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Enkephalin expression is high in mesocorticolimbic areas associated with

psychostimulant-induced behavioral and neurobiological effects, and may also

modulate local neurotransmission in this circuit network. Psychostimulant drugs, like

amphetamine and cocaine, significantly increase the content of enkephalin in these brain

structures, but we do not yet understand the specific significance of this drug-induced

adaptation. In this review, we summarize the neurochemical and molecular mechanism

of psychostimulant-induced enkephalin activation in mesocorticolimbic brain areas, and

the contribution of this opioid peptide in the pivotal neuroadaptations and long-term

behavioral changes underlying psychostimulant addiction. There is evidence suggesting

that adaptive changes in enkephalin content in the mesocorticolimbic circuit, induced

by acute and chronic psychostimulant administration, may represent a key initial step in

the long-term behavioral and neuronal plasticity induced by these drugs.
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INTRODUCTION

Psychostimulant addiction is a severe worldwide health problem. The most challenging aspects
in its treatment are compulsive drug use and relapse. Currently, there are no effective
pharmacotherapies for this disorder. New therapeutic approaches are required based on
understanding the neurobiology of drug addiction. Numerous lines of research suggest that
exposure to psychostimulant drugs causes neurochemical and molecular adaptations that explain
the stability of the behavioral disorders characterizing the addictive state (1, 2). Attention
has focused on how the mesocorticolimbic dopamine circuit is affected by drugs of abuse,
and particularly on the role of glutamate and dopamine neurotransmission in determining
the neuroplastic changes related to psychostimulant addiction (3–6). At molecular level, it
has been shown that activation of glutamate and dopamine neurotransmission after repeated
psychostimulant administrations, affects intracellular signaling cascades (7–9), alters the expression
of membrane receptors (10, 11) and changes gene expression within the neural circuits (12, 13),
which leads to sensitization of the drug’s behavioral effects (14) and other behavioral alterations
observed in addiction, like intense drug craving and relapse (15).

Enkephalin, an opioid peptide derived from proenkephalin (PENK), is widely expressed in the
mesocorticolimbic circuit (16) and interacts with glutamate and dopamine in the brain reward
structures related to psychostimulant-induced effects. Both delta-opioid (DOPr) and mu-opioid
receptors (MOPr) can be activated by enkephalin, and each has its particular pattern of expression
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within the motivational circuit (17). Although several
pharmacological and genetic approaches demonstrate a
role of both MOPr and DOPr in psychostimulant-induced
behavioral effects, the role of the endogenous opioid peptides in
this process has not been fully examined. Previous studies from
our lab have demonstrated a long-lasting increase in enkephalin
levels within the mesocorticolimbic circuit after psychostimulant
administration (18, 19). Enkephalin has also been shown to
positively modulate dopamine and glutamate neurotransmission
within this circuit (20–25). These data indicate that cocaine-
induced enkephalin elevation may drive the neuronal plasticity
induced by the drug and the long-term behavioral effects of
psychostimulant exposure.

ACTIVATION OF THE ENKEPHALIN
SYSTEM BY PSYCHOSTIMULANTS IN THE
CENTRAL NERVOUS SYSTEM

Mesolimbic dopamine activity is directly affected by
psychostimulants (26). These drugs bind to monoamine
transporters and block reuptake mechanisms (cocaine),
or competitively inhibit dopamine uptake and disrupt
vesicular storage (amphetamine). The activation of this
system is a primary conditioner of their psychomotor
stimulant and rewarding effects (27). Acute or chronic
administration of psychostimulants also alters, among
others, the levels of endogenous opioid peptides, including
enkephalin, within areas of the mesocorticolimbic
circuit.

Acute cocaine (28, 29) and amphetamine (30–33) elevate
PENK mRNA levels in the striatum, and these levels are
also increased after chronic cocaine exposure in different
dopamine mesolimbic afferents (34–36). Elevated PENK levels
were also observed within the caudate putamen on the
second day of binge cocaine administration (37). Following
chronic cocaine treatment, no changes were observed in the
cortex in PENK mRNA levels (38), prefrontal cortex (39,
40), amygdala (41, 42), hypothalamus, pituitary, central gray
and cerebellum, nucleus accumbens or caudate putamen (39).
However, PENK mRNA levels were significantly elevated during
long-term extinction (10 days) of a cocaine self-administration
paradigm in the caudate putamen, nucleus accumbens, piriform
cortex and olfactory tubercle regions, and decreased in the
central amygdale of rats (43). Similarly, sensitized PENK
mRNA expression was observed in the nucleus accumbens
and/or caudate putamen in response to an amphetamine
challenge following acute (44–47) or chronic (48) amphetamine
pretreatment in animals after short-term abstinence from the
drug.

Furthermore, data from our lab demonstrate an increase in
the levels of met-enkephalin in the nucleus accumbens from
rats after acute amphetamine (5 mg/kg i.p.) following 4, but
not 7 or 21 days after the last drug injection (18, 49, 50). Met-
enkephalin elevation was also observed after 4 days withdrawal
period from chronic amphetamine (5 × 2 mg/kg i.p) (49).
Interestingly, long-lasting sensitization to amphetamine-induced

increases in met-enkephalin levels was evidenced in the same
brain area following amphetamine challenge (1 mg/kg i.p.) 21
days after the last acute (5 mg/kg i.p.) administration of the drug
(18). Similarly, persistent met-enkephalin immunoreactivity
was evidenced in the nucleus accumbens from mice treated
chronically with cocaine (9 × 15 mg/kg i.p.) after a long-
term abstinence from the drug (12 days after last injection).
Met-enkephalin immunoreactivity elevations induced by chronic
cocaine is not dependent of cocaine challenge administration
(7.5 mg/kg i.p., day 21), as this effect on met-enkephalin
immunoreactivity was also observed after saline challenge
injection (19).

Altogether these data demonstrate that PENK mRNA
levels are increased in specific dopaminergic regions following
psychostimulant administration, be the injection acute, chronic
or remote.

NEUROCHEMICAL AND MOLECULAR
MECHANISMS IN
PSYCHOSTIMULANT-INDUCED
PROENKEPHALIN EXPRESSION

Psychostimulant-induced PENK mRNA expression at striatal
level may be the result of multiple neurotransmitter interactions
(31, 51, 52). Cocaine and amphetamine stimulate the PENK
mRNA expression in striatal neurons (19, 28, 31, 35, 49),
which mostly express D2 receptors (53, 54), and also induce
prodynorphin and substance P in striatal neurons (31), which
mainly express D1 receptors (53, 55). Similarly, the full D1
receptor agonist SKF-82958 induced PENK, prodynorphin and
substance P gene expression in both the dorsal and ventral
striatum (33). Interestingly, the increase in met-enkephalin
induced by amphetamine (50) or PENK mRNA levels stimulated
by SKF-82958 in striatal neurons (33) was blocked by the
D1 receptor antagonist SCH-23390 (50) and by scopolamine,
the muscarinic receptor antagonist (32). Oppositely, the D2
receptor antagonist eticlopride did not affect SKF-82958-induced
PENK mRNA expression (33). Similarly, amphetamine-induced
met-enkephalin levels was not modified by raclopride, another
D2 receptor antagonist (50). Thus, this evidence suggests
that D1-mediated induction of PENK may involve trans-
synaptic activation of cholinergic neurotransmission. That is,
the psychostimulant-induced dopamine elevations stimulates
acetylcholine release via a D1-dependent mechanism (56,
57). The acetylcholine released then activates muscarinic
M1 receptors (32, 44) and associative signaling pathways in
enkephalin-containing neurons thus facilitating PENK mRNA
expression (Figure 1). Opioid receptors located at striatal
level are also involved in psychostimulant-induced PENK
mRNA expression. Selective kappa opioid receptor (KOPr)
agonists appear to inhibit psychostimulant-induced alterations
in PENK mRNA in the striatum (58), and DOPr antagonists
significantly decreased amphetamine-induced mRNA PENK
expression (45). In contrast to DOPr’s inhibitory effects, MOPr
antagonists, alone or combined with amphetamine, increase
PENK mRNA levels in the dorsal striatum (45). Opioid
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receptors thus probably differentially regulate psychostimulant-
induced PENK gene expression in the striatum, as a result
of the predominantly MOPr expression at D1+ medium
spiny neuron vs. D2+ medium spiny neuron and the
selective pre-synaptic DOPr location in the local network.
Similarly, pre-synaptic KOPr located at striatal dopamine and
glutamate nerve terminals could regulates psychostimulant-
evoked neurotransmitter release (59) indirectly affecting PENK
expression within this brain area.

Glutamate transmission actively regulates PENK gene
expression under normal or stimulated conditions (51, 52).
However, the precise mechanism by which glutamate participates
in psychostimulant-stimulated PENKmRNA expression requires
further study. Several reports indicate that cocaine (60, 61) and
amphetamine (62–64) administration increases extracellular
glutamate levels as well as dopamine levels in the striatum.
Also, glutamate tone may be important for amphetamines
to stimulate dopamine release from nerve terminals (64–
67). Thus, glutamate transmission could also play a role
in regulating the stimulant effect of psychostimulants on
PENK mRNA expression. There is evidence from our lab that
pretreatment with NMDA receptor antagonists attenuates
long-lasting amphetamine-induced PENK mRNA expression
and met-enkephalin levels in the nucleus accumbens (18). In
addition, there is evidence that glutamate transmission mediated
by the AMPA receptor is involved in acute amphetamine-
induced PENK levels in the striatum (52). Alternatively,
elevated glutamate transmission seems to increase acetylcholine
release (68, 69), and this induces acetylcholine-sensitive
PENK gene expression, possibly through a NMDA receptor
mechanism.

The regulation of PENK in the brain is usually preceded
by the induction of AP-1, cAMP response element-
binding protein (CREB) and c-Fos (70–74). Dopamine
D1 receptor stimulation activates these transcription
factors and, if dopamine D2 is also activated, there is a
synergistic mechanism (75, 76). This initiates a sequence
of molecular steps critically involved in psychostimulant-
induced behavioral responses. CREB is the primary regulator
of transcriptional activity in accumbal projection neurons
and is phosphorylated by protein kinases, including the
extracellular signaling-regulated kinase (ERK1/2) (77, 78).
Glutamate-stimulated CREB phosphorylation in the striatum
is attenuated by the ERK1/2 kinase inhibitor, PD98059
(77–79).

Psychostimulant drugs, which increase dopamine, glutamate
and PENK content in mesocorticolimbic brain areas, also up-
regulate ERK2/CREB phosphorylation (8, 9, 80). Consistent
with this, the inhibition of the ERK2/CREB signaling pathway
prevents the increase of psychostimulant-induced PENK mRNA
expression (47). This strongly indicates that the long-term
increase in met-enkephalin levels, induced by psychostimulants
in mesocorticolimbic brain structures, is mediated by a
dopamine- and glutamate-dependent mechanism, with the
activation of dopamine D1 and glutamate NMDA receptors
leading to ERK2/CREB signaling pathway activation in the same
brain areas.

ROLE OF THE ENKEPHALINERGIC
SYSTEM IN
PSYCHOSTIMULANT-INDUCED
LONG-TERM BEHAVIORAL EFFECTS AND
ASSOCIATED NEUROADAPTATIONS

Although enkephalin seems to exert an influence on key areas
involved in psychostimulant-induced behavioral effects, the
mechanism underlying long-term effects has not yet been fully
explained. Pharmacologically, PENK-derived opioid peptides
seem to show high affinity for DOPr, but also good affinity
for MOPr (17). Furthermore, dopamine release in the nuceleus
accumbens appears to be promoted by enkephalin in the ventral
tegmental area (20, 81), while MOPr antagonists administered
intra-ventral tegmental area cause a decrease in dopamine
neurotransmission (82). Pharmacological studies have shown
that MOPr and DOPr contribute to increasing dopamine and
glutamate release induced by psychostimulants in the nucleus
accumbens (83–86). Consistently, pharmacological approaches
using MOPr and DOPr antagonists, as well as MOPr knockout
mice, demonstrate that the endogenous opioid system is involved
in dopamine-related behaviors (87–89). This evidence, together
with studies showing that PENK is one of the mediators of the
positive reinforcing effects of nicotine, alcohol and marihuana
(90–92), suggests that enkephalin may also have a role in
psychostimulant-induced behaviors. However, further study is
needed to explain the mechanism of its involvement.

Behavioral Sensitization
Repeated intermittent exposure to cocaine steadily increases
the locomotor response to the drug (behavioral sensitization)
(14), which is mostly coupled to a greater drug-induced
dopamine efflux in the nucleus accumbens (93–95). However,
a reduction (96) or non-augmentation (97) in the levels
of the neurotransmitter in the nucleus accumbens was
found simultaneously with this phenomenon. Behavioral
sensitization to psychostimulants may well be mediated by
converging extracellular signals, which give rise to a number
of specific molecular and cellular events, such as activating the
ERK/CREB signaling pathway, and enhancing GluR1 AMPA
receptor cell surface expression and brain-derived neurotrophic
factor/tyrosine kinase B (BDNF/TrkB) receptor signaling within
the nucleus accumbens (11, 98). As mentioned previously, the
enkephalinergic system increases mesoaccumbal dopamine
neurotransmission (25). Likewise, pharmacological studies have
demonstrated that MOPr and DOPr receptors contribute to
amphetamine (99, 100) and cocaine-induced enhancement
of dopamine levels in the nucleus accumbens (84, 86), and
there is data of the anatomical selectivity of MOPr receptors
within the ventral tegmental area-nucleus accumbens pathway in
cocaine-induced reward and locomotor-stimulating effects (101).
It has also been proposed that cocaine may cause the release of
endogenous opioid peptides. These then activate MOPr within
the nucleus accumbens and ventral tegmental area and modulate
the drug-induced behavioral effects (102).
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FIGURE 1 | (Left) Principal met-enkephalin target nucleus in the mesocorticolimbic circuit. Distribution of opioid receptors within the circuit network is also shown

and reveals the modulation exerted by enkephalin on dopamine and glutamate transmission at this level. (Right) Persistent adaptations in the enkephalin content

followed by psychostimulant treatment and the subsequent activation of MOPr could result in a feedback mechanism critical for the neuronal plasticity induced by

these drugs in the NAc. Enkephalin transmission activation promotes the development of psychostimulant-induced long-term neurochemical and molecular changes

in the NAc, such as increases in BDNF/TrkB, phospho-ERK2/CREB signaling activation and GluR1 AMPA cell surface expression. VP, ventral pallidum; VTA, ventral

tegmentalarea; PfC, Prefrontal cortex; DA, dopamine; Ach, acetylcholine; Glu, glutamate; met-enk, methionine encephalin; GABA, γ-aminobutyric, M1 and M4:

muscarinic acetylcholine receptors type 1 and 4, respectively, acetylcholine nAch, nicotinic acetylcholine receptor.

The role of MOPr and DOPr in the development and
expression of psychostimulant sensitization has been shown
pharmacologically. It has been reported that naloxone and
naltrexone, non-selective opioid receptor antagonists, attenuate
the development of sensitization to cocaine in rats (103)
and mice (19, 88, 104). Naltrindole, a DOPr antagonist
(87) and CTAP (D-Phe-cyc(Cys-Tyr-D-Trp-Arg-Thr-Pen)-Thr-
NH2), a selective MOPr antagonist(105), also reduce cocaine-
induced sensitization in rats. Similarly, the development
(106) and expression (107, 108) of amphetamine-induced
behavioral sensitization were reduced following non-selective
opioid receptor administration. Additionally, there is evidence
of ERK1/2 signaling stimulation induced by MOPr/DOPr
activation in the striatum (109). However, there is data
showing that acute morphine caused a reduction in ERK
1/2 levels in the nucleus accumbens (110, 111). Interestingly,
although chronic morphine, a MOPr agonist, caused a reduction
(110) or tolerance to morphine-induced ERK1/2 activation
(111), naloxone-precipitated withdrawal inmorphine-dependent
animals induced a robust stimulation of ERK1/2 in the striatum
(109, 112). Together this evidence demonstrates a prominent role
for MOPr in the regulation of molecular events, associated not

only with psychostimulant induced-behavioral sensitization, but
also with the underlying opiate dependence. However, studies
using MOPr mice seem to be inconclusive (88) or did not show
a significant influence of this receptor in cocaine sensitization
(113–115). It is important to note that these behavioral
evaluations were performed after short-term cocaine withdrawal
[(88): 10 × 15 mg/kg i.p./7days withdrawal; (113): 5 × 20 mg/kg
i.p./dose–response experiment; (114): 6 × 15 mg/kg i.p./6 days
withdrawal; (115): 20 mg/kg i.p./3 days withdrawal], possibly
masking the role of MOPr in long-term behavioral effects
induced by cocaine (116). There is also evidence that, after long-
but not short-term withdrawal, naloxone blockade is observed
of the expression of behavioral sensitization to psychostimulants
[(108): amphetamine 1.5 mg/kg i.p./14 days abstinence]. Despite
all these studies, and reports demonstrating that met-enkephalin
and MOPr have a prominent role in the ventral tegmental area
at the initial step of sensitization (101, 117, 118), there is still no
explanation in the literature of the influence of enkephalin on the
psychostimulant-induced neuronal plasticity underpinning long-
term sensitization. Data from our lab demonstrate an essential
role of enkephalin in the development of neuroadaptations in
the nucleus accumbens leading to cocaine-induced psychomotor
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sensitization (19). PENK knockout mice treated chronically
with cocaine (9 days x 15 mg/kg) do not become sensitized
to cocaine’s properties stimulating locomotor activity and
dopamine release in the nucleus accumbens 21 days after
starting drug treatment. Additionally, the nucleus accumbens
and dorsal striatum from PENK knockout mice showed no
pivotal neuroadaptations such as the increase in phospho-TrkB
receptor, phospho-ERK/CREB and GluR1 AMPA cell surface
expression related to sensitized responses to cocaine. Consistent
with these observations, full suppression of cocaine-induced
behavioral and neuronal plasticity was observed in wild-type
animals after naloxone pretreatment (1 mg/kg s.c. 15min prior
to cocaine injections). Reduced activity-dependent BDNF/TrkB
signaling within the ventral tegmental area-nucleus accumbens
circuit may attenuate the ability of cocaine to induce pathological
changes in the nucleus accumbens that promote addiction (119,
120). Related with this, the lack of dopamine sensitization of a
cocaine-induced increase in BDNF/TrkB signaling, identified in
knockout- and naloxone-pretreated mice, strongly suggests that
both enkephalin and BDNF have an important role in dopamine-
sensitized behaviors. There is thus considerable evidence that
the MOPr/endogenous enkephalin system has a prominent role
in the establishment of long-term neuroadaptations within the
nucleus accumbens underlying the expression of sensitization to
cocaine.

Conditioned Place Preference
Pharmacological evidence clearly demonstrates the role of
MOPr and DOPr in the modulation of psychostimulant-
induced rewarding properties by studying the development
of conditioned place preference (CPP); i.e., acquisition of
associative learning between a context and the rewarding effects
of a drug. In this sense, the establishment of CPP induced by
amphetamine was prevented by the non-selective opioid receptor
antagonist naloxone (0.02, 0.2 or 2.0 mg/kg s.c.), administered
during the conditioning sessions (121). Similarly, naltrexone
implants can attenuate cocaine-induced CPP in rats (122),
although high doses of the opioid antagonist were required.
This effect could be due to the non-selective opioid receptor
antagonism. Naltrindole, a highly selective DOPr antagonist,
blocked the acquisition of cocaine and amphetamine-induced-
CPP in rats (123, 124), indicating that a selective opioid receptor
antagonism can fully attenuate the reinforcing properties of
cocaine. Furthermore, several studies have demonstrated that
selective MOPr receptor antagonists attenuate psychostimulant-
induced CPP. Specifically, systemic pretreatment with the
selective MOPr type-1 receptor antagonist naloxonazine (125)
and intracerebroventricular administration (i.c.v.) of CTAP
paired with peripheral injections of cocaine (105), prevented
the development of cocaine-induced CPP. It has also been
demonstrated that animals pre-treated with CTAP into the
nucleus accumbens core or rostral ventral tegmental area, but
not into the caudal ventral tegmental area, caudate putamen or
medial nucleus accumbens shell, during cocaine conditioning,
showed an attenuation of the establishment of cocaine-induced
CPP, demonstrating the involvement of mesolimbic MOPr in
cocaine-induced reward (101). Although all this evidence has

focused on the role of MOPr and DOPr in the development
of psychostimulant-induced CPP, their involvement in the
expression of this behavior cannot be ruled out. In line, Gerrits
et al. (126) assessed the effect of naloxone (0.01–0.1 mg/kg s.c.)
administered prior the conditioning test, demonstrating the role
of opioid receptors in the expression of cocaine’s motivational
effects.

Despite this pharmacological evidence, the data regarding
cocaine-induced CPP in MOPr knockout mice seems to be
inconsistent. For example, the development of cocaine induced-
CPP has been reported to be attenuated (113), unchanged
(127) or induced after higher doses of cocaine compared to
that used in wild-type littermates (128). The mechanisms that
underlie these discrepancies in behavioral effects induced by
cocaine in MOPr knockout mice are unknown. One possible
explanation involves the different protocols of conditioning
and cocaine doses used [(128): 4 days conditioning/5 or 10
mg/kg; (127): 3 days–two conditioning sessions per day/10
mg/kg; (113): 2 days–two conditioning sessions per day/5 or 10
mg/kg]. Another explanation could be the genetic background
of the mice [(128): 129/Ola × C57BL F2; (113): congenic C57B
F10; (127): hybrid 129SV/C57BL/6 F1] that may influence the
differences in the process of acquisition of cocaine-induced
CPP.

Although the evidence indirectly indicates a potential
role of enkephalin in psychostimulant-induced CPP, its role
in this process has not been addressed yet. Moreover,
the molecular mechanism that underlies the MOPr/DOPr
contribution to psychostimulant-induced CPP and the potential
role of enkephalin has not been fully studied. Interestingly,
there is data suggesting that morphine (a MOPr agonist)-
induced CPP is associated with neuroadaptations similar to
that observed following chronic psychostimulant treatment in
important brain areas associated with drug addiction and those
related to memory consolidation. Augmented phosphorylation
levels of the GluR1 AMPAR subunit and ERK/CREB were
observed in the hippocampus (129–131) as well as in the
nucleus accumbens (132) and ventral tegmental area (130,
133) following morphine-induced conditioned behavior. This,
together with data from our lab demonstrating that the PENK
gene regulates cocaine-induced long-lasting molecular changes,
such as enhancement in dopamine transmission, GluR1 AMPA
receptor cell surface expression, ERK/CREB signaling pathway
activation and modulation of TrkB/BDNF levels in the nucleus
accumbens (19), suggests that enkephalin and the MOPr
system may favor neuronal plasticity within the mesolimbic
circuit that underlies psychostimulant and opiate-induced CPP.
Further genetic (PENK knockout mice) and pharmacological
studies need to be carried out to confirm this hypothesis and
demonstrate the role of enkephalin in psychostimulant-induced
CPP.

Psychostimulant Self-Administration
There is now considerable pharmacological evidence of the
important role that MOPr plays in mediating the reinforcing
effects of cocaine in a self-administration paradigm. GSK1521498
(0.1, 1, and 3 mg/kg s.c.), a MOPr antagonist, and naltrexone
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administered at the same doses and route, reduced cocaine-
seeking under a second-order schedule of reinforcement but
did not affect cocaine self-administration under a simple
fixed-ratio schedule (FR1) (134), indicating modulation of
mechanisms regulating cocaine-seeking behavior rather than
cocaine reinforcement (135). Additionally, GSK1521498 was
more effective than naltrexone in reducing cocaine seeking,
possibly because of different opioid receptor subtype selectivity.
Similarly, low doses of naltrexone (0.1 mg/kg i.p.) showed
no changes in cocaine self-administration (FR2 schedule), but
attenuated cocaine- and cue-induced reinstatement of drug-
seeking behavior administered 30min prior to the reinstatement
test (136). Consistently, the MOPr irreversible antagonist, beta-
funaltrexamine, administered intra-ventral tegmental area or
nucleus accumbens, had no effect on cocaine self-administration
under a FR1 schedule of reinforcement. In contrast, MOPr
blockade in both brain regions did attenuate the response to
cocaine under a progressive ratio (PR) schedule, supporting the
notion that MOPr within the mesolimbic system is involved
in motivation to respond to cocaine (137). Regarding the role
of MOPr, the selective MOPr antagonist CTAP (0.3 and 3 µg)
administered in the ventral pallidum, but not in the nucleus
accumbens or lateral hypothalamus, blocked the reinstatement
of drug-seeking in rats that extinguished from cocaine self-
administration (138). Given the GABA/enkephalin projection
from the nucleus accumbens to the ventral pallidum, chronic
cocaine may result in enkephalin release in this brain area,
activating MOPr and eliciting cocaine relapse.

Data regarding the role of DOPr in mediating the rewarding
effects of cocaine are conflicting. Naltrindole (0.03–3.0 mg/kg
i.p. prior to self-administration session) did not alter the
intake of cocaine (FR2 schedule of reinforcement) or the re-
acquisition of cocaine self-administration (139). Similarly, a
selective DOPr type-2 antagonist (administered i.c.v.) has been
reported to have a slight effect on cocaine self-administration
(FR1 schedule) (140). In contrast, there is data demonstrating
that naltrindole (10 mg/kg i.p. 15min prior FR1) reduced
cocaine self-administration (141). These discrepancies regarding
the role of DOPr in cocaine reinforcement may be due to the
different types and doses of DOPr antagonist and cocaine-self-
administration protocols. Importantly, none of these studies
evaluated a possible role of DOPr within specific brain areas
associated with cocaine reinforcement. DAMGO (1–3 ng) and
DPDPE (300–3,000 ng), MOPr- and DOPr-selective ligands
respectively, as well as β-endorphin (100–1,000 ng) and the
enkephalinase inhibitor thiorphan (3–10 µg) microinjected into
the nucleus accumbens, are sufficient to reinstate cocaine-
seeking behavior in rats following extinction of cocaine self-
administration (142). Thus, the stimulation of either accumbal
MOPr or DOPr seems to be necessary to precipitate cocaine
relapse.

Cocaine self-administration was reduced in MOPr knockout
mice (143), suggesting a critical role of this receptor in cocaine
reinforcement. In contrast, Gutiérrez-Cuesta et al. (144), found
no changes in cocaine self-administration in this genotype.
This discrepancy could be explained in the framework of the
differences in experimental protocols used regarding cocaine

dose and the time of the conditioning sessions, as in the
study of Mathon et al. (143), which demonstrated significant
differences in this genotype at high cocaine doses in shorter
session times.Moreover, cocaine self-administration was reduced
in both DOPr knockout and PENK knockout mice (144),
mainly when animals were trained in FR3 and PR schedules.
These findings suggest that DOPr and PENK are involved in
the motivation to obtain cocaine, and the absence of these
opioid components engenders an impaired response of cocaine
self-administration, mainly when greater effort to obtain a
reward is required. In addition, Gutiérrez-Cuesta et al. (144),
demonstrated that cue-induced reinstatement of cocaine-seeking
behavior was attenuated in both DOPr knockout and MOPr
knockout. These data support previous pharmacological studies
of Simmons and Self (142) addressing an important role
of both receptors within the mesolimbic system in cocaine
relapse. Consistent with these data, an enduring MOPr tone
has been demonstrated within brain reward structures following
extinction of cocaine self-administration (145), indicating that up
regulating enkephalin levels may lead to long-lasting adaptations
in response to repeated cocaine. Thus, all this evidence indicates
that enkephalin, presumably acting on MOPr (although a role
of DOPr cannot be ruled out) has a facilitatory influence on
cocaine-induced behavioral and neuronal plasticity.

Importantly, the human literature shows encouraging
evidence regarding the use of opioid antagonist in the
treatment of psychostimulants relapse (146–148). Indeed,
naltrexone (50 mg/day) administered in combination with
relapse prevention therapy reduced cocaine use in a study of
cocaine-addicted patients (n = 85). Thus, people receiving
the combination of naltrexone (administered throughout 12
weeks) and relapse prevention therapy evidenced significantly
reduced cocaine use than participants receiving other treatment
combinations such us naltrexone alone or combined with
drug counseling therapy (147). The same treatment protocol
(naltrexone 50 mg/day during 12 weeks of medication and
relapse prevention therapy) reduced amphetamine use as well
as craving in amphetamine dependent patients (n = 55) (149).
Additionally, naltrexone (50 mg/day) reduced the subjective
effects of dexamphetamine (30mg, oral) in amphetamine-
dependent people (n = 20) (150). In constrast, patients who
received oral naltrexone doses (0, 12.5, or 50mg) before
smoked cocaine (0, 12.5, 25, and 50mg or placebo), or oral
amphetamine (0, 10, and 20mg or placebo) did not show
alterations in positive subjective effects in cocaine users (n = 12)
(146). This evidence suggests that this opioid antagonist did
not alter positive subjective ratings after cocaine. Importantly,
naltrexone did not alter physiological effects of psychostimulants
in terms of cardiovascular function (146), cortisol levels and skin
conductance (149, 150). Morever, naltrexone did significantly
reduce craving for cocaine and tobacco during cocaine sessions
(146) as well as amphetamine craving (149, 150). These
data demonstrated that behavioral alterations observed in
psychostimulants addiction, such us drug craving could be
modulated by the endogenous opioid system.

It is important to address that in these studies, participants do
not show evidence of any increase in the intake of other drugs of
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abuse during naltrexone protocol therapy to compensate for the
reduction in the drug consumption that is being evaluated. On
the other hand, these studies were restricted to short periods of
naltrexone treatment and long-term effects in these patients are
unknown. Thus, future longitudinal studies are required in order
to follow patients over prolonged periods of time.

Similar effects on opioid antagonists were observed in
patients with cocaine/alcohol comorbidity (148, 151–153) or
cocaine/opiate dependence (154).

In summary, several studies show promising results for
psychostimulants addiction treatment, suggesting a potential role
of naltrexone as an anti-craving therapy for this psychiatric
disorder.

CONCLUSIONS AND FUTURE
DIRECTIONS

This review emphasizes the important role of endogenous
enkephalin during the development of the long-term
neurobiological changes underlying psychostimulant addiction.
It has been suggested that polymorphisms in genes encoding
components of the endogenous opioid system are involved in
predisposing to addiction to cocaine and opiates (155). Similarly,
it is likely that genetic variations in the endogenous PENK
gene (155–158) influence the development of behavioral and
neurobiological adaptations in response to psychostimulant
exposure, and thus modify vulnerability to psychostimulant
addiction. This review also helps to understand how opioid

antagonists can be effective in treating psychostimulant
addiction (146, 147, 149), supporting their use as therapy
for this disorder. Thus, the evidence presented in this review
provides a basis for the development of new drug therapies for
psychostimulant addiction based on specific modulation of the
endogenous PENK system.
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