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Proton magnetic resonance spectroscopy (1H MRS) is a well-established technique 
for quantifying the brain regional biochemistry in vivo. In most studies, however, the 1H 
MRS is acquired during rest with little to no constraint on behavior. Measured metab-
olite levels, therefore, reflect steady-state concentrations whose associations with 
behavior and cognition are unclear. With the recent advances in MR technology—higher- 
field MR systems, robust acquisition techniques and sophisticated quantification 
methods—1H MRS is now experiencing a resurgence. It is sensitive to task-related 
and pathology-relevant regional dynamic changes in neurotransmitters, including 
the most ubiquitous among them, glutamate. Moreover, high temporal resolution 
approaches allow tracking glutamate modulations at a time scale of under a minute 
during perceptual, motor, and cognitive tasks. The observed task-related changes in 
brain glutamate are consistent with new metabolic steady states reflecting the neural 
output driven by shifts in the local excitatory and inhibitory balance on local circuits. 
Unlike blood oxygen level differences-base functional MRI, this form of in vivo MRS, 
also known as functional MRS (1H fMRS), yields a more direct measure of behavior-
ally relevant neural activity and is considerably less sensitive to vascular changes.  
1H fMRS enables noninvasive investigations of task-related glutamate changes that 
are relevant to normal and impaired cognitive performance, and psychiatric disorders. 
By targeting brain glutamate, this approach taps into putative neural correlates of 
synaptic plasticity. This review provides a concise survey of recent technological 
advancements that lay the foundation for the successful use of 1H fMRS in cognitive 
neuroscience and neuropsychiatry, including a review of seminal 1H fMRS studies, 
and the discussion of biological significance of task-related changes in glutamate 
modulation. We conclude with a discussion of the promises, limitations, and out-
standing challenges of this new tool in the armamentarium of cognitive neuroscience 
and psychiatry research.
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FiguRe 1 | Conceptual framework comparing the “balanced” excitatory and inhibitory (E/I) synaptic drive at stimulus-free and stimulus-dependent conditions in 
cortex with glutamatergic pyramidal neurons in blue and GABAergic interneurons in red (A). The difference between conditions is conceptualized as a shift toward 
greater excitability at stimulus onset compared to a no-stimulus condition that is represented as sliding bars with excitatory in blue and inhibition in red (B). This shift 
leads to a new metabolic steady state reflected in the increased glutamate as illustrated in the individual signal in blue extracted from the 1H MRS spectrum shown 
in black (C). The “+” and “−” symbols signify the excitatory and inhibitory synaptic activity, respectively.
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iNTRODuCTiON

Understanding of human behavior and cognition as products 
of their neural substrates depends on elucidation of the neural 
foundations of information processing. With the brain neurons 
comprising only about 10% of the gray matter bulk (1), allocating 
the lion share of brain energy supply to neurotransmission (2) 
suggests that deciphering the relationships between neurotrans-
mitter dynamics and cognitive operations is key to success of 
that enterprise. Most (up to 80%) of cortical and hippocampal 
neurons are excitatory with glutamate as their dominant neu-
rotransmitter, while the remaining 20% are inhibitory and have 
γ-aminobutyric acid (GABA) as their principal neurotransmitter 
(3). Therefore, understanding the dynamics of these neuro-
transmitter’s release during cognitive operations is particularly 
important for elucidating the mechanisms of normal and abnor-
mal behavior. Notably, cortical glutamatergic and GABAergic 
neurons do not act as separate excitatory and inhibitory entities 
but are highly integrated into neural ensembles within local 

and long-range circuits, in which the “balanced” excitatory and 
inhibitory (E/I) synaptic drive serves as the functional basis of 
coherent networks (4–7).

In the cortex, sensory input, motor output as well as per-
ceptual, and cognitive activity evoke temporally correlated 
excitation and inhibition at the synapses, thus shifting the 
dynamic equilibrium of E/I toward a (wide) range of excitation–
inhibition patterns, as illustrated in Figure  1. These temporal 
fluctuations in E/I equilibrium eventually give rise to plasticity 
and synaptic reorganization by driving long-term potentiation 
and long-term depression, which are viewed as the neurophysi-
ological bases of memory [see Tatti et al. (7) for a recent review]. 
Because of strong evidence implicating the glutamatergic and 
GABAergic neurotransmission in psychiatric disorders (8–10), 
and cognitive aging (11), it is plausible that a dysfunction in the 
ability to modulate E/I equilibrium of local circuits would affect 
function within broader networks in which complex cognition 
is implemented. Impairment of glutamatergic and GABAergic 
plasticity may underpin the development of symptomatology 
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that characterizes psychiatric disorders (7) and age-related 
cognitive dysfunction (12).

Whereas in animal models, a wide range of invasive methods 
of gauging glutamatergic and GABAergic activity is available, in 
humans, the opportunities are very limited. To date, the most 
popular approach to studying brain correlates and neural mecha-
nisms of cognition in vivo harnesses blood oxygen level differences 
(BOLD) effect in an imaging paradigm known as functional MRI 
(fMRI). Although fMRI has good temporal and spatial properties, 
the BOLD signal is, however, an indirect measure of the neuronal 
response to stimuli. In addition, the BOLD signal cannot differ-
entiate between inhibitory or excitatory neural activity. Moreover, 
the BOLD signal is influenced by major determinants of vascular 
tone such as dopamine (5) that depends on age (13) and are altered 
in psychiatric conditions (14). Given the role played by glutamate 
and GABA to shifting the E/I balance in cortical information 
processing, it is critically important to develop more specific 
means of in  vivo evaluation of glutamatergic and GABAergic 
systems in intact, behaving humans. Such noninvasive approach 
to assessing regional brain concentration of these important neu-
rotransmitters is indeed available. In the neuroimaging literature, 
magnetic resonance spectroscopy (MRS) is typically described as 
the only noninvasive technique that can reliably quantify in vivo 
concentration levels of key metabolites, including glutamate and 
γ-aminobutyric acid (GABA) (15).

1H MRS, with its ability to measure glutamate and GABA lev-
els in vivo in localized cortical and subcortical areas, is well suited 
for testing hypotheses posited in the conceptual framework that 
emphasizes temporal dynamics of the E/I equilibrium (Figure 1). 
Unfortunately, the dynamic aspect of glutamate (and GABA) 
activity is lost in the majority of the extant 1H MRS studies that 
are limited to measuring static neurotransmitter levels under 
“pseudo-” rest condition. In a typical 1H MRS experiment, the 
data are acquired without any specific instructions or behavioral 
constraints aside from asking the participants to relax and keep-
ing the head still during acquisition. Thus, the measured neuro-
transmitter levels are static and integrated over a time window 
spanning several minutes. This coarse temporal resolution and 
static task-free neurotransmitter assessment preclude the inter-
pretation of findings with respect to neural correlates of synaptic 
plasticity. Although the 1H fMRS literature is sparse, evidence 
shows surprising sensitivity in detecting dynamic changes in the 
magnitude and direction of task-related changes in glutamate 
and/or GABA steady-state levels in functionally relevant brain 
areas (Table  1). This ability to capture the temporal dynamics 
of glutamate and GABA in vivo, point at the emerging role of 1H 
fMRS as the “new” 1H MRS, with potentially exciting contribu-
tions to the understanding of neural mechanisms relevant to 
cognitive neuroscience and psychiatry research.

In this review, we focus on 1H MRS findings pertaining to 
changes in glutamate with task in the context of 1H fMRS [for 
a review on 1H fMRS of GABA, see Duncan et  al. (16)]. First, 
we describe the technological advancements in 1H MRS that 
made characterization of the glutamate temporal dynamics with 
a temporal resolution under a min possible. Second, we survey 
the findings from seminal 1H fMRS studies demonstrating task-
related changes in glutamate (Table  1). Third, we discuss the 

significance of observing changes in glutamate from the perspec-
tive of neurovascular and neurometabolic processes and evaluate 
the implication of the findings for understanding behaviorally 
relevant neural output driven by shifts in the E/I balance. Finally, 
we evaluate the pros and cons of the 1H fMRS application in 
studying normal and impaired cognitive functions and outline 
the challenges ahead.

TeCHNiCAL ADvANCeMeNTS

The history of 1H fMRS application to neuroimaging is to a large 
extent similar to that of the BOLD-based fMRI. Early 1H fMRS 
studies conducted in the 1990s on 1.5 and 2.0 T MR systems dem-
onstrated decreases in glucose and (transient) increases in lactate 
localized to the visual cortex during visual stimulation, and the 
findings were interpreted as reflecting a transient increase in non-
oxidative glycolysis (17–21). However, the recent emergence of 
high-field MR systems including 3, 4, and 7 T (and higher), have 
dramatically rejuvenated the MRS field. The major advancement 
was the increase in the signal-to-noise ratio (S/N), which scales 
with the B0 field strength. The enhanced S/N at higher B0 field 
strengths can improve the spatial resolution of the localized sin-
gle-voxel 1H MRS to ~2–4 cm3 as well as significantly increase the 
temporal resolution of the 1H MRS acquisition to under a minute. 
In addition, the chemical-shift but not the scalar J-coupling of 
spin systems (e.g., CH2, CH3, etc.) scales with the B0 field strength, 
which in turn significantly improves in the spectral resolution or 
delineation of the coupled spin systems between molecules such 
as glutamate and glutamine (22). These advancements improve 
the overall accuracy and precision of quantifying glutamate and 
other metabolites (23, 24), minimized the partial volume effects 
that impeded voxel placement precision in functionally relevant 
brain areas, and more importantly, enabled capturing real-time 
task-induced changes in the brain biochemistry within the time 
scale of epochs often used in task-based fMRI paradigms.

In addition to the advantages of conducting high B0 field 
1H MRS, recent improvements in the acquisition technology 
enabled acquisition of highly reliable 1H MRS data with minimal 
spectral artifacts (25). These new developments include the 
incorporation of B1-insensitive adiabatic excitation and refocus-
ing radio-frequency (RF) pulses (26) and customized phase- and 
amplitude-modulated RF pulses (27), which greatly improve the 
uniformity of the B1 field and edge profile of the defined MRS 
voxel. As a result, the ground was set for resurgent popularity 
of 1H MRS acquisition sequences such as the Localization by 
Adiabatic SElective Refocusing (LASER) (26), semi-LASER (28), 
and SPin ECho, full Intensity Acquired Localized (SPECIAL) 
(29). Adiabatic pulses are highly effective for outer volume sup-
pression, which is a typical part of the acquisition sequence (30). 
Regarding the suppression of the water signal, the CHEmical 
Shift Selective (CHESS) RF pulses (31) has become common. 
However, optimized schemes using CHESS pulses such as the 
Variable Power and Optimized Relaxation delays (VAPOR) 
technique are robust and highly effective in suppressing the water 
signal and producing a cleaner spectral baseline (32).

Maximizing the homogeneity of the B0 magnetic field via 
shimming is critical for attaining optimal spectral resolution, 
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TABLe 1 | Description of 1H fMRS studies reporting task-related changes in glutamate.

Study Sample size Acquisition protocol Task Results Comments

visual stimuli—visual cortex

Mangia  
et al. (41)

12 adults  – 7 T
 – STEAM TE = 6ms
 – Midline visual cortex
 – 2 cm × 2.2 cm× 2 cm

 – Radial red/black checkerboard covering the entire 
visual field (8 Hz)

 – Two protocols: (1) 2 short 5.3 min blocks interspersed 
by rest epochs and (2) 1 long 10.6 min block 
interspersed by rest epochs

 – Increased glutamate (3%) during 
checkerboard vs rest

 – The response of glutamate 
was delayed compared to 
Lac

 – The change in glutamate 
tended to decrease over time

Lin et al. (42) 10 adults  – 7 T
 – STEAM TE 15 ms
 – Midline visual cortex
 – 2 cm × 2 cm × 2 cm

 – Visual stimulation included contrast-defined wedges, 
moving toward or away from the fixation cross and 
randomized

 – Two protocols: (1) 1 13.2 min block interspersed by rest 
epochs and (2) two 9.9 min blocks interspersed by rest 
epochs

 – Increased glutamate (2 ± 1%) during single 
block vs rest

 – Increased glutamate (3 ± 1%) during the 
two blocks vs rest

Schaller  
et al. (43)

10 adults  – 7 T
 – SPECIAL TE = 6 ms
 – Midline visual cortex
 – 2 cm × 2 cm × 2 cm

 – Reversed black–gray checkerboard (9 Hz)
 – 2 blocks interspersed by rest epochs

 – Increased glutamate (4 ± 1%) during 
stimulation vs rest

Bednařík  
et al. (44)

12 adults  – 7 T
 – Semi-LASER TE = 26 ms
 – Midline visual cortex
 – 2 cm × 2 cm × 2 cm

 – Red–black checkerboard (7.5 Hz)
 – 2 blocks interspersed by rest epochs

 – Increased glutamate (~3%) during 
checkerboard vs rest

Apšvalka  
et al. (45)

19 young adults  – 3 T
 – PRESS TE = 105 ms
 – Left lateral occipital cortex
 – 2 cm × 2 cm × 2 cm

 – Three different task blocks: novel stimuli and two 
repeated (6 unique vs 4 unique) stimulus presentations 
interspersed with rest blocks

 – Presentation of novel/repeated black-line drawings 
representing real world objects for 700 ms

 – 4 runs of 8 task blocks per run
 – Each run, 4 novel and 4 repeated blocks
 – Each block 36 s in duration

 – Increased glutamate (~12%) during novel 
presentations compared to both rest and 
repeated presentations

Motor task—motor and somatosensory cortex

Schaller  
et al. (35)

11 adults  – 7 T
 – SPECIAL TE = 12 ms
 – Left motor and somatosensory 

cortices
 – 1.7 cm× 2 cm × 1.7 cm

 – Cued finger-to-thumb tapping task with both hands at 
a frequency of 3 Hz

 – 2 blocks interspersed by rest epochs

 – Increased glutamate (2 ± 1%) during finger 
tapping vs rest

Thermoregulation—anterior cingulate cortex (ACC) and insular cortex

Mullins  
et al. (47)

12 adults  – 4 T
 – STEAM TE = 20 ms
 – Bilateral ACC
 – 2 cm × 2 cm × 2 cm

 – Frozen compress (0–4°C) or sham pain was applied to 
the base of the left foot

 – 8:32 min task epoch preceded by a rest block and 
followed by two 8:32 min rest periods

 – Increased glutamate (9 ± 6%) during pain 
condition vs rest condition

Gussew  
et al. (48)

6 adults  – 3 T
 – PRESS TE = 30 ms
 – Left anterior insular cortex
 – 2.5 cm × 1 cm × 1 cm

 – Heat stimuli were applied to the inner skin area of the 
left forearm

 – 2 blocks interspersed by rest epochs

 – Increased glutamate (18 ± 8%) during heat 
vs rest

(Continued )
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Study Sample size Acquisition protocol Task Results Comments

executive functions—dorsolateral prefrontal cortex (dlPFC)

Woodcock  
et al. (40)

16 young adults  – 3 T
 – PRESS
 – TE = 23ms
 – left dlPFC
 – 1.5 × 2.0 × 1.5 cm3

 – 2-back working memory task
 – 7 task blocks of 64 s each interspersed by 32 s rest 

epochs

 – Increased glutamate (2.7%) during n-back 
vs fixation crosshair

 – The control condition was 
a separate run fixating on a 
crosshair 

Lynn et al. (87) 16 young adults  – 3 T
 – PRESS
 – TE = 23ms
 – left dlPFC
 – 1.5 × 2.0 × 1.5 cm3

 – Four “non-task-active” conditions: relaxed eyes 
closed, passive visual fixation crosshair, visual flashing 
checkerboard, and a finger tapping task

 – Each task 3:28 min in duration

 – Increased glutamate (4.7 and 3.2%) during 
flashing checkerboard and motor finger 
tapping conditions, respectively compared 
to visual fixation crosshair condition

 – Visual fixation crosshair and visual flashing 
checkerboard conditions produced the 
least variability in glutamate with CV’s under 
5%, which were both significantly lower 
compared to the eyes closed condition with 
a mean CV = 6.7%

 – Conditions were chosen 
because the left dlPFC is not 
the dominant brain region 
engaged in these tasks

Learning and memory—hippocampus

Stanley  
et al. (36)

 – 3 T
 – PRESS TE = 23 ms
 – Right anterior hippocampus
 – 1.7 cm × 3.0 cm × 1.2 cm

 – Associative learning and memory task
 – Epochs of encoding (9 unique object–location pairs) 

and cued-retrieval (of those associated memoranda) 
and interspersed with rest epochs

 – 8 encoding-retrieval cycles were employed to allow 
learning to asymptote

 – Increased glutamate (5.2 and 4.2%) during 
both encoding and retrieval, respectively

 – Applying a median split based on learning 
proficiency, fast learners showed increased 
during the early encoding trials, whereas 
slow learners showed increased glutamate 
in the later encoding trials

 – Motor finger tapping task in 
response to a random visual 
stimulus was the control 
condition

Cognitive control—ACC

Taylor  
et al. (66)

7 adults  – 7 T
 – STEAM TE = 10 ms
 – dACC
 – 2 cm × 2 cm × 2 cm

 – STROOP task with 4 conditions
 – One block flanked by rest epochs

 – Increased glutamate (2.6 ± 1.0%) during 
STROOP vs rest

 – Significance based on one-
tailed t-test

Taylor  
et al. (65)

16 controls; 16 
major depressive 
disorder (MDD); 
16 Schizo

 – 7 T
 – STEAM TE = 10 ms
 – dACC
 – 2 cm × 2 cm × 2 cm

 – STROOP task with four conditions
 – Two blocks interspersed with rest epochs

 – Increased glutamate (3.2%) in controls 
during first STROOP vs rest

 – Decreased glutamate in MDD during second 
STROOP vs rest

visuospatial cognition—parietal and posterior cingulated cortices

Lindner  
et al. (68)

19 adults  – 3 T
 – PRESS TE = 32 ms
 – Right or left border of parietal/

occipital cortices
 – 1.5 cm × 1.5 cm × 1.5 cm

 – Visuospatial attention task
 – Button press in response to the tilt orientation of the 

grating that appeared on the side of the screen cued by 
an arrow

 – 3 conditions (ipsi, contra, and control) randomized
 – 3 blocks interspersed with rest epochs

 – No trial condition effect on glutamate

TABLe 1 | Continued
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especially in brain areas with extreme B0 susceptibility (e.g., 
the hippocampus or orbital frontal cortex). Techniques such as 
the Fast Automatic Shim Technique using Echo-planar Signal 
readouT for Mapping Along Projections (FASTESTMAP) (33) 
and its predecessor, FASTMAP (34), have brought significant 
improvement in the spectral quality, including increased S/N 
(35, 36). These acquisition sequences are readily available by most 
manufacturers on current MR systems and should be utilized 
[for review see Duarte et al. (37)].

Finally, reliable voxel placement across subjects and within 
subjects over time is an often-overlooked aspect of single-voxel 
1H MRS acquisition protocols (25). Unreliable voxel placement 
adds error variance to the outcome measurements by increasing 
the variability of the partial volume effect. Recently introduced 
automated approaches have demonstrated significant improve-
ments in consistency of voxels placement, between subjects, even 
in anatomical brain areas, in which partial voluming is difficult 
to avoid, such as the dorsolateral prefrontal cortex (dlPFC) (38, 
39). For example, Woodcock et al. (40) reported an improvement 
from 68% voxel overlap with manual placement to 98% overlap 
using an automated approach. In all, these major technological 
advancements provide the necessary tools to fully exploit the 
characterization of the task-related temporal dynamics of gluta-
mate and GABA with 1H fMRS, which is fueling the resurgence 
of in vivo 1H fMRS as a powerful tool for cognitive neuroscience 
and psychiatry research.

eviDeNCe OF TASK-iNDuCeD 
gLuTAMATe MODuLATiON

visual Stimuli—visual Cortex
As in BOLD-based fMRI, the visual cortex is one of the most 
studied brain regions with 1H fMRS (Table 1). Studies of response 
to flashing checkerboard stimuli compared to a non-visual stimula-
tion (i.e., a blank screen) have shown a consistent stimulus-bound 
increases of ~2–4% in steady-state glutamate levels (41–44). The 
magnitude of the average task-related increase in glutamate may be 
less consistent as it depends on task duration and cognitive process-
ing demands. Shorter stimulus blocks were associated with a 3% 
increase in glutamate, compared to 2% for longer ones (42). With 
a temporal resolution of ~1 min, a delay in the increased stimulus-
dependent modulation of glutamate was consistently observed, 
whereas smaller and earlier elevations in lactate were noted  
(41, 43, 44). The mechanism of these two temporal effects is not 
fully understood. Finally, sensitivity of glutamate levels to stimulus 
characteristics was illustrated by a 1H fMRS study that found an 
almost 12% increase within the left occipital cortex during passive 
viewing of novel pictures compared to a (pseudo-) rest control con-
dition, but no change during repeated picture presentation (45).

Motor Task—Motor and Somatosensory 
Cortex
To date, only a single 1H fMRS study, at 7 T, investigated neuro-
chemical changes in the motor cortex during a motor task (35). 
As expected, a periodic cued finger-to-thumb tapping induced a 
significant (2%) glutamate increase in the motor/somatosensory 

cortices relative to a non-tapping “rest” condition (Table  1). 
In that study, the 1H fMRS voxel was co-localized with BOLD 
fMRI activation. Thus, task-related changes in glutamate can be 
detected in other functionally relevant cortical areas besides the 
visual cortex and can be used in investigating interesting research 
questions pertaining to neural activity during implicit vs explicit 
motor learning or periodic vs randomly cued stimuli (46).

Thermoregulation and Pain  
Perception—Anterior Cingulate  
Cortex (ACC) and insular Cortex
Motivated by the involvement of the ACC in thermal sensory 
responses, Mullins et al. (47) investigated glutamate response to a 
10 min cold-pressor stimulation of the foot compared to the base-
line rest without the cold exposure. They observed a substantial 
(9.3%) condition-related increase in glutamate within the ACC. 
With acute heat exposure, Gussew et al. (48) reported an even 
greater, 18%, glutamate increase in the anterior insular cortex. 
The manipulation involved acute 5 s cycles of heat exposure to 
the forearm compared to the no heat exposure condition. These 
findings lay the foundation of further investigation of the brain’s 
thermoregulatory system and its relationship to temperature 
perception with greater temporal resolution, made possible by 
current improvements in 1H MRS.

working Memory (wM)—dlPFC
The construct of WM refers to the ability to hold information in 
memory for a duration of a few seconds while manipulating this 
information “on-line” in order to carry out a complex task (49).  
In primates, the dlPFC has been proposed as the central neural sub-
strate of WM (50). Neuroimaging studies using PET and fMRI have  
confirmed the importance of the dlPFC, but also have implicated 
additional brain regions, such as the inferior parietal lobule and 
cerebellum (51, 52). In a recent 1H fMRS study with a single-voxel 
placement in left dlPFC, a significant 2.7% increase in glutamate 
was observed during a standard 2-back WM task compared to 
a continuous visual crosshair fixation in healthy young adults 
(Table 1) (40). The elevation in dlPFC glutamate observed with 
a temporal resolution of 32 s is consistent with the engagement 
of that region in WM processing that has been revealed by task-
based BOLD fMRI studies. However, increased glutamate was 
more pronounced during the first-half compared to the second-
half of the 64 s block. This suggests a temporal variation in the 
dlPFC engagement during WM task. This temporal effect has not 
been reported in fMRI studies using the N-back WM paradigm 
and warrants further investigation to determine whether the 
disengagement over time is related to WM proficiency. In all, 
the observed temporal dynamics of WM-related modulation of 
dlPFC glutamate provides a solid basis for new means of evaluat-
ing the effects of cognitive intervention, pharmacological thera-
pies, or manipulation of the physiological (e.g., stress-provoking) 
conditions.

Learning and Memory—Hippocampus
Glutamate plays a key role in learning and memory via its activ-
ity in the frontal and hippocampal circuits. The hippocampus 
is particularly rich in glutamatergic neurons, and memory 
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consolidation in the hippocampus depends on synaptic plastic-
ity mediated by glutamatergic N-methyl-d-aspartate (NMDA) 
receptors (53, 54). In addition, firing rate of hippocampal neurons 
is associated with acquisition of new associative memories (55). 
Therefore, it is plausible that memory processing would be linked 
to increased modulation of hippocampal glutamate, presumably 
driven by increased activity at NMDA receptors. This hypothesis 
was tested by Stanley et al. (36). During performance of an asso-
ciative learning task with object–location pairs, healthy adults 
displayed, as expected, unique temporal dynamics of glutamate 
modulation in the right hippocampus (Table 1). In this 1H fMRS 
application with a 54 s temporal resolution, the epochs of memory 
consolidation and retrieval were clearly differentiated by the tem-
poral pattern of glutamate modulation. Moreover, the temporal 
dynamics of glutamate modulation were associated with learning 
proficiency: fast learners demonstrated up to 11% increase in 
glutamate during the early trials, whereas a significant but smaller 
and later increase of 8% was observed in slow learners. These 
results are in accord with the notion of altered glutamatergic neu-
roplasticity as the central mediator of learning and memory. The 
observed link between memory performance and glutamatergic 
system activity is particularly important given the proposed 
role of glutamatergic dysfunction as the core phenomenon in 
cognitive aging, age-related neurodegenerative disorders such as 
Alzheimer’s disease (AD), and severe psychiatric conditions such 
as schizophrenia. Structural changes in the hippocampus and 
its subfields, especially CA1, which is enriched in glutamatergic 
neurons, have been observed in the course of cognitive aging and 
AD (56–59). Although the mechanisms of these changes remain 
unclear, regional gray matter shrinkage observed on MRI is likely 
to reflect reduction of neuropil, to which dendritic arborization 
and dendritic spines contribute a significant volume fraction 
(60). Dendritic spine density is highly plastic and is driven by 
changes in Ca2+ flux modulated by glutamatergic activity (61). 
It is plausible to assume that impairment in glutamate modula-
tion may eventually result in reduced dendritic plasticity and 
contribute to regional neuropil shrinkage. Therefore, impairment 
of task-related glutamatergic modulation may provide a very 
early marker for impending cognitive dysfunction and a valu-
able instrument of monitoring response to interventions that are 
aimed at mitigating the targeted cognitive declines.

Cognitive Control—ACC
The ACC plays a key role in multiple higher cognitive processes 
including monitoring and evaluating conflict in information 
processing (62, 63). The Stroop task, which requires naming the 
color of displayed words when the name of the color matches the 
color of the displayed word (congruent trials) and when the color 
does not match the color of the displayed word (incongruent 
trials), is commonly used to assess conflict-monitoring engage-
ment. BOLD fMRI studies using the Stroop task have consistently 
shown increased activation in the dorsal ACC related to trials 
of high conflict and with low top–down control (64). Based on 
this premise, Taylor et al. (65) investigated whether the Stroop 
task can induce a change in glutamate in the dorsal ACC of 
healthy adults using 1H fMRS at 7  T (Table  1). Compared to 
the rest condition, a 2.6% increase in glutamate was reported 

during the Stroop task, which included a mixture of congruent 
and incongruent conditions as well as trials with words only (no 
color) and color only (no words). However, differences in dorsal 
ACC glutamate modulation between trail conditions within the 
Stroop were not reported.

In another study using the similar Stroop task with 1H fMRS 
at 7 T, Taylor et al. (66) extended the investigation to individuals 
with major depressive disorder (MDD) and schizophrenia. The 
observation of increased glutamate level in the dorsal ACC dur-
ing the Stroop task compared to rest was replicated in healthy 
adults. However, no significant change in glutamate was observed 
in individuals with schizophrenia, while participants with MDD 
demonstrated decreased glutamate in the dorsal ACC during 
the task compared to rest. The non-significant change in gluta-
mate with task in the participants with schizophrenia appears 
consistent with decreased BOLD fMRI activation during Stroop 
in schizophrenia (67). Interestingly, the lower glutamate in the 
dorsal ACC during Stroop in MDD may reflect a shift in the E/I 
balance toward decreased excitability that is potentially driven 
by an increase in the inhibitory drive (see Figure 1 and below for 
further discussion).

visuospatial Cognition—Parietal  
and Posterior Cingulate Cortices
Tasks involving the visuospatial attention and memory system 
were recently investigated using 1H fMRS at 3  T (Table  1). In 
healthy individuals, a non-significant modulation of glutamate 
was observed in the parietal–occipital cortex during a visuos-
patial attention task compared to the control condition (68). In 
another study, no significant task-related glutamate modulation 
was observed in the parietal–posterior cingulate cortex of healthy 
adults, patients with AD and individuals with amnestic mild cogni-
tive impairment who performed a face-name associative memory 
task compared to the rest control condition (69). In both studies, 
details on the variability of the glutamate measurements were 
omitted and, therefore, it remains unclear whether the method 
afforded detection of a task-related change in glutamate of the 
order of 10% or less. It may be possible that the selected tasks were 
not at the level of difficulty that produced significant variations 
in glutamate level or that dynamics of glutamate are inherently 
weaker in the examined locations compared to the hippocampus 
and prefrontal cortex. Also, the lack of specific behavioral con-
straints during the rest condition might have increased variability 
in glutamate within brain areas that show BOLD fMRI activation 
under rest. Therefore, rest, under these circumstances, may rep-
resent a nonspecific, yet, not truly task-free condition and thus a 
suboptimal choice as a control comparison. These remain among 
multiple questions to be addressed in the further development of 
the method.

BiOLOgiCAL SigNiFiCANCe OF 
CHARACTeRiZiNg gLuTAMATe 
MODuLATiON

The observed dynamic changes in glutamate levels during per-
ceptual, motor, and cognitive tasks may open a new window into 
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neural bases of normal and abnormal cognition and behavior.  
To accomplish that goal, the apparent brain changes in this key 
neurotransmitter must be linked to cellular and molecular pro-
cesses that occur in the brain.

Neural activity generated in response to physiological stimuli 
triggers changes in many complex neurovascular and neuro -
metabolic processes, including increased cerebral blood flow, 
glycolysis (CMRGlc), and oxidative metabolism (CMRO2), as well 
as synthesis of neurotransmitters (4, 5, 70–72)—all of which 
depend on significant increase in energy consumption. The tem-
poral and spatial characteristics of these processes are not fully 
understood (4). Most notably, there is a mismatch (i.e., ~44 vs 
~30%, respectively) between glucose utilization (non-oxidative 
CMRGlc) and oxygen consumption (CMRO2) in response to physi-
ological stimuli (73, 74). Fox et al. (75) were the first to report this 
mismatch, which sparked the interest and focus of early 1H fMRS 
studies from the 1990s, as noted above (17–19, 21). However, 
more recent high-field 1H fMRS studies provided compelling evi-
dence that the mismatch of ΔCMRGlc > ΔCMRO2 is short-lived.  
It is necessary only for facilitating the transition to a new meta-
bolic steady state following the onset of a physiological stimulus. 
It is this transitional change that is believed to be reflected  
by the dynamic changes of glutamate observed on 1H fMRS  
(35, 44, 71).

This transition between metabolic steady states is primar-
ily driven by oxidative metabolism (71) is consistent with 
recalibration of excitatory and inhibitory activity balance in 
local circuits, and establishing an E/I equilibrium that underpins 
a new functional state of the brain (Figure  1) (4, 6, 7). At the 
synaptic level, following the release of glutamate, excess of the 
neurotransmitter is taken up by surrounding astrocytes and 
is subsequently converted, predominantly to glutamine, with 
the help of glutamine synthetase. Glutamine is then released 
and taken up by the presynaptic neuron where it is converted 
into glutamate by mitochondrial glutaminase, to complete the 
glutamate–glutamine cycle (76). A near 1:1 relationship between 
neuronal glucose oxidation and the glutamate–glutamine cycling 
(70, 77, 78) implies that the metabolic and neurotransmitter 
pools of glutamate, as typically viewed in the 1H MRS literature  
(79, 80), are tightly coupled and hence, indistinguishable by 
1H MRS (70). Moreover, in astrocytes, the oxidative pathway 
regulates the glutamate turnover (synthesis and degradation) 
and the high-energy phosphate, adenosine triphosphate, can be 
generated to supply the demand of increased synthesis without 
the need of glycolysis (81). This association between increased 
excitatory synaptic neurotransmission and increased synthesis 
of exogenous glutamate provides a cellular basis for meaningful 
interpretation of glutamate measures obtained from 1H fMRS.

Translating this relationship to the macro-circuit level implies 
that glutamate levels and changes therein that are observed in a 
single-voxel by 1H fMRS reflect the net cortical output driven by 
the excitation and inhibition balance on local circuits. The impli-
cation is that a net increase in synaptic excitability is reflected 
at the cortical (macro-circuit) level as a relative increase in 
glutamate, which is observed on the signal produced by 1H fMRS 
(Figure 1) (6, 7). Notably, an opposite shift in the E/I balance 
on local circuits increases the inhibitory drive and consequently, 

decreases the net excitability, which is reflected in a relatively 
lower glutamate level registered on 1H fMRS. The salient point 
of this interpretation is that 1H fMRS is not simply indicating an 
“ON” or “OFF” brain response to stimulation but can reflect a 
stimulus-induced change in glutamate that reflects new meta-
bolic steady states driven by relative shifts in the E/I equilibrium 
(Figure 1). Because cellular glutamate changes are tightly linked 
to synaptic plasticity (82), the apparent glutamate alterations 
observed on a macro level are likely to reflect experience-related 
plasticity as well. The implications of using 1H fMRS as a proxy 
of cellular process that are unobservable in vivo are far reaching. 
Further development and refinement of the method bodes well 
for the fields, in which the role of glutamate in core phenomena 
of behavior, cognition, and psychopathology has been estab-
lished through the use of animal models (83). Fulfillment of 
these promises, however, hinges on resolving several key issues 
in methodology and interpretation.

THe PROS AND CONS OF 1H fMRS

The key advantage of 1H fMRS over the staple of cognitive 
neuroscience, BOLD-based fMRI, is that task-related changes 
in glutamate can be traced directly to established metabolic 
processes, and are not mediated by neurovascular effects. This 
relative directness of the method bypasses neurovascular media-
tors that may be affected by significant alterations of the vascular 
system and impairment of its regulation. Moreover, 1H fMRS is a 
quantitative method that can measure not only the magnitude of 
change in glutamate but its basal “non-task-active” steady-state 
level, which is not the case for fMRI. This makes the method par-
ticularly suitable for studying the neural basis of cognitive declines 
in older adults and persons with age-related neurodegenerative 
disorders, in whom vascular risk factors are highly prevalent and 
cognitively relevant (56). This relative directness of 1H fMRS is a 
feature that may significantly advance the understanding of brain 
dynamics underlying normal and abnormal cognition. To fulfill 
this promise, several key issues need to be addressed.

One unresolved concern is that as several groups have pointed 
out, there is evidence of a BOLD T2* effect on the spectral peaks 
including glutamate during task compared to the control condi-
tion. This T2* contribution narrows spectral linewidths by about 
0.2–0.3 Hz in the visual cortex at 4 T, 0.5 Hz in the visual cortex at 
7 T, and 0.25 Hz in the motor cortex at 7 T on task-related spectra 
(35, 41, 43, 44, 84, 85). This BOLD-linked confound, however, is 
yet to be reported at 3 T. In theory, the spectral fitting method 
such as LCModel (86) should account for changes in the spectral 
linewidth without influencing the accuracy of the metabolite 
quantification. Nonetheless, Mangia et al. (85) reported a non-
significant reduction in glutamate levels with increasing spectral 
linewidth, which potentially suggests a bias on LCModel fitting. 
As a result, applying a linedwidth broadening to spectra acquired 
during task to ensure linewidths are matched across all spectra 
has become a common practice as part of the post-processing for 
7 T 1H fMRS studies (35, 41, 43, 44, 85).

The magnitude of task-related change in glutamate levels 
vary considerably across the extant reports (Table 1), from as 
low as 2% up to 18%, and the reasons for such variability are 
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unclear. This wide range may reflect multiple methodological 
variations among studies including sample size, acquisition 
protocol, and the differential accuracy and precision between 
field strengths (e.g., 3 vs. 7 T). Also, the participants’ charac-
teristics and properties of the task may play a role in adding 
variability to the measured magnitude of the observed change. 
In most extant studies, the comparison condition was either 
a pseudo-rest state (i.e., passive state with no specific instruc-
tions), routine motor activity, or visual fixation on a stimulus 
without specific task-related instructions. The purpose of the 
control condition is to assess a steady state level of glutamate 
to be contrasted with those that are associated with task activ-
ity. For example, in the 1H fMRS study of the hippocampus by 
Stanley et al. (36), the control condition paradigm included a 
cued finger to thumb tapping task due to its strong attention 
and motor processing, without any learning or memory compo-
nents. Likewise, the dlPFC 1H fMRS study by Woodcock et al. 
(40) incorporated a visual fixation crosshair condition as the 
baseline control condition, again, to minimize any potential 
dlPFC engagement during the control condition. Moreover, 
Lynn et al. (87) demonstrated differences in steady-state levels 
of glutamate as well as variability of glutamate in the left dlPFC 
across different conditions where the primary functional spe-
cialization of the dlPFC was not associated to these conditions 
(e.g., relaxed with eyes closed, visual fixation crosshair, visual 
flashing checkerboard, and motor finger tapping). The visual 
fixation crosshair condition demonstrated the lowest and less 
variable glutamate over the acquisition period compared to the 
relaxed eyes closed condition. The latter is consistent with stud-
ies reporting greater variability in glutamate during rest epochs 
compared to task (44, 88). Also, the steady-state glutamate level 
was significantly higher during the visual flashing checkerboard 
compared to the visual fixation crosshair condition. This is 
surprising considering that the left dlPFC is not the primary 
brain area for visual stimuli but is involved in multiple cognitive 
operations including deployment and maintenance of attention 
(89–92). We surmise that substantial variability in glutamate 
levels over time occurs during conditions in which behavior is 
poorly constrained (e.g., pseudo-resting state), and that better-
defined and constrained non-cognitive control tasks such as 
visual fixation or finger tapping, are a better choice for baseline 
condition for frontal areas of interest. This hypothesis merits 
further empirical testing.

To make an in vivo method truly useful in investigating task-
related changes it is imperative to establish high reliability and 
temporal stability of task-related glutamate measures. No such 
evidence is currently available for 1H fMRS, and reliability studies 
are urgently needed.

Because cognitive activity occurs in a wide range of time 
windows and calls for multiple interacting brain circuits, 
not every task may be equally suitable for investigation with 
1H fMRS. Investigation of task properties and relevant brain 
locations that maximize the validity of 1H fMRS findings is 
necessary for optimization of the 1H fMRS application to inves-
tigating complex cognitive and psychiatric phenomena. Of 
critical importance is leveraging 1H fMRS animal studies that 
can use more sensitive methods that are available for human 

studies and are, therefore, critically important for validation 
of the method (93–96). It is important, however, to apply these 
methods not only with precision and degree of invasive control 
that are available in animal models but also with parameters 
that are equivalent to those that are suitable for humans. Such 
translational harmonization of methods is critically impor-
tant in the understanding of task-related glutamate changes 
observed in human subjects.

Finally, 1H fMRS is still a project in progress. The one aspect 
of the method that significantly improved over the years is the 
temporal resolution of acquiring the glutamate signal, which 
has been brought well under a minute (40). The advantage 
of high temporal resolution is the possibility of investigating 
temporal course of glutamate change within relatively short-
lived stages of cognitive processing (96), and gauging the 
course of modulation within a task block (36, 40). However, it 
may take ~1–2 min for glutamate to reach its maximum level 
following stimulus onset (35, 41, 43). This may reflect the time 
needed for the synaptic reorganization process, shifting the E/I 
balance in the local circuits, and establishing the new steady 
state of glutamate. On the other hand, a relatively rapid change 
in glutamate within the dlPFC during the WM task has been 
reported. Glutamate surge was greater during the first half of 
each 64 s block than the second one (40). Thus, examining the 
patterns of glutamate modulation as a function of various time 
scales is as important as refining temporal resolution of the 
method.

CONCLuSiON
1H fMRS is an exciting and promising technique that can offer 
important insights into the neurochemicals underpinnings of 
cognition and their temporal dimensions. In this review, we 
summarize preliminary but compelling evidence demonstrat-
ing the ability of 1H fMRS to detect changes in glutamate during 
various perceptual, motor, and cognitive tasks. Moreover, the 
method can detect changes in glutamate modulation that are 
induced by manipulations that affect cognitive performance. 
It is highly plausible that these 2–18% task-related changes 
in glutamate reflect transitions to new metabolic steady states 
driven by relative shifts in the E/I equilibrium through synaptic 
plasticity. Within this conceptual framework, 1H fMRS provides 
a sensitive tool for investigating the neural basis of cognitive 
operations that are directly relevant to specific deficits in psy-
chiatric disorders or neurodegenerative diseases associated with 
advanced age.
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