
ORIGINAL RESEARCH
published: 29 June 2018

doi: 10.3389/fpsyt.2018.00291

Frontiers in Psychiatry | www.frontiersin.org 1 June 2018 | Volume 9 | Article 291

Edited by:

Luigi Janiri,

Università Cattolica del Sacro Cuore,

Italy

Reviewed by:

Giuseppe Carrà,

Università degli studi di Milano

Bicocca, Italy

Kesong Hu,

DePauw University, United States

*Correspondence:

Dai-Jin Kim

kdj922@catholic.ac.kr

Specialty section:

This article was submitted to

Addictive Disorders,

a section of the journal

Frontiers in Psychiatry

Received: 25 January 2018

Accepted: 12 June 2018

Published: 29 June 2018

Citation:

Park C, Chun J-W, Cho H and Kim

D-J (2018) Discriminating

Pathological and Non-pathological

Internet Gamers Using Sparse

Neuroanatomical Features.

Front. Psychiatry 9:291.

doi: 10.3389/fpsyt.2018.00291

Discriminating Pathological and
Non-pathological Internet Gamers
Using Sparse Neuroanatomical
Features
Chang-hyun Park 1, Ji-Won Chun 1, Hyun Cho 1,2 and Dai-Jin Kim 1*

1Department of Psychiatry, Seoul St. Mary’s Hospital, College of Medicine, Catholic University of Korea, Seoul, South Korea,
2Department of Psychology, Korea University, Seoul, South Korea

Internet gaming disorder (IGD) is often diagnosed on the basis of nine underlying

criteria from the latest version of the Diagnostic and Statistical Manual of Mental

Disorders (DSM-5). Here, we examined whether such symptom-based categorization

could be translated into computation-based classification. Structural MRI (sMRI) and

diffusion-weighted MRI (dMRI) data were acquired in 38 gamers diagnosed with IGD,

68 normal gamers diagnosed as not having IGD, and 37 healthy non-gamers. We

generated 108 features of gray matter (GM) and white matter (WM) structure from the

MRI data. When regularized logistic regression was applied to the 108 neuroanatomical

features to select important ones for the distinction between the groups, the disordered

and normal gamers were represented in terms of 43 and 21 features, respectively, in

relation to the healthy non-gamers, whereas the disordered gamers were represented

in terms of 11 features in relation to the normal gamers. In support vector machines

(SVM) using the sparse neuroanatomical features as predictors, the disordered and

normal gamers were discriminated successfully, with accuracy exceeding 98%, from the

healthy non-gamers, but the classification between the disordered and normal gamers

was relatively challenging. These findings suggest that pathological and non-pathological

gamers as categorized with the criteria from the DSM-5 could be represented by

sparse neuroanatomical features, especially in the context of discriminating those from

non-gaming healthy individuals.

Keywords: internet gaming disorder, diagnostic classification, structural MRI, diffusion-weightedMRI, regularized

regression

INTRODUCTION

Although having been suggested as pathological addiction for decades (1), it is only recently that
Internet gaming disorder (IGD) was listed in the Diagnostic and Statistical Manual of Mental
Disorders (DSM). The fifth edition of the DSM (DSM-5) (2) identified IGD as a condition for
further study and provided nine criteria for diagnosing it. In symptom-based categorization
using the nine-item IGD scale (IGDS) proposed in the DSM−5, a threshold of experiencing five
or more criteria was applied to the diagnosis of IGD. Although this cut-point may adequately
differentiate gamers suffering significant clinical impairment (3), the dichotomous nature of IGDS
items inevitably involves diagnostic oversimplification or vagueness.
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Besides symptoms, a variety of IGD-related dysfunctions
are commonly observed, not least neuroanatomical changes.
Indeed, a substantial body of work has shown that IGD is
associated with structural alterations in the brain: shrinkage of
gray matter (GM) volume (4–6), reduction in cortical thickness
(7), and loss of white matter (WM) integrity (8, 9) have
been typically demonstrated. These neuroanatomical changes
related to IGD suggest that such brain imaging parameters
can serve as biomarkers to distinguish individuals with IGD
from other individuals. That is, the diagnosis of IGD may be
made through computational manipulation of neuroanatomical
biomarkers, rather than through symptom-based categorization
based on the DSM-5. These attempts may be in line with
efforts to move beyond descriptive diagnosis by employing
computational approaches to psychiatry (10), specifically data-
driven approaches based on machine learning (ML) to tackle the
diagnosis of mental illness (11).

In this study, we searched for a link between symptom-
based categorization on the basis of the IGDS and computation-
based classification by using neuroanatomical biomarkers in the
diagnosis of IGD. Because some GM and WM components of
the brain would be likely to include redundant or irrelevant
information for diagnostic classification, we sought to select
sparse neuroanatomical features by employing regularized
regression. We hypothesized that symptom-based categorization
could be represented in terms of sparse neuroanatomical features
that would compose classification models for the diagnosis of
IGD. Pathological gamers diagnosedwith IGDwere thought to be
more dissimilar from non-gaming healthy individuals than from
gamers diagnosed as not having IGD, that is, non-pathological
gamers; thus, pathological gamers could be characterized by
a larger number of features compared with non-pathological
gamers, in relation to non-gaming healthy individuals. In
addition, we wanted to decide whether non-pathological gamers
could be less distinguishable from pathological gamers or from
non-gaming healthy individuals. Non-pathological gamers might
be vaguely assumed to be close to non-gaming healthy individuals
in terms of descriptive symptoms, but we thought that such a
notion needs to be validated by means of computation-based
classification.

MATERIALS AND METHODS

Participants
Among 237 participants playing Internet-based games, 106
individuals were selected by excluding those who exhibited a
mismatch between the self-reported IGDS and a structured
interview with a clinical psychologist in the diagnosis of IGD
or had missed or severely distorted brain imaging data. On the
basis of the IGDS, 38 individuals (27.66± 5.61 years; 13 females)
who satisfied at least five IGDS items were labeled disordered
gamers and 68 individuals (27.96 ± 6.41 years; 21 females) who
satisfied at most one IGDS item were labeled normal gamers.
Individuals who satisfied IGDS items between two and four were
also excluded, because they may be discerned as another class
between the disordered and normal gamers (12). In addition,
37 individuals (25.86 ± 4.10 years; 13 females) not playing

Internet-based games were separately recruited, and they were
labeled healthy non-gamers. The absence of comorbidities in
all participants was confirmed. Written informed consent was
obtained from all participants in accordance with the Declaration
of Helsinki and its later amendments, and the study was approved
by the Institutional Review Board at the Seoul St. Mary’s Hospital,
Seoul, Korea.

Acquisition of MRI Data
Structural MRI (sMRI) and diffusion-weightedMRI (dMRI) data
were collected using a 3 T MAGNETOM Verio system (Siemens
AG, Erlangen, Germany). The acquisition of sMRI data was
conducted using a magnetization-prepared rapid gradient echo
sequence: number of slices in the sagittal plane = 176, slice
thickness = 1mm, matrix size = 256 × 256, and in-plane
resolution = 1 × 1mm. For the acquisition of dMRI data,
diffusion gradient encoding was performed in 30 directions with
b= 1,000 s/mm2 and a single-shot echo-planar imaging sequence
was used: number of slices in the axial plane= 75, slice thickness
= 2mm, matrix size= 114× 114, and in-plane resolution= 2×
2mm.

Processing of MRI Data
Tools included in CAT12 (http://www.neuro.uni-jena.de/cat/)
were used to process sMRI data. The brain volume image
was segmented into different tissues, including GM, WM, and
corticospinal fluid as well as spatially registered to a reference
brain in the standard space. In voxel-based morphometry
(VBM), voxel-wise GM volume was estimated by multiplying
the probability of being GM by the volume of a voxel, and then
those values were divided by the total intracranial volume to
adjust for individual differences in head volume. In surface-based
morphometry (SBM), cortical thickness was estimated using the
projection-based thickness method (13).

Processing of dMRI Data
Tools included in FSL 5.0 (http://fsl.fmrib.ox.ac.uk/fsl/) were
employed to process dMRI data. All images were realigned to
the null image acquired with b = 0 s/mm2 to correct for eddy
current-induced distortions and head motion. A diffusion tensor
was modeled at each voxel within the brain, and diffusion tensor-
derived parameters, including fractional anisotropy (FA), mean
diffusivity (MD), axial diffusivity (AD), and radial diffusivity
(RD), were computed; given three diffusivities along different
axes of a diffusion tensor, FA was calculated as the square root
of the sum of squares of diffusivity differences between the three
axes, MD as the average diffusivity across the three axes, AD as
the greatest diffusivity along the principal axis, and RD as the
average of diffusivities along two minor axes. Using tract-based
spatial statistics (TBSS) (14) implemented in FSL 5.0, the maps
of diffusion tensor-derived parameters were spatially registered
to a reference brain in the standard space, and they were then
projected onto a WM tract skeleton.

Feature Generation
Two major steps for designing a classification model are
feature generation and selection. We generated features from
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neuroanatomy, specifically the volume and thickness of a set of
GM regions and the integrity and diffusivity of a set of WM
tracts. After estimating GM volume and cortical thickness as
voxel-wise maps acquired from VBM and SBM, respectively, the
parameters were assessed for each of 60 GM regions (Table S1),
parcellated as in the Hammers atlas (15), as the average across
all voxels within it. Having estimated diffusion tensor-derived
parameters, including FA, MD, AD, and RD as voxel-wise maps
on the WM tract skeleton acquired from TBSS, the parameters
were computed for each of 48 WM tracts (Table S2), parcellated
as in the ICBM DTI-81 atlas (16), as the average across all voxels
within it. In sum, we considered two parameters of GM and four
parameters of WM, which yielded eight combinations of GM
and WM parameters. For each combination of GM and WM
parameters, parameter values of 60GM regions and 48WM tracts
composed a total of 108 neuroanatomical features.

Feature Selection by Regularized
Regression
Reducing the number of features is important, especially for
data with a large number of features and a limited number of
observations. The limited number of observations in relation
to the number of features may lead to overfitting to the noise,
and regularization is a technique that enables to reduce or
prevent overfitting by introducing additional information or
constraints on a model. Because all of the 108 features may
not include useful and necessary information for classification,
we selected a sparse set of features by applying regularized
regression. Specifically, the lasso (17) and elastic net (18) were
used for regularized logistic regression. The lasso includes a
penalty term, or a regularization parameter, λ, that constrains
the size of coefficient estimates in a logistic regression model.
Because an increase in λ leads to more zero-valued coefficients,
the lasso provides a reduced logistic regression model with
fewer predictors. The elastic net also produces a reduced logistic
regression model by setting coefficients to zero, especially by
including a hybrid regularization parameter of the lasso and ridge
regression, overcoming the limitation of the lasso in treating
highly correlated predictors (19).

For the classification between each pair of the three groups,
we applied the lasso and elastic net to identify important
predictors among the 108 neuroanatomic features in a logistic
regression model. The 108 features of all individuals in each
pair of the three groups were standardized to compose a data
matrix, A, in which each row represented one observation and
each column represented one predictor. To correct for effects
of individuals’ age and sex on the GM and WM parameters, a
residual forming matrix, R, was generated: R = I-C(CTC)−1C

where I was an identity matrix and C was a matrix coding
confounding covariates of age and sex. It was then applied toA to
obtain residuals after regressing out the confounding covariates:
X= RA.

Given the adjusted data matrix, X, and the response, Y,
that coded two classes of individuals, 10-fold cross-validation
(CV) was used to search for a regularization parameter, λMinErr,
that provided the minimum error in terms of deviance, defined

as negative log-likelihood for the tested model averaged over
the validation folds. Alternatively, because a CV curve has
errors at each λ tested, a regularization parameter, λ1SE, that
was found within one standard error of the minimum CV
error in the direction of increasing regularization from λMinErr

was also considered. That is, sparser features were selected at
λ1SE, whereas sparse features were determined at λMinErr. This
procedure for seeking a regularized logistic regressionmodel with
fewer predictors was repeated for every combination of GM and
WM parameters comprising the 108 neuroanatomical features.

Performance of Selected Features
To assess the usefulness of the sparse and sparser features,
performance was compared between the model with a reduced
number of features and the model with all the 108 features
in support vector machines (SVMs) by measuring the receiver
operating characteristic (ROC) curve. With a linear kernel as the
kernel function and hyperparameters optimized by five-fold CV,
an SVM was trained for all individuals in each pair of the three
groups. The area under the ROC curve (AUC) was computed
for each model as a quantitative measure of its performance.
DeLong tests (20) were employed to compare the AUC between
each pair of models. When the AUC differed at a p-value of 0.05,
performance was considered not to be comparable in twomodels.

Classification Accuracy
Schematic procedures from the generation and selection of
features to the construction of classification models is presented
in Figure 1. For each pair of the three groups, SVM classification
models were generated using the selected features as predictors.
We assessed accuracy of the classification models by employing a
leave-one-out CV scheme, such that out-of-sample classification
accuracy was computed for each left-out individual and then it
was averaged across all individuals. The statistical significance
of accuracy was estimated by employing permutation tests. An
empirical null distribution for classifying between each pair of
the three groups was generated by repeatedly permuting the
labels of individuals and measuring accuracy associated with the
permuted labels. When accuracy measured for the unpermitted
labels was higher than or equal to the null distribution at a p-value
of 0.05, that was determined to be significantly different from the
chance level (accuracy = 50%). In addition, a confusion matrix
was visualized to describe sensitivity and specificity regarding the
distinction between each pair of the three groups.

RESULTS

Feature Selection
Figure 2 displays selected features among the 108 features with
their coefficient estimates, and Table 1 describes related fitting
information of the regularized logistic regression model for the
classification between each pair of the three groups. In addition,
Figure S1 shows which λ yielded the minimum CV error and
howmany features were selected at λ1SE as well as at λMinErr. The
minimum CV error was obtained in feature selection by the lasso
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FIGURE 1 | Schematic procedures from the generation and selection of neuroanatomical features to the construction of models for the classification between

disordered gamers (DG) and healthy non-gamers (HN), between normal gamers (NG) and HN, and between DG and NG. GM, gray matter; WM, white matter.

(lasso weight= 1) for the classification between the healthy non-
gamers and normal gamers and by the elastic net (lasso weight=
0.5) for the other classification.

In the discrimination of the disordered gamers from the
healthy non-gamers, 43 features selected at λMinErr comprised the
thickness of 24 GM regions and the FA of 19 WM tracts, and
34 features selected at λ1SE comprised the thickness of 15 GM
regions and the FA of 19 WM tracts. In the distinction of the
normal gamers from the healthy non-gamers, 21 features selected
at λMinErr comprised the thickness of 12 GM regions and the
RD of 9 WM tracts, and 12 features selected at λ1SE comprised
the thickness of 6 GM regions and the RD of 6 WM tracts. In
the classification between the disordered and normal gamers,
11 features selected at λMinErr comprised the volume of 7 GM
regions and the MD of 4 WM tracts, and one feature selected at
λ1SE corresponded to the volume of one GM region.

Performance of Selected Features
Between the model with a reduced number of features and the
model with all the 108 features, performance was comparable in
terms of the AUC in the discrimination between each type of
the gamers and the healthy non-gamers by SVMs (Figure 3). In
the classification between the disordered and normal gamers, the
model with the features selected either at λMinErr (AUC = 0.83,
p = 0.006) or at λ1SE (AUC = 0.72, p < 0.001) showed
poorer performance than the model with all the 108 features
(AUC= 0.90).

Classification Accuracy
In classification by SVMs using the features selected at
λMinErr, accuracy was greater than 98%, significantly higher
than the chance level (p < 0.001), in the distinction of
each type of the gamers from the healthy non-gamers
(Figure 4A). Accuracy was still significantly higher than
the chance level (p = 0.002) but as low as 69.8% in the
classification between the disordered and normal gamers,

specifically showing low sensitivity (47.4%) in the correct
identification of the disordered gamers. The sparser features
determined at λ1SE exhibited similar performance (Figure 4B)
but showed much lower sensitivity (2.6%) in the correct
distinction of the disordered gamers from the normal
gamers.

DISCUSSION

In this study, we sought to examine whether the pathological and
non-pathological gamers as categorized with the IGDS proposed
in the DSM-5 could be represented by sparse neuroanatomical
features. The disordered and normal gamers were represented in
terms of 43 and 21 features, respectively, in relation to the healthy
non-gamers. In addition, the disordered gamers were represented
in terms of 11 features in relation to the normal gamers. Using
the sparse neuroanatomical features, the disordered and normal
gamers could be discriminated successfully from the healthy non-
gamers, but the classification between the disordered and normal
gamers was relatively challenging.

Symptom-based descriptive categorization of IGD with the
IGDS proposed in the DSM-5 is being widely adopted. Although
empirical validity of the IGDS has been confirmed in multiple
countries (3, 21, 22), the threshold of experiencing five or more
IGDS items may not be a definite choice, and other ways of
categorizing individuals playing Internet-based games may be
suggested (12). Since multiple types of clinical data, such as
brain imaging data as well as demographic, behavioral, and
symptomatic data, become increasingly available, additional data
could be preferably employed for the diagnosis of mental illness.
In particular, due to the massiveness of quantitative information,
brain imaging data are suited for computational approaches and
would be useful for prediction. Indeed, brain imaging data have
been shown to have superior predictive values compared to other
clinical data in prediction for solving a clinically relevant problem
(23).
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FIGURE 2 | Selected neuroanatomical features in regularized logistic regression for the classification between each pair of three groups. Disordered gamers (DG) were

coded as 1 in the classification between healthy non-gamers (HN) and DG, normal gamers (NG) as 1 in the classification between HN and NG, and DG as 1 in the

classification between NG and DG. The size of a bar represents the size of the respective feature’s coefficient, such that features of non-zero coefficients are selected

ones. The rendered brains depict gray matter and white matter components corresponding to the selected features from a superior view. Features in red or blue

indicate ones included in sparser features determined at λ1SE as well as in sparse features determined at λMinErr, whereas those in yellow or magenta indicate ones

included only in sparse features. The labels of brain components are as provided in Tables S1 and S2. L, left; R, right.

As ML-based diagnostic classification has been recently
applied to other addictive behaviors and disorders (24–28),
symptom-based categorization of IGD also appears to face
a challenge of computation-based classification. Because
anatomical abnormalities of the brain following IGD have been
repeatedly reported in previous studies (5–7, 9), we considered
such neuroanatomical information from brain imaging data
potential biomarkers for the diagnosis of IGD. In this study, our
goal was to identify a set of important neuroanatomical features
that could provide adequately high classification performance,
beyond describing neuroanatomical differences between classes
of individuals.

We selected important ones, among 108 neuroanatomical
features, thorough regularized regression. When we considered
eight combinations of GM and WM parameters, different
combinations of parameters were selected for distinguishing each
pair of the three groups. The combination of the thickness
of GM regions and the integrity of WM tracts was better for
distinguishing the pathological gamers from the healthy non-
gamers, whereas the combination of the volume of GM regions
and the diffusivity of WM tracts was better for distinguishing
the pathological gamers from the non-pathological gamers.
Furthermore, although many brain components commonly
served as neuroanatomic features that were important for the
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TABLE 1 | Fitting information of regularized logistic regression for the classification

between each pair of three groups.

HN vs. DG HN vs. NG NG vs. DG

Parameter GM Thickness Thickness Volume

WM FA RD MD

Lasso weight 0.5 1 0.5

Sparse features

selected at λMinErr

CV error 37.3681 41.7876 133.3857

No. of features 43 21 11

Sparser features

selected at λ1SE

CV error 46.5681 50.0435 141.2622

No. of features 34 12 1

The lasso weight indicates whether regularized logistic regression was conducted using

the lasso (lasso weight = 1) or elastic net (lasso weight = 0.5).

HN, healthy non-gamers; DG, disordered gamers; NG, normal gamers; GM, gray matter;

WM, white matter; FA, fractional anisotropy; RD, radial diffusivity; MD, mean diffusivity;

CV, cross-validation.

distinction of the pathological and non-pathological gamers
from the healthy non-gamers, some GM regions and WM
tracts characterized the non-pathological gamers, but not the
pathological gamers. These findings indicate that there may not
be a universally best performing combination of GM and WM
parameters as neuroanatomical biomarkers, so that a specific
combination of GM and WM parameters needs to be selected
according to groups to be classified.

The smaller number of the sparse features for the distinction
of the non-pathological gamers compared with the distinction of
the pathological gamers, from the healthy non-gamers, reflects
that the non-pathological gamers are at a transitional stage
between the pathological gamers and healthy non-gamers. In
addition, the fewer sparse features for the classification between
the two types of the gamers than for the discrimination between
each type of the gamers and the healthy non-gamers denotes
that the pathological and non-pathological gamers were less
dissimilar to each other in terms of neuroanatomy than to them
being dissimilar from the healthy non-gamers. Accordingly, the
classification models generated with the sparse features yielded
accuracy exceeding 98% in the discrimination between each type
of the gamers and the healthy non-gamers but accuracy below
70% in the classification between the two types of the gamers.
That is, the non-pathological gamers were distinguishable from
the healthy non-gamers as well as the pathological gamers
were, but there were limitations in distinguishing between the
pathological and non-pathological gamers.

This relatively low distinguishability between the two types of
the gamers seems to suggest a few notions. Firstly, a mismatch
between symptom-based categorization and computation-
based classification may be proposed. Although the proposed
diagnostic threshold of experiencing five or more criteria in the
IGDS was conservatively chosen to prevent the over-diagnosis
of IGD (12), the presence of gamers suffering considerable
pathological changes in neuroanatomy but not satisfying the
IGD threshold may not be disregarded. In particular, we only
included gamers who satisfied IGDS items much lower than the
IGD threshold as the normal gamers, so that gamers diagnosed

as not having IGD could be generally further away from non-
gaming healthy individuals than shown in this study. Secondly,
a challenge in classification relying only on neuroanatomical
biomarkers may be noted. Classification performance could be
improved by including other biomarkers that can capture greater
dissimilarity between the pathological and non-pathological
gamers. In particular, because functional changes in the brain are
also demonstrated in IGD (29–33), function as well as anatomy
of the brain could be considered brain biomarkers. In addition,
we want to note that changes in the brain only constitute part of
the multidimensional facets of Internet gaming addiction, so that
other factors, not least various internal and external risk factors
for Internet gaming addiction (34), should be included in more
complete models for the classification between pathological and
non-pathological gamers as well as the distinction of gamers
from non-gaming healthy individuals.

Here, we have employed regularized regression, using
sparsity-promoting estimators such as the lasso and elastic net,
to identify important features for classification models. There
are actually methodological variations in feature selection or
dimensionality reduction, and a variety of approaches may be
employed for the use of selected features in model construction
(35). Our approach using regularized regression entails a priori
assumption concerning sparsity in neuroanatomical features.
Provided that such an assumption is acceptable, as we believed in
this study, regularized regression could be a plausible approach,
and the selected set of sparse features would be expected to
compose classification models of adequately high performance.
But it is notable that simpler classification models based on
greater sparsity may not always exhibit comparable or improved
performance. Indeed, among different choices of the degree
of sparsity according to a regularization parameter, greater
sparsity was not likely to provide a better performing model
specifically in more challenging classification problems, such as
the classification between the pathological and non-pathological
gamers.

In addition, we have used SVMs as an ML technique for
constructing classification models, because they are among most
popular ones. Other advanced methods may be used to improve
classification performance, although comparative performance
between different methods may not be concluded because of
the dependence of performance on experimental scenarios (19).
On the other hand, for comparative performance between
classical statistical methods and ML techniques, we conducted
classification by logistic regression as well and showed that
the two methods, namely logistic regression and SVMs, were
comparable in the performance of classification (Figure S2). It
may be iterated that classical statistical methods are not always
inferior to ML techniques in classification performance (36).

In the current study, we have revealed that symptom-
based categorization of IGD could be represented in terms
of sparse neuroanatomical biomarkers that composed
classification models. Furthermore, we have demonstrated
that non-pathological gamers could be less distinguishable from
pathological gamers than from non-gaming healthy individuals,
in terms of neuroanatomy.We thus suggest that although current
diagnostic systems rely on descriptive categorization such as
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FIGURE 3 | Comparison of performance in terms of the area under the receiver operating characteristic curve (AUC) between models without and with feature

selection for the classification between each pair of three groups by support vector machines. The model of 108 features (indicated by solid line) corresponds to that

without feature selection, whereas the models of reduced numbers of features correspond to those with sparse and sparser features selected at λMinErr (indicated by

dashed line) and λ1SE (indicated by dash-dot line), respectively. HN, healthy non-gamers; DG, disordered gamers; NG, normal gamers.

FIGURE 4 | Confusion matrices in the classification between each pair of three groups when using (A) sparse and (B) sparser features determined at λMinErr and at

λ1SE, respectively, in support vector machines. The lower-right cell represents classification accuracy (ACC), the lower-left cell true negative rate (TNR) or specificity,

the lower-middle cell true positive rate (TNR) or sensitivity, the upper-right cell negative predictive value (NPV), and the middle-right cell positive predictive value (PPV).

TP, true positive; TN, true negative; FP, false positive; FN, false negative.
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the DSM-5 as the gold standards, non-pathological gamers may
need to be diagnosed with more care by employing objective
biomarkers such as those associated with neuroanatomical
alterations. Adoption of computational approaches seems to be
an irreversible trend in psychiatry, but there may be a long way
to go to practically apply those to clinical environments. Search
for the optimal selection of sparse features from brain imaging
and other clinical data needs to be conducted in subsequent
studies, and in the long term, these efforts would promote the
computation-based diagnosis of IGD.
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