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In schizophrenia (SCZ), dysfunction of the dorsolateral prefrontal cortex (DLPFC)

has been linked to the deficits in executive functions and attention. It has been

suggested that, instead of considering the right DLPFC as a cohesive functional entity,

it can be divided into two parts (anterior and posterior) based on its whole-brain

connectivity patterns. Given these two subregions’ differential association with cognitive

processes, we investigated the functional connectivity (FC) profile of both subregions

through resting-state data to determine whether they are differentially affected in SCZ.

Resting-state magnetic resonance imaging (MRI) scans were obtained from 120 patients

and 172 healthy controls (HC) at 6 different MRI sites. The results showed differential

FC patterns for the anterior and posterior parts of the right executive control-related

DLPFC in SCZ with the parietal, the temporal and the cerebellar regions, along with

a convergent reduction of connectivity with the striatum and the occipital cortex. An

increased psychopathology level was linked to a higher difference in posterior vs. anterior

FC for the left IFG/anterior insula, regions involved in higher-order cognitive processes.

In sum, the current analysis demonstrated that even between two neighboring clusters

connectivity could be differentially disrupted in SCZ. Lacking the necessary anatomical

specificity, such notions may in fact be detrimental to a proper understanding of SCZ

pathophysiology.
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INTRODUCTION

In neuroimaging, the most widely used method of characterizing
functional neuroanatomy is based on the integration of larger

anatomical brain regions. Based on thismethodology, the DLPFC
is frequently treated as a unified region controlling function
through a top-down modulation of task-relevant information
processing in the premotor and posterior parietal associative
cortices (1, 2).

The DLPFC is reciprocally interconnected with motor areas
in the medial frontal lobe, the rostral cingulate cortex, the
premotor cortices as well as the cerebellum and the superior

colliculus (3–6). While there is consensus regarding the role of
the DLPFC in executive control, the varied results with respect
to the location and extent of activation sites [e.g., (7–9)] beg
the question of whether this variability is due to the region’s
functional heterogeneity.

Deficits in executive function, workingmemory, and attention
in schizophrenia [stable and common symptoms observed
during the lifespan of schizophrenia patients (10–12) are thought

to be linked to reduced activity in the bilateral] DLPFC and
the dorsal parietal cortex (13). However, findings pertaining to
DLPFC involvement in schizophrenia are not consistent with
studies that do not reveal any differences in the DLPFC between
HC (14) and others despite reporting patterns of hyperactivation
(15). Moreover, there is considerable variability in terms of the
location and extent of DLPFC impairment across functional
neuroimaging experiments investigating executive functions in
both healthy controls (16, 17) and patients (13, 18, 19). For
instance, when healthy controls showed involvement of the BA44
and BA 40 in response to working memory challenge (17) the
differences between patients with schizophrenia and healthy
controls during working memory task were seen more posterior
(BA 45, BA 46, BA 47) (18).

The inconclusive results of the studies mentioned above
may be due not only to the variations in the experimental
context but also to the lack of an understanding of the
functional heterogeneity of the DLPFC region. This most likely
indicates that the executive control of behavior relies on distinct
DLPFC subregions involved in differentiable neural networks
and cognitive functions.

The results of our previous parcellation study involving data
from healthy individuals suggest that a single region of interest
within the right DLPFC is not a functional entity but is organized
hierarchically with one anterior ventral and one posterior dorsal
DLPFC sub-region (Figure 1) (16). Our previous study showed
an increased connectivity between the posterior (vs. anterior)
DLPFC and the posterior parietal cortex, thereby indicating
a possible network for cognitive control related to stimulus
processing and selection of behavior-relevant information. In
contrast, for the anterior (vs. posterior) DLPFC cluster, an
increased functional connectivity with the ACC was seen. This
resonates well with the results from a range of fMRI studies
investigating cognitive control, suggesting that the DLPFC and
the ACC (BAs 24 and 32) are specifically activated with an
increase in demands for cognitive control and monitoring due
to conflict in information processing and competing response

FIGURE 1 | Posterior (red) and anterior (green) right DLPFC seed regions as

derived from a previous co-activation-based parcellation study as described in

Cieslik et al. (16).

plans (20–22). Thus, while the posterior cluster of the region is
likely changed to be more strongly involved in action control
processes, depending on the interaction with stimulus processing
and working changed memory, the anterior region is likely
responsible for higher-order control processes such as motor
response monitoring and action inhibition (16).

Based on these observations, we sought to explore whether
SCZ is linked to a differential connectivity disruption in the right
anterior and posterior DLPFC (aDLPFC/pDLPFC) sub-regions,
hypothesizing that a connectivity imbalance in the DLPFC sub-
regions is part of the SCZ pathophysiology.

METHODS

Definition of Volume of Interest (VOI)
The DLPFC VOIs were based on previous work (16), separating
the right DLPFC region into two clusters by using hierarchical
cluster analysis: a more anterior-ventral (center of gravity
MNI coordinates: 30/43/23) one and a more posterior-dorsal
one (center of gravity MNI coordinates: 37/33/32) (Figure 1).
Henceforth, for the sake of simplicity, the regions will be referred
to as anterior and posterior seeds or sub-regions. In the study
by Cieslik et al. (16), volume of Interest was defined by merging
the DLPFC activation sites from 4 previous studies investigating
motor control. The first 3 studies (23–25) used manual stimulus–
response tasks requiring a speeded response to a visual stimulus
by a button press with either the left or right index finger, whereas
the fourth study (26) used a manual sequence reproduction
task. All 4 studies, which differed in the specific demands
for executive motor control, showed activation in the right
DLPFC with partially overlapping but slightly different locations.
Following thresholding at P < 0.05 (cluster-level family-wise

Frontiers in Psychiatry | www.frontiersin.org 2 May 2018 | Volume 9 | Article 211

https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychiatry#articles


Chechko et al. Connectivity of the DLPFC in Schizophrenia

error [FWE]-corrected) of the individual contrasts, the ensuing
4 DLPFC clusters were combined into a single VOI (cluster
size: 674 voxels). That is, every single voxel in the VOI region
showed activation in at least one of the 4 studies. Subsequently,
it was assessed whether this seed region could be divided
into subregions based on similarities and differences between
co-activation patterns of the individual seed voxels across
neuroimaging experiments.

Sample Description
We investigated resting-state functional connectivity of the two
right DLPFC sub-regions in 120 patients with a clinical diagnosis
of schizophrenia [recruited at six sites: Aachen, Alberquerque
(COBRE), Göttingen, Groningen, Lille, and Utrecht] and 172
healthy controls, with patients and controls not differing with
respect to age Symptom severity was assessed by use of the
Positive andNegative Syndrome Scale [PANSS, (27)] (for detailed
demographic and clinical characteristics, please refer to Table 1

and Supporting Information Table S1).
The diagnosis was ascertained by clinical examination

of the attending psychiatrist according to the International
Classification of Diseases (28) or the Diagnostic and Statistical
Manual of Mental Disorders (29) criteria.

At the time of scanning, all patients were under antipsychotic
medications, except for 6 (7%), who were not on any medication.
Chlorpromazine-equivalents (CPZ-equivalents) were estimated
as described in (Table 2) (30).

All subjects provided written informed consent to participate
in the study prior to inclusion as approved by the ethics
committees of the participating universities. Joint re-analysis
was approved by the ethics committee at the Heinrich-Heine
University Düsseldorf.

Resting State fMRI Data: Imaging and
Preprocessing
For each subject resting state EPI (echo-planar-imaging) images
were acquired using standard blood-oxygen-level-dependent
(BOLD) contrast [gradient-echo EPI pulse sequence] (Please see
Table S2 for details on EPI sequence for each site).

Prior to further processing (using SPM8, www.fil.ion.ucl.
ac.uk/spm) the first four images were discarded allowing for
magnetic field saturation. The EPI images were corrected for
head movement by affine registration in a two-pass procedure

TABLE 1 | Demographic and clinical characteristics.

Controls (n = 172) Patients (n = 120)

Age (years) 33.55 ± 10.74 32.11 ± 9.37

Male/Female (N) 105/67 87/33

Duration of illness (years) 10.16 ± 9.51

POS (PANSS, positive) 15.08 ± 5.33

NEG (PANNS, negative) 14.68 ± 5.39

GEN (PANNS, general) 28.48 ± 8.07

PANSS (total) 58.32 ± 15.58

realigning EPI volumes to its mean image. The mean EPI image
for each subject was spatially normalized to the MNI ICBM-152
subject template using the “unified segmentation” approach (31).
The ensuing deformation field was applied to the individual EPI
volumes and smoothed with a 5-mm FWHMGaussian kernel.

Neither the patient and control subsamples (sites) nor the
overall disease cohorts showed group differences (t-tests with
p > 0.2) in the three movement parameters (DVARS, FD, and
RMD), indicating reasonably similar head motion during the
scanning process (32).

To minimize spurious correlations between BOLD time
courses through confounds such as physiological noise and
motion, any variance that could be explained by the following
nuisance variables was removed from each voxel’s time series:
(i) the six motion parameters derived from image realignment
and (ii) their first derivative. According to published evaluations,
motion regressors entered the model as first- and second-order
terms resulting in 24 movement regressors (33) Given the
evidence of group comparisons being distorted by correcting for
the global mean signal (34, 35), the whole-brain resting-state
functional connectivity of each of the two seeds (for all subjects)
was calculated without Global Signal regression.

Finally, the data were band-pass filtered preserving BOLD
frequencies between 0.01 and 0.08Hz (36).

Individual and Group Level Analyses
For each subject and VOI the first eigenvariate of the VOIs
time-series were calculated separately for each DLPFC seed and
supplied to further whole-brain functional connectivity analysis.
Linear (Pearson) correlation coefficients between the time series
of the seed regions and those of all other gray-matter voxels
in the brain were computed to quantify resting-state functional
connectivity. These voxel-wise correlation coefficients were then
transformed into Fisher’s z-scores and then fed into a second-
level analysis of variance (ANOVA).

TABLE 2 | Information on how many of the patients were medicated or

unmedicated at time of measurement and mean medication (CPZ-equivalents) per

site.

Site Unmedicated

(n)

Medicated

(n)

Antidepressant**

(n)

Mean

CPZ-equivalents

(SD)

Site 1 0 9 2 572.22 (255.71)

Site 2 0 41 12 700.44 (368.29)

Site 3* 3 20 4 n.a*

Site 4 0 9 2 731.44 (617.83)

Site 5 1 9 5 820.44 (576.66)

Site 6 2 26 9 785.19 (493.64)

Total 6 114 34 795.63 (462.4)

Site 1, Aachen; Site 2, COBRE; Site 3, Groningen; Site 4, Lille; Site 5, Utrecht; Site 6,

Göttingen.

*Only statements regarding the nature of the drugs (irrespective of dose details) can be

made here.

**All individuals taking antidepressants (combination of two or only one).
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Next, any variances from each voxel of the two seeds of the
resting state functional connectivity (RSFC) data, which could
be explained by age, gender, site and amount of within-scanner
movement, were removed. To do so, voxel-wise effects of age,
gender, site, and amount of within-scanner movement were
included as predictors in a regression model based on only the
HC data. This model was then used to adjust the FC data of
each patient into relative scores. Therefore, these scores reflect
hyper- or hypoconnectivity at each voxel relative to what would
have been expected based on those covariates in HC. Thus,
the deviations from the expected value calculated on the basis
of HC values was used to express hyper- or hypoconnectivity
of the DLPFC seeds in patients. The main problem that arises
when estimating the coefficients for confounder adjustment
from the entire group of subjects (i.e., patients and controls)
is the potential multi-collinearity between socio-demographic
confounders (age, gender as well as measurement site) and
clinical characteristics and hence the neurobiological features of
schizophrenia. Thus, the estimated effects of the confounders
also include pathological features that are likely to introduce
a bias to the estimation. In view of this, we resorted to the
strategy described in Rozycki et al. (37), i.e., to estimate the
effects of socio-demographic covariates only in the healthy
control population and apply the ensuing model to adjust the
data from all participants. Given that this approach permits
an unbiased estimation of the effects of, e.g., age and gender,
when it is applied to the patients, only the effects of the
covariates (but not the disease process itself) ought to be
removed. Similarly, the coefficients estimated from the model
based on the HC data were applied to the whole sample
including the patients. This effectively removed the influence
of the demographic and, most importantly, any clinical effects
on the difference between patients and controls. These adjusted
data formed the basis of the between-group analysis (ANOVA)
created to test for seed (aDLPFC/pDLPFC) × diagnostic group
interaction.

Resting State Functional Connectivity of
the Seed Regions in HC
In a first step, we aimed to replicate the specific RSFC profile
of the two DLPFC subregions that was found in our previous
study (16). To do so, in the present healthy subsample we
first tested for increased FC of the anterior vs. posterior seed
(aDLPFC_HC > pDLPFC_HC) in conjunction with the main
effect of the anterior seed’s positive correlation (aDLPFC_HC).
The same rational was done to test for the specific RSFC
of the posterior seed (i.e., pDLPFC_HC > aDLPFC_HC ∩

pDLPFC_HC) in HC. The results were p< 0.05 family-wise error
(FWE)-corrected on the voxel level.

Group Differences in Whole-Brain
Functional Connectivity
In a conjunction analysis we tested for disorder-related changes
in the connectivity of both seeds. To this end, we first identified
regions to which both seed regions are connected in HC and
for which both seeds show reduced connectivity in SCZ. To

test this, a conjunction analysis across the difference in RSFC
between HC and SCZ (HC > SCZ) for both seeds and the
main effect of both seeds’ positive correlation in HC (i.e.,
aDLPFC_HC > aDLPFC_SCZ ∩ pDLPFC_HC > pDLPFC_SCZ
∩ aDLPFC_HC ∩ pDLPFC_HC) was performed. Next, again
using conjunction analysis, we looked for regions being
significantly connected in HC and showing increased RSFC for
SCZ compared to HC (i.e., aDLPFC_HC < aDLPFC_SCZ ∩

pDLPFC_HC< pDLPFC_SCZ∩ aDLPFC_HC∩ pDLPFC_HC).
The results of both analyses, unless noted otherwise, were
p < 0.05 family-wise error (FWE)-corrected on the voxel
level.

Finally, we assessed seed × group interactions to reveal a
specific disconnectivity of both DLPFC sub-regions. We tested
for the regions showing a relatively increased positive RSFC with
the posterior DLPFC cluster (and relatively decreased positive
RSFC with the anterior cluster), and then visa-versa.

Results of the interaction were regarded as significant if they
passed the threshold of a cluster-level FWE (cFWE) rate of
p < 0.05 (cluster-forming threshold at voxel level: p < 0.001).
The use of cFWE correction was on account of the fact that no
significant clusters were left after FWE correction on the voxel
level. The significant effects of the interaction were tested with
t-tests. The results of the t-test were p < 0.05 family-wise error
(FWE)-corrected on the voxel level.

Correlations Between Functional
Connectivity and Clinical Parameters
At the next step we analyzed the relationship between the relative
RSFC shifts between both seed regions and psychopathology
in the schizophrenic sample. To this extend, the differences
of adjusted RSFC between the anterior and posterior DLPFC
seeds were calculated (pDLPFC > aDLPFC) in the SCZ sample.
For this reason, positive differential values indicate a RSFC
shift from the anterior (and toward the posterior) seed, while
negative differential values indicate a RSFC shift from the
posterior (and toward the anterior) seed. The calculated amount
of differential disconnectivity was then correlated with the
Positive and Negative Syndrome Scale (PANSS) total scores
and all individual subscales. Again, the results were cFWE-
corrected at p < 0.05 (Figures S1, S2, cluster-forming threshold
at voxel level: p < 0.001). No significant clusters were left
following additional Bonferroni correction. For exploratory
reasons, results prior to Bonferroni correction have been
provided.

Anatomical Allocation of Results
Brain regions were anatomically allocated to probabilistic
cytoarchitectonic maps using v2.0 of the SPM Anatomy Toolbox
[http://www.fz-juelich.de/ime/spm_anatomy_toolbox; (38, 39)].

RESULTS

Resting-State Functional Connectivity in
HC
In HC, a significantly stronger RSFC of the posterior (compared
to the anterior) seed was found with the left homotope
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(geometrically corresponding) region (peak MNI: −28/56/16;
T = 9.48; 1,578 voxels), the bilateral IPS (peak MNI: 56, −34,
46/−44, −42, 42; areas hIP1, hIP2, and hIP3), the right inferior
temporal gyrus (peak MNI: 60/–54/−16; T = 6.20; 123 voxels)
and the left precentral gyrus (BA 44; peak MNI: −46/6/32;
T = 6.90; 88 voxels). Conversely, significantly stronger RSFC
of the anterior (compared to the posterior) seed was observed
with the left homotope region (MNI-coordinates: −28/56/16
T = 9.48; 1,578 voxels), the left ACC (MNI-coordinates:
−2/30/20; T = 7.18; 87 voxels), the left PCC (MNI-coordinates:
−8/−46/28; T = 5.44; 66 voxels), the right inferior frontal gyrus
(p. orbitalis, MNI-coordinates: 30/18/−22; T = 6.03; 64 voxels)
and the right frontopolar region (Area Fp1, MNI-coordinates:
32/50/18; T = 40.58; 1,067 voxels).

Taken together, in a new sample of healthy controls we could
replicate our previous results (16).

Group Differences in Resting-State
Functional Connectivity: Conjunction
Analysis
Compared to the HC, SCZ patients showed significantly reduced
RSFC of the two seed regions (conjunction analysis) with the
bilateral caudate, the right putamen, bilateral inferior occipital
gyrus (V4) extending into middle occipital gyrus (Figure 2). For
further details, please refer to Table 3.

Results of the individual contrasts [p < 0.05 family-wise error
(FWE)-corrected on the voxel level] of SCZ-related reduction in
RSFC with the anterior and posterior clusters respectively are
presented in Tables S3, S4. Please also refer to Table S5 which
shows for exploratory reasons the conjunction analysis results
after cFWE correction. In contrast with these marked reductions,
no significant RSFC increases were observed for either seed in
SCZ patients relative to HC.

Group Differences in Resting-State
Functional Connectivity: Group × Seed
Interaction
Seed (aDLPFC/pDLPFC) × diagnostic group (SCZ/HC)
interactions indicated sub-regional DLPFC disconnectivity with
the right inferior parietal lobule (IPL) (peak MNI: 50/−54/42;
T = 3.74; 239 voxels) and the left cerebellum (peak MNI:
−46/−58/−40; T = 4.62; 134 voxels) in patients (Figures 3A,D).

According to the parameter estimates (Figure 3B), the IPL
of both groups had a weaker connectivity with the aDLPFC
compared to the pDLPFC, although the difference was significant
only in the patient group (peak MNI: 54/−34/60; T = 6.27)
(Figure 3C).

In the second cluster located in the cerebellum, HC showed
stronger FC in the anterior DLPFC compared to the posterior
DLPFC, while a reverse pattern was observed in patients
(Figure 3E). The group difference in parameter estimates
(Figure 3F) indicated a shift of the cerebellum’s RSFC away from
the anterior (toward the posterior) DLPFC subregion among
patients. None of the group comparisons revealed any significant
differences in the region (Figure 3E).

The reverse interaction indicated further subregional DLPFC
disconnectivity with the right precentral gyrus (Area 4a, peak
MNI: 38/−22/56; T = 4.31; 127 voxels) and the right middle
temporal gyrus (peak MNI: 50/−32/−6; T = 4.45; 115 voxels)
(Figures 4A,D).

In HC, a significantly increased positive RSFC with the
posterior DLPFC cluster (and decreased RSFC with the anterior
cluster) was observed in Area 4a (peak MNI: 38/−22/56;
T = 6.37), whereas a reverse non-significant relationship
(relatively decreased positive RSFC with the posterior cluster and
an increased RSFCwith the anterior cluster) was observed in SCZ
(Figure 4B).

FIGURE 2 | Significantly decreased functional connectivity of the posterior and anterior right DLPFC seeds (conjunction analysis) with the bilateral striatum (A) as well

as the bilateral visual cortex (B) in SCZ patients as compared to HC. Results are projected onto the MNI single-subject template on the left side and contrast

estimates for the effect in the point maximum respective region are shown on the right.
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TABLE 3 | Regions with significantly decreased functional connectivity with both DLPFC seeds.

Cluster Voxel Macro Cyto t-score MNI Coordinates

X Y Z

1 317 R rectal gyrus 6.36 10 16 −12

R caudate nucleus 6.23 6 6 −4

R caudate nucleus 5.63 12 4 10

R rectal gyrus 5.53 20 14 −14

R rectal gyrus 5.52 18 18 −18

R putamen 5.40 18 18 −6

2 198 R middle occipital gyrus extending to the inferior occipital gyrus hOc4v [V4(v)] 6.15 36 −80 8

3 117 R putamen 5.93 32 −12 2

4 89 L caudate nucleus 5.95 −8 12 −12

5 67 L inferior occipital gyrus extending to the middle occipital gyrus hOc4v [V4(v)] 5.96 −36 −88 −6

6 65 R inferior frontal gyrus 5.89 56 20 24

7 44 L cerebellum 5.29 −28 −90 −18

8 43 R inferior temporal gyrus 5.65 52 −54 −20

9 33 L middle occipital gyrus 5.36 −30 −90 8

10 13 R precuneus 7A 5.20 10 −68 62

The group difference in parameter estimates (Figure 4C)
revealed an RSFC shift in patients from Area 4a toward the
anterior and away from the posterior DLPFC subregion.

In the cluster located in the right middle temporal gyrus
(Figure 4E), the SCZ group showed a relatively decreased
positive RSFC with the posterior DLPFC cluster (and relatively
increased positive RSFC with the anterior cluster), with these
subregional differences in RSFC being statistically significant
(peak MNI: 52/−30/−10; T = 7.23). The group difference
in terms of parameter estimates (Figures 4E,F) revealed
a significantly reduced positive RSFC between the right
middle temporal gyrus and the posterior DLPFC (peak MNI:
48/−32/−6; T = 5.45; 20 voxels) in patients as compared to
controls.

Correlation With Clinical Parameters
With increasing symptom severity, several cortical regions
showed a relatively decreased RSFC with the anterior DLPFC
sub-region, paralleled by a relatively increased RSFC with the
posterior sub-region.

An increase in the difference in adjusted RSFC (calculated
as pDLPFC > aDLPFC) in the left IFG/anterior insula lobe
(MNI: −34/22/12; T = 4.35; 161 voxels) was found to go along
with higher total PANSS scores (Figure 5A), while in the left
operculum (MNI: −44/−6/18; T = 4.31; 124 voxels) a stronger
difference was related to higher general psychopathology PANSS
scores (Figure 5B).

The correlation analysis with the total negative symptoms
scale and the age of onset did not reveal any significant effects.

DISCUSSION

We investigated RSFC in HC and patients with SCZ, targeting
the connectivity for the right anterior and posterior executive

control-related DLPFC sub-regions (16). In SCZ patients,
those two neighboring sub-regions demonstrated diametrically
altered functional connectivity affecting the right IPL, the left
cerebellum, the right precentral gyrus and the right middle
temporal gyrus. Correlation analysis indicated furthermore that
the connectivity imbalance of the DLPFC sub-regions with the
left IFG/anterior insula and the left operculum may be linked to
symptom severity.

We believe that such small, albeit not well understood,
effects have an enormous impact on the results (and their
interpretation) of neuroimaging studies. The common practice of
studying the DLPFC region as a whole obfuscates the differential
effects, thus stymieing the progress of our understanding of
DLPFC functions and their pathological effects in patient
collectives.

Reduction of RSFC With the Striatum and
the Occipital Cortex in Both DLPFC
Sub-regions
Reduced corticostriatal connectivity, common among patients
with chronic and adolescent-onset schizophrenia [(40, 41)] as
well as patients with first-episode psychosis (42) and their
relatives (43), is not only a trait characteristic, but also, as
indicated by an improvement of psychosis symptoms with
increased RSFC between the right striatum and the right DLPFC
(44), a state characteristic of psychosis (44).

Reduced RSFC with the bilateral striatum in SCZ patients
(compared to HC) was found for both DLPFC seeds. As
corticostriatal dysconnectivity accounts for psychotic symptoms
of SZC, it is not surprising that it likely affects rather large areas
of the right DLPFC.

A reduced RSFC between the DLPFC and the bilateral V4 (a
region crucial for visual object recognition and visual attention
(45) is a less common finding in schizophrenia patients and is
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FIGURE 3 | Regions showing an SCZ-related (relative) decreased functional connectivity with the anterior DLPFC compared to the posterior seed were (A) the right

IPL (Area PGa) and (D) the left cerebellum. Contrast estimates for the effect in the respective region (B,E) and the difference (SCZ—HC) in RSFC between HC and

SCZ for the posterior and anterior DLPFC seeds respectively (C,F) are demonstrated below. *indicates the significant effects of the interaction assessed with t-tests

(p < 0.05 family-wise error (FWE)-corrected on the voxel level).

likely to be linked to disruptions in the visual attention network
(46, 47).

Attention and Action Inhibition:
Connectivity Shifts From the Anterior
(Toward the Posterior) DLPFC Subregion
Among patients, we observed a subregional DLPFC
dysconnectivity with the right IPL and the left cerebellum. As
previously shown by our group, the anterior DLPFC subregion
in particular is likely involved in higher-order control processes

of motor behavior such as attention and subsequent behavioral
adjustments (16). As part of the frontoparietal executive-control
network, the IPL is strongly interconnected with the DLPFC
(48) and is also involved in attentional selection of sensory
contents (49) and sustained attention (50). Our research (the
presented work as well as the previous study by Cieslik et al. (16)
has consistently shown an increased connectivity between the
posterior (vs. anterior) DLPFC and the IPL in HC. In the present
study, the IPL-aDLPFC connectivity was found to be weaker in
patients compared to HC, and, only in patients, the IPL showed
a significantly weaker connectivity to the aDLPFC compared
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FIGURE 4 | Regions showing an SCZ-related (relative) decreased functional connectivity with the posterior compared to the anterior DLPFC seed were (A) the right

precentral gyrus and (D) the right middle temporal gyrus. Contrast estimates for the effect in the respective region are shown under (B,E). Parameter estimates depict

the difference in RSFC between HC and SCZ for the posterior and anterior DLPFC seeds respectively and are shown under (C,F). *indicates the significant effects of

the interaction assessed with t-tests (p < 0.05 family-wise error (FWE)-corrected on the voxel level).

to the pDLPFC. Apart from being linked to thought disorder
and disruption of sensory integration, the reduced connection
between the DLPFC (in particular the anterior DLPFC seed)
and the IPL likely underlies the pronounced deficits in attention
and other executive functions seen in psychosis (51). In
addition, the connectivity shift from the anterior (toward the
posterior) DLPFC region may underlie particular deficits in
attentive stimulus processing and selection of behavior-relevant
information. The connectivity shift may also explain why the
involvement of the parietal cortex in SCZ strongly depends on
the chosen task. For instance, compared to controls, patients
with childhood-onset schizophrenia have shown significantly
lower activation in the posterior parietal cortices along with
decreased frontoparietal functional connectivity during a
working-memory task (52). The link is underscored by the

fact that selective attention plays a central role in working
memory (53).

With cerebellar hypoactivation being commonplace in SCZ
(54, 55), a few studies also indicate changes in the RSFC between
the cerebellum and the DLPFC in SCZ (56, 57). The cerebellum,
which has been known to be linked to the motor system, is also
likely involved in attention, cognitive learning, and multisensory
integration (58). It has also been seen to have a lower activation
level during working-memory tasks in patients with childhood-
onset schizophrenia (52). Habas et al. (59) have shown that the
cerebellum, as part of cortico-cerebellar loops, is involved in
executive control and salience detection. Our findings are also
consistent with the notion of a misconnection in the cortico-
cerebellar-thalamo-cortical (CCTC) network (60) underlying the
pathophysiology of schizophrenia.
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FIGURE 5 | Correlation with symptomatology. Correlation of the difference between posterior and anterior DLPFC’s FC with (A) the left IFG/anterior insula region and

total PANSS score, and (B) the left operculum and the general PANSS score general PANSS score.

Taken together, our observations suggest that the cortico-
cerebellar and cortico-parietal RSFC dysfunction in SCZ may
not only be network-specific (61), but also strongly dependent
on the exact localization of the DLPFC clusters. Given the
involvement of the anterior DLPFC seed in higher-order control
processes ofmotor behavior and attention (16), these findings can
help broaden our understanding with respect to the task-based
aberrant activity patterns in those regions.

Action Execution: Connectivity Shifts From
the Posterior (Toward the Anterior) DLPFC
Subregion
Here, we observed effects in the patients’ primary motor cortex
(Area 4a) and the right MTG.

The right DLPFC has been seen to be strongly interconnected
with the motor cortex (4, 61, 62), modulating its activity during
selection, planning, and execution of motor behavior (63). In

HC, we saw a significantly increased positive RSFC with the
posterior DLPFC cluster (and decreased RSFC with the anterior
cluster) in Area 4a. This effect, likely associated in HC with
a stronger emphasis of the posterior DLPFC cluster in action
execution (16), was missing in patients. Connectivity shifts from
the posterior (toward the anterior) DLPFC subregion and the
Area 4a may be a correlate of reduced capacities in action
execution (64) and prolonged motor planning and execution
(65) seen in schizophrenia. The primary motor cortex, which
is activated not only during execution (66, 67) but also during
observation of others’ actions (68), the latter putatively reflecting
mirror neuron activity (69), is linked to a wide range of important
social behaviors, from speech to imitation and empathy (69)
and is reduced in schizophrenia (70, 71). The activation of
the primary motor cortex is also closely linked to automatic
motor potentiation: e.g., the viewing of a right-facing cup
handle activates the left hemispheric motor areas (72), triggering
potentiation of the right hand (73). The regulatory relationship
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between the frontal and primary motor cortices is also evident in
what is known as “utilization behavior” (74), which is believed
to be linked to intrusive, disruptive, and inappropriate motor
behaviors seen in individuals with frontal system damage or
dysfunction (e.g., dementias, schizophrenia, depressive disorders,
attention deficit hyperactivity disorder) (75).

In the cluster located in the right MTG, only patients showed
a connectivity shift from the posterior (toward the anterior)
DLPFC. That this effect was not seen in HC, indicates its
association with functional aberrations. Thus, the right MTG
is linked to the perception of biological motion [movements
generated by living beings; (76)] as well as different aspects
of face perception (77, 78). In SCZ, deficits in face perception
(79) and biological motion perception (80), processes crucial
to the interpretation of social information, have already been
elucidated (81). As demonstrated by our results, deficits in
action execution in schizophrenia may be related in particular
to the disturbed RSFC between the right DLPFC subregion and
the primary motor cortices. Specifically, given the involvement
of the posterior DLPFC seed in action execution (16), a
connectivity shift from the posterior (toward the anterior)
DLPFC may underlie impairments (in SCZ) with respect
to prolonged motor planning and execution, or utilization
behavior.

The Link Between Pathophysiology and
Psychopathology
The correlation analysis with psychopathology indicated that the
sub-regional DLPFC disconnectivity with the left IFG/anterior
insula and the left operculum correlated positively with
increasing total PANSS and general psychopathology scores.

The ACC, the DLPFC, the insula and the posterior parietal
cortex form a regulatory network for high-level cognitive control
and attentional processes (82, 83). In particular, decreased gray
matter in the anterior insula has been linked to executive function
deficits observed in e.g., schizophrenia, bipolar disorder, and
depression (84).

Patients with schizophrenia also experience difficulties in
appropriately attributing self-generated sensory stimuli. The
anterior insula/IFC region and the adjoining frontal operculum
have been suggested to be involved in the processing of self-
generated sensory stimuli (81). The regulatory influence of the
right DLPFC on the anterior insula has been observed during the
regulation of pain intensity (85) as well as visual and auditory
awareness of the moment (81). Taken together, our findings
suggest that symptoms linked to misperception of the self as a
distinct entity, and also deficits in high-level cognitive control
and attentional processes, are likely to be dependent on symptom
severity.

LIMITATIONS

Despite its careful design, and the fact that it reached its goal,
the study had a few limitations that ought to be mentioned.
First, the data were collected from 6 different sites, and thus the

heterogeneity of scanners and sequences might potentially have
affected the results. Second, given that the diagnosis was based
(depending on the site where the subjects were recruited) on the
DSM-5 or ICD-10 criteria, the procedure, despite the overlap in
diagnostic criteria, could have led to diagnostic inconsistencies.
Third, at the time of assessment, most patients (93%) were under
psychopharmacological treatment, with about 69% (n = 83) of
the patient’s group taking multiple compounds and no more
than six having the same combination of drugs. Therefore, the
potential effect of medication on the results cannot be ruled
out. Finally, another limitation of the study is the lack of
neuropsychological assessment of patients, owing to which the
examination of the DLPFC subregions in relation to executive
functions was rendered impossible.

CONCLUSION

As summarized, the current analysis involving a large,
representative sample of SCZ patients has demonstrated
that even the connectivity of two neighboring clusters identified
by advanced in-vivo mapping may be differentially disrupted in
SCZ. Thus, we conclude that the imbalanced connectivity of the
sub-regions (anterior and posterior DLPFC seeds), rather than
that of the DLPFC as a whole, characterizes the connectional
disruption of the DLPFC in SCZ. We would also argue that
prevalent concepts such as “prefrontal dysfunction” may be
far too broad to help explain the apparently region-specific
disturbances in SCZ.
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