described above. 
The number of components generated was not restricted, and 
86 independent components were identified with a free estima-
tion for the number of components. In order to investigate the 
similarities in ICA outputs, the components of interest were 
selected by cross correlating the spatial maps of our independ-
ent components with that of the resting-state template (20).  
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TaBle 1 | Characteristics of research participants.

completers 
(n = 16)a

non-completers 
(n = 27)b

healthy  
controls (n = 26)

Age (years)c 41.38 ± 8.61 42.26 ± 10.24 34.19 ± 11.37d

Sex (no. of male) 14 19 14d

Education (years) 12.94 ± 1.53 12.63 ± 1.97 13.69 ± 2.07d

Alcohol use
Years of use 20.19 ± 10.22 20.98 ± 10.67
Standard drinks  
per day

18.22 ± 9.87 15.43 ± 7.18

Days abstinent  
prior to MRI

29.38 ± 10.67 23.46 ± 13.14

Tobacco use  
(no. of smokers)

10 17 2d

Cigarettes  
per day

11.30 ± 5.64 11.86 ± 7.42 23.33 ± 15.27d

an = 3 lapsed.
bn = 16 lost to follow-up.
cData shown are means ± SD.
dSignificant differences between controls and alcohol-use disorder groups combined 
(p < 0.05).
No significant differences between alcohol-use disorder groups in demographic or drug 
use variables.
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As the executive control and basal ganglia/salience networks  
are highly relevant in studies of addiction (7, 21, 22), components 
that most highly correlated (r = 0.3, 0.6) with these networks 
were chosen for further group analyses.

analysis
Dual regression (23) was used to decompose the networks into  
spatial maps to be used as regressors in a general linear model to  
find the average time course of the BOLD signal across each 
sub ject for each network. The time courses were then variance- 
normalized and used as a set of temporal regressors to test differ-
ences between completers and non-completers in the executive 
control and basal ganglia/salience networks with 10,000 non-
parametric permutations. A family-wise error correction for 
multiple comparisons was performed, implementing threshold- 
free cluster enhancement using a significance threshold of 
p < 0.025 to correct for the number of components tested.

analysis of the relationship between 
rsFc and Measures of addiction  
severity and craving
Connectivity values (regression coefficients) were extracted 
from functional ROIs that showed significant differences 
between groups. These values correspond to the strength of 
functional connectivity of each ROI with the striatum. A gen-
eral linear model was used to examine the relationship between 
connectivity values and VAS craving scores. Connectivity  
values were entered as an independent variable in ANCOVA 
with outcome measure being craving scores, separately. The 
models tested the main effects and the interaction between 
group and RSFC.

resUlTs

The healthy control group included 26 subjects (12 women/14 
men, 2 smokers, 34.19  ±  11.37  years old). They reported no 
heavy or daily use of alcohol or any other drug use. The Alcohol 
group included 43 alcohol-dependent subjects (10 women/33 
men, 27 smokers, 41.93 ±  9.57 years old) and had abstained 
from alcohol use for 25.71  ±  12.46  days before scanning. 
They had used alcohol for 20.69  ±  10.39  years and reported 
16.43 ±  8.23 standard drinks per day. There were no signifi-
cant differences between Completers and Non-completers in 
age, sex, years of education, alcohol-use variables, or in the 
frequency of cigarette use but significant differences between 
controls and the AUD group (completers and non-completers 
combined) were seen in age, sex, years of education, and smok-
ing status (p < 0.05) (Table 1).

resting-state fMri image Processing: 
seed-Based approach
The AUD group (completers and non-completers combined) 
compared to controls exhibited greater connectivity within the 
striatum and between striatum and insula, inferior and superior 

frontal gyri, anterior and paracingulate cortices, and cerebellum 
but weaker connectivity between striatum and inferior temporal 
gyrus and occipital cortex (p  <  0.05, whole-brain corrected) 
(Figure  1; Table  2). Within the AUD group, non-completers 
exhibited greater connectivity between striatum and posterior 
insula, superior temporal gyrus, brain stem, cuneus and 
thalamus, and weaker connectivity between striatum and middle 
frontal gyrus and cerebellum (p < 0.05, whole-brain corrected) 
(Figure  2; Table  2). The analyses including completers, non-
completers, and controls showed a relationship with alcohol-use 
severity, such that, connectivity was greater in non-completers 
than completers and in completers than controls between 
striatum and ventral anterior insula (p  <  0.05, whole-brain  
corrected) (Figure 1).

Model-Free resting-state fMri image 
Processing: ica
Non-completers exhibited greater connectivity between the  
ECN (frontal and parietal cortices) and right amygdala com  p-
ared to completers [p < 0.025, Threshold Free Cluster Esti  ma-
tion (TFCE)]. Non-completers also showed greater connec tivity 
between the reward/salience network (striatum, ACC, and 
insula) and insula, putamen, and precuneus (p < 0.025, TFCE)  
(Figure 3).

analysis of the relationship between 
rsFc and craving
Completers and non-completers did not significantly differ 
in measures of craving. The effects of connectivity between 
striatum and regions that display significant group differences 
(posterior insula, ventral anterior insula, and right middle 
frontal gyrus) on craving were examined. Examination of the 
main effects of group and connectivity and their interaction 
revealed a significant main effect of striatum–right DLPFC 
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FigUre 1 | Resting-state functional connectivity (RSFC) with striatum seed. (a) Alcohol group (completers and non-completers combined) exhibit greater striatal 
RSFC within striatum and with right bilateral ventral anterior insula and anterior cingulate (see Table 2 for complete list of regions). (B) Relationship with alcohol-use 
status whereby non-completers have greater striatal RSFC than completers who have greater striatal RSFC than controls. (c) Graph displays RSFC between 
striatum and ventral anterior insula for each group (for illustrative purposes, whole-brain results corrected at p < 0.05). All analyses with controls were corrected for 
age, sex, years of education, and whole-brain multiple comparisons (p < 0.05).
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con nectivity on craving intensity and a significant interaction by 
group (interaction: β = 177.32, t = 4.642, p < 0.001) (Figure 4). 
Completers exhibited a positive relationship between striatum–
right DLPFC connectivity and craving intensity (r = 0.54), while 
non-completers showed a negative relationship (r  =  −0.37).  
An interaction of group on craving and posterior insula connec-
tivity was observed (interaction: β = 73.68, t = 2.02, p = 0.05), 
where the non-completers exhibited a positive relationship 
(r  =  0.49) and completers exhibited a negative relationship 
(r = −0.22) (Figure 4).

For ICA network connectivity, we found group interactions 
in the relationship between ECN–amygdala RSFC and craving 
(interaction: β = 3.597, t = 2.213, p < 0.037) (Figure 4). Non-
completers showed a positive relationship (r =  0.628) between 
craving intensity and ECN–amygdala RSFC, while the relation-
ship was negative in completers (r = −0.271).

DiscUssiOn

Intrinsic RSFC has been proposed as a potential biomarker 
for the understanding of addiction (7), and specifically in the 
maintenance of addictive behaviors in AUD (7). While studies 
using only either seed-based or model-free RSFC approaches 
have reported mixed results, this study used both approaches 
(seed-based and ICA) to identify network structure in AUD. In 
addition, this study focused on seed-based and network-wide 
connectivity as a function of craving and treatment outcomes. 
Our results provide insights into the interactions between 
cortico-striato-limbic connectivity and how connectivity of 

these neural networks directly translate to dynamic risk factors 
that contribute to relapse.

Consistent with preclinical studies providing evidence for 
alcohol-induced neuroadaptations in corticolimbic circuits 
(24–26), our results show that the AUD group, compared to 
controls, displayed greater connectivity within the striatum 
and between the striatum, insula, and anterior cingulate 
cortex. Although results contrast with a report of weaker RSFC 
between ventral and dorsal striatum in long-term abstainers 
compared to controls (27), our results are consistent with 
findings that long-term abstainers compared to controls have 
greater RSFC between ventral striatum and insula (28). Our 
findings also agree with reports that AUD patients have greater 
connectivity within networks comprised of striatum, amyg-
dala, and insula (6) and with functional task-based studies 
showing that alcohol use is associated with greater activation 
in striatum, insula, and anterior cingulate cortex (3, 29, 30). 
Taken together, our results are consistent with reward-centric 
models of addiction (31, 32), where repeated drug exposure 
induces long-lasting synaptic plasticity and sensitization of 
striatal and limbic regions to drug cues (33). Neuroadaptations 
in this circuitry are thought to both promote drug dependence 
and contribute to relapse (33) perhaps through strengthened 
connections between insula and striatum that drive craving 
and motivated drug-seeking behavior (34). The attenuation of 
RSFC between striatum and insula as a function of problematic 
drinking (controls <  treatment completers <  treatment non-
completers) support this view and suggests that striato-limbic  
sensitization establishes a bias toward drug-seeking behavior 
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FigUre 2 | Group differences between alcohol-use groups in resting-state 
functional connectivity (RSFC) of the striatum. Within the alcohol-use group, 
non-completers exhibit greater RSFC between striatum and posterior insula, 
while completers show greater RSFC between striatum and right middle 
frontal gyrus. Corrected for whole-brain multiple comparisons (p < 0.05).

TaBle 2 | Brain regions that exhibited differences in striatal RSFC between 
groups and within alcohol-use disorder groups.

Brain region cluster size 
(voxels)

xa y z z-
statistic

alcohol group > healthy controls

Cluster #1b 9,727
Caudate (L/R) 12 6 16 8.34
Putamen (L/R) 28 6 6 4.23
Ventral anterior insula (L/R) −36 18 −4 4.17
Inferior frontal gyrus (L/R) 60 22 16 3.91

Cluster #2 4,532
Paracingulate cortex −2 40 34 5.46
Superior frontal gyrus 2 50 40 5.36
Anterior cingulate cortex −2 40 10 4.09

Cluster #3 946
Cerebellum 12 −48 −26 3.82

healthy controls > alcohol group

Cluster #1b 16,902
Inferior temporal gyrus (L/R)c 54 −58 −2 6.66
Lateral occipital cortex (L/R) −44 −64 −4 6.04

completers > non-completers

Cluster #1b 823
Cerebellum (L/R)c 12 −78 −26 3.84

Cluster #2 320
Middle frontal gyrus (R) 46 18 34 3.92

non-completers > completers

Cluster #1b 736
Superior temporal gyrus (L) −56 −8 2 4.40
Insular cortex (L) −36 −22 16 3.97
Parietal operculum (L) −48 −14 18 3.47
Postcental gyrus (L) −62 −18 24 3.31

Cluster #2 571
Cuneal cortex (L/R) 16 −78 28 4.89
Temporal fusiform cortex (R) 28 −50 −8 3.51
Thalamus −8 −26 4 3.48
Brainstem 4 −36 −12 3.28

Cluster #3 321
Occipital cortex 50 −76 0 4.39

Z-statistic maps were thresholded using cluster-corrected statistics with a height-
threshold of Z > 2.3 and cluster-forming threshold of p < 0.05.
ax, y, z reflect coordinates for peak voxel or for other local maxima in MNI space.
bClusters are numbered and presented in order of decreasing size.
cL or R refers to left or right hemisphere.

6

Kohno et al. Alcohol Dependence: RSFC, Craving, Relapse

Frontiers in Psychiatry | www.frontiersin.org September 2017 | Volume 8 | Article 182

(35) and that neuroadaptations in this circuit may underlie the 
likelihood of relapse.

Our results support a model in which executive and salience 
network and their interconnections play a critical role in integrat-
ing cognitive and motivational processes in the maintenance of 
addiction (36). AUD and other substance-use disorders affect 
frontostriatal neural systems, leading to an imbalance between 
circuits important for cognitive control and those involved in 
reward seeking, thus producing deficits in craving regulation 
and relapse vulnerability (37–39). Indeed, meta-analyses of crav-
ing studies consistently show that drug cues elicit activation in 
striatum, amygdala, and anterior cingulate cortex/ventromedial 
prefrontal cortex (40). Furthermore, neural responses to drug 
cues, including in the striatum, insula, and amygdala correlate 
with subsequent drug use (40–43).

As the PFC has a modulatory effect on subcortical activity  
(44, 45), regulation of striato-limbic and striato-cortical rea ctivity 
may attenuate craving and promote abstinence. Acti vation in the 
DLPFC reduces craving, while activation of the ventral striatum 
increases craving and show a modulating effect of the DLPFC (40). 
As lesions to corticostriatal projections shift decisions related to 
reward contingencies in rodents (46) and neu rocomputational 
models indicate that PFC activity can directly override striato-
limbic representations of reinforcement value (44), the inverse 
relationships between completers and non-completers in con-
nectivity and craving may reflect differences in craving regulation 
through functional connectivity of prefrontal and subcortical 
striatal and limbic networks. Thus, our findings are consistent 
with a model that depicts DLPFC (and the ECN) as critical in 
craving regulation and cognitive control via modulation of the 
activity in striato-limbic regions. We extend these findings by 
providing evidence for a link between craving and the intrinsic 
connectivity of salience and ECNs and the interactive effects on 
treatment outcome.

Support for an association between circuit abnormality 
and relapse risk comes from the direct comparisons between 
successful treatment completers and non-completers. Non-
completers exhibit greater RSFC between striatum and insula 
but weaker corticostriatal connectivity, which is consistent 
with preclinical studies that show engagement of frontal– 
striatal, frontal–mesencephalic, and amygdala–mesencephalic 
pathways is necessary for the reinstatement or drug-seeking 
behavior (47, 48). In humans, these circuits have also been impli-
cated in drug craving (49). In AUD, specifically, neural responses 
to alcohol cues and craving for alcohol have been associated with 
activation of amygdala, ventral striatum, and insula (3, 29, 30). 
Although alcohol craving has been reported to be negatively asso-
ciated with RSFC between ventral striatum and amygdala (12) and 
another study showed differences in RSFC as a function of days 
abstinent, the link between symptomatic features of relapse and 
RSFC in the context of treatment was not examined. We extend 
these results and demonstrate that RSFC between striatum, 
DLPFC, and insula and between executive control regions and 
amygdala are associated with alcohol craving and that these rela-
tionships differ as a function of relapse vulnerability. Specifically, 
we find increased craving associated with increased striato-limbic 
RSFC in non-completers, while greater craving is associated with 

http://www.frontiersin.org/Psychiatry/
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FigUre 3 | Group differences in connectivity within executive control and reward/salience networks. Non-completers compared to completers exhibit  
greater connectivity of the executive control network and amygdala (a) and between reward/salience network and putamen, insula, and precuneus cortex  
(B). Dual regression analyses with 10,000 permutations were corrected for two networks tested (p < 0.025).

FigUre 4 | Relationship between craving and RSFC. Non-completers exhibit a significant positive relationship with craving intensity and RSFC of striatum and 
posterior insula, while completers exhibit a significant positive relationship with RSFC of striatum and dorsolateral prefrontal cortex. Executive control network and 
amygdala connectivity was positively associated with craving intensity in the non-completers and the relationship was slightly negative in treatment completers. 
Posterior insula and RDLPFC were functionally defined region of interest (ROIs) from the analysis comparing the two groups, while right amygdala was an 
anatomically defined ROI.
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corticostriatal RSFC in treatment completers. These findings 
suggest that for successful abstinence, corticostriatal connectivity 
is required to downregulate striato-limbic signaling to counter 
intense cravings.

Differential responses to rewards and drug-cues may guide 
goal-directed behavior through mesocorticolimbic signaling 
pathways. Considering this possibility, the ability to remain 
in control of alcohol use would require a balance between 

http://www.frontiersin.org/Psychiatry/
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