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The identification of abnormal cognitive decline at an early stage becomes an increasingly

significant conundrum to physicians and is of major interest in the studies of mild

cognitive impairment (MCI). Support vector machine (SVM) as a high-dimensional pattern

classification technique is widely employed in neuroimaging research. However, the

application of a single SVM classifier may be difficult to achieve the excellent classification

performance because of the small-sample size and noise of imaging data. To address

this issue, we propose a novel method of the weighted random support vector machine

cluster (WRSVMC) in which multiple SVMs were built and different weights were given

to corresponding SVMs with different classification performances. We evaluated our

algorithm on resting state functional magnetic resonance imaging (RS-fMRI) data of 93

MCI patients and 105 healthy controls (HC) from the Alzheimer’s Disease Neuroimaging

Initiative (ADNI) cohort. The maximum accuracy given by the WRSVMC is 87.67%,

demonstrating excellent diagnostic power. Furthermore, the most discriminative brain

areas have been found out as follows: gyrus rectus (REC.L), precentral gyrus (PreCG.R),

olfactory cortex (OLF.L), and middle occipital gyrus (MOG.R). These findings of the paper

provide a new perspective for the clinical diagnosis of MCI.

Keywords: mild cognitive impairment, weighted random support vector machine cluster, classification, abnormal

brain areas, resting-state fMRI

INTRODUCTION

Mild cognitive impairment (MCI) is a clinical entity which represents a state of slightly cognitive
deficits for age and education, but does not markedly affect activities of daily life (1, 2). Studies
show that healthy controls (HC) convert to Alzheimer’s disease (AD) at an annual rate of 1–2%
(3). Nevertheless, the rate of MCI patients who progress to AD is between 10 and 15% per year (4),
implying that MCI may be a high-risk state for developing AD dementia. At present, there is no
exact therapy which could completely stop or reverse the progression of AD (5). It is hence crucial
to identify MCI patients and explore pathological changes in their brains, in order to offer timely
treatment and slow down the transition fromMCI to AD.

Neuroimaging techniques play increasingly important roles in the investigation of brain
dysfunctions of MCI patients (6). In particular, the resting-state functional magnetic resonance
imaging (RS-fMRI) may be one of the most popular brain imaging techniques due to its numerous
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advantages (7). On the one hand, RS-fMRI has higher spatial
resolution than electroencephalogram (EEG) (8). On the other
hand, RS-fMRI is noninvasive compared to position emission
tomography (PET) and computed tomography (CT) (9). In
addition, RS-fMRI is easier to implement without requiring
specific tasks when compared to task-state fMRI (10). The
application of RS-fMRI could help to enhance the understanding
of spontaneous brain activities of MCI patients.

Graph theory is a reliable approach which offers a suitable
framework for the study of brain neural network at a whole-brain
connectivity level (11, 12). The literature on graph theory reports
that MCI patients compared to HC show the altered functional
connectivity (FC) and a clear disrupted topological pattern in the
brain network (13, 14). Therefore, the graph theory metrics may
possess predictive information that helps to classify MCI patients
from HC. It is a promising approach that the discriminative
graph theory metrics are considered as predictor features to build
a classifier for excellent classification performance (15, 16).

Support vector machine (SVM) has been widely utilized for
analysis of neuroimaging data to assist the identification of MCI
(17). Zhang et al. (18) employed a linear SVM and achieved a
classification accuracy of 79.02% for 346MCI vs. 207HC. Yu et al.
(19) achieved an accuracy of 79.65% when using the SVM with
leave-one-out cross validation to classify 170 patients with MCI
from 169HC. Zhang and Shen (20) reported an accuracy of 83.2%
using the multi-modal SVM to discriminate between 91 MCI
patients and 50 HC. Beheshti et al. (21) used the SVM classifier
to yield a classification accuracy of 70.38% when distinguishing
87 MCI patients and 61 HC. Li et al. (22) achieved an accuracy
of 77.4% for 99 MCI vs. 52 HC using the SVM. Because these
MCI studies above usually considered a single SVM which may
not be robust enough in dealing with neuroimaging data, the
classification accuracies reported by the studies were universally
lower than 85%.

To improve the accuracy and robustness of the classification
algorithm, a novel approach of weighted random support vector
machine cluster (WRSVMC) was put forward in this paper.
Compared to a single SVM classifier, the WRSVMC has the
following advantages: (1) The WRSVMC is robust because it
consists of a great deal of SVM classifiers; (2) The classification
accuracy of the WRSVMC is improved because the influences of
strong SVM base classifiers are enhanced by a weighted method;
(3) The abnormal brain areas could be found out using the
WRSVMC based on the optimal subset of features; (4) The
WRSVMC achieves an high accuracy of 87.67%, indicating that
the abnormal brain areas which we have found were considerably
convincing. In the process of exploring the abnormal brain
areas, brain areas are ranked in accordance with the amount
of discriminative information. We mainly discussed the first
four brain areas as follows: gyrus rectus (REC.L), precentral
gyrus (PreCG.R), olfactory cortex (OLF.L) and middle occipital
gyrus (MOG.R). The gyrus rectus is considered to be a newly
discovered abnormal brain area in patients with MCI because
it is rarely studied in neuroimaging literature on MCI. The
remaining three abnormal brain areas are consistent with the
claims in existing literature involving MCI (23–25). In a word,
these findings help us to understand the underlying pathologic
mechanisms of MCI.

MATERIALS AND METHODS

Demographic Information
The publicly available RS-fMRI data was obtained from
Alzheimer’s Disease Neuroimaging Initiative (ADNI) cohort
(http://adni.loni.usc.edu/) (26) whose primary goal was to study
the pathogenesis and treatment of MCI and AD by exploring
multifarious imaging data (27). We initially collected 231
subjects’ RS-fMRI data, including 93 MCI patients and 138 HC.
33 HC were excluded due to excessive head movements during
the preprocessing, leaving 93 MCI patients (48 males and 45
females) and 105 HC (42 males and 63 females) for further
analysis. We used Chi-squared test and found no significant
discrepancy between the MCI patients and HC with respect to
sex (χ2 = 2.683, p = 0.101). All data was anonymized
according to the Health Insurance Portability and Accountability
(HIPAA) guidelines, and followed the research procedures and
ethical guidelines determined by the Institutional Review Boards
(IRB) of the participating agencies.

Data Acquisition
All participants were imaged on a Siemens TRIO 3 Tesla
machine. Resting state functional images were acquired using the
scanning parameters as bellow: repetition time (TR) = 3, 000
ms, echo time (TE) = 30 ms, pixel spacing X/pixel spacing
Y = 3.3/3.3 mm, acquisition matrix = 64 × 64, flip angle
= 80, axial slices= 48, slice thickness= 3.313mm, without slice
gap, 140 time points. During the RS-fMRI scanning, all subjects
should lie still and close their eyes without thinking of anything
systematically.

Data Preprocessing
Image preprocessing was carried out by employing the Data
Processing Assistant for Resting State fMRI (DPARSF) (www.
restfmri.net) software. Briefly, the preprocessing steps were
as bellow: converting data from DICOM to NIFTI format;
discarding the first 10 volumes due to magnetization instability;
correcting for time offset between slices; correcting for head
motion between volumes; normalizing data with the echo-
planar imaging (EPI) template; spatial smoothing using a
Gaussian kernel with the full width-half maximum (FWHM) =
6mm; linear de-trending; performing band-pass filtering (0.01–
0.08Hz); regressing out several spurious variables.

The Application of Graph Theory
Graph theory is an ideal approach to investigate the
characteristics of the complex brain functional connectivity
(FC) network. The application of graph theory is likely to help
to improve the understanding of neural activities in the diseased
and healthy human brain. In our experiment, we utilized the
internationally common anatomical automatic labeling (AAL)
atlases (28) to define the regions of interest (ROIs). Both the
left and right brains could be divided into 45 ROIs, resulting in
90 ROIs. Each ROI is defined as a node in brain FC network.
The time series of all voxels within each of ROIs are averaged
to obtain the mean time series of each ROI, and the Pearson
correlation coefficients are computed between each pair of mean
time series. Therefore, a 90 × 90 FC network is constructed.
Then a cut-off value in the range of [0, 1] is applied to FC
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FIGURE 1 | The idea of WRSVMC.

network to get binary undirected graph. Specifically, the weight
of the edge is 1 if there is an edge between two nodes, otherwise
the weight is 0.

In this paper, the following graph theory metrics in the
binary undirected graph are considered: degree, local efficiency,
shortest path and clustering coefficient. These graph metrics
are supported to be significantly different between the brain
connectivity networks of HC andMCI patients (29–31). For each
subject, 90 degrees, 4,005 shortest paths, 90 local efficiencies and
90 clustering coefficients are obtained and they are then utilized
as classification features for subsequent experiments.

The Weighted Random SVM Cluster
The Design of the WRSVMC
Machine learning techniques are widely utilized for pattern
recognition, among which the SVM model shows excellent
performance in classifying high-dimensional neuroimaging data
(32). However, only a single SVM is not stable and there is a
general problem of low classification accuracy for it. Bi et al.
(33) proposed the random SVM cluster (RSVMC) which showed
better generalization performance compared to a single SVM
classifier. However, it is noteworthy that the performance of
a single SVM classifier built in RSVMC may be considerably
different. The RSVMC adopts a simple voting rule that the same
weights are assigned to different SVMs, ignoring the differences
between strong classifiers and weak classifiers. Therefore, there is
still room for the improvement of the RSVMC algorithm.

We put forward a novel approach of WRSVMC in this paper.
Different weights are calculated for different SVM classifiers. The
higher the SVM’s accuracy is, the greater weight the SVM gets.
As a result, the influences of the base classifiers with excellent
classification performances are enhanced during the voting
process, promoting the discriminative ability of the WRSVMC.
Figure 1 exhibits the idea of our proposed WRSVMC.

In the first stage, the experimental sample set is split into
the “training and validation” set and the test set. Then, the
training process is followed. Specifically, a part of the samples
are randomly selected from the “training and validation” set as
the training set, and some features are randomly chosen from all
features to construct a SVM classifier. The remaining validation
set is used to calculate the single SVM’s classification accuracy
which is used as its weight. The training process is repeated for
n times to obtain n SVM classifiers with weights, resulting in a

FIGURE 2 | The training process of the WRSVMC.

WRSVMCwhich is more robust and accurate. Figure 2 describes
the training process of the WRSVMC.

The WRSVMC could be used to forecast the class label of
each test sample. Firstly, each test sample is fed into a WRSVMC
classifier, and the amount of votes for each sample’s label is
weighted. The total amount of votes belonging to class a is
denoted as Sa

Sa =
∑n

i = 1
I(fi (x) = a)×Wi (1)

where x represents a sample in the test set; fi (x) is the class
label predicted by i-th SVM based on the test sample; (·) is the
indicator function which takes values 0 and 1. If the test sample is
predicted to be class a, the value equals to 1; otherwise, the value
equals to 0.

Then the final predicted label A of the test sample is
represented by the label with themaximum total amount of votes.

A = Arg max(Sa) (2)

By comparing the predicted label with the actual label, we
could get the number of test samples that were correctly
classified, denoted as Ttrue. The classification accuracy Ptrue of the
WRSVMC is given by:

Ptrue =
Ttrue

T
(3)

where T is the number of samples in the test set.

The Classification of the WRSVMC
It is assumed that there are a total of N samples collected, of
which N1 is the number of HC and N2 is that of MCI patients,
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whereN = N1 +N2. Each sample has 4, 275 (90+ 4, 005+ 90+
90) dimensional features, then marking the label of MCI patients
as +1 and that of HC as −1. One of our tasks is to discriminate
between MCI patients and HC based on 4,275 features.

First, 198 samples from ADNI cohort are split into 125
samples as the “training and validation” set and 73 samples as the
test set. Next, 65 training samples are chosen from the “training
and validation” set, and 65 features are picked out from 4,275
dimensional features to train a single SVM classifier. The cost
parameter c for each SVM classifier is set to Inf , and the radial
basis function (RBF) kernel is selected with a bandwidth σ of
3. Then, the remaining validation set is used to calculate the
SVM’s classification accuracy, which represents the weight of
corresponding SVM. This training process is repeated for 500
times in the experiment.

The 73 test samples are put into the WRSVMC and each
of 500 SVMs votes at the same time. The amount of votes for
each SVM should be its weight, thus avoiding the disadvantages
of voting with equal rights. The results of 500 SVMs are
calculated and the class with the maximum total amount of
votes is considered as the predicted class of the new sample. The
number of the new samples that are correctly classified is divided
by 73, which represents the classification performance of the
WRSVMC.

The amount of base classifiers in the WRSVMC is initially
set to 500. In general, with expansion of the amount of SVM
classifiers, the WRSVMC could converge to lower generalization
errors. But excessive SVM classifiers also increase experimental
training time and even lead to overfitting. Therefore, the different
amounts of SVM classifiers need to be tested. We use the
classification accuracy of the WRSVMC as a guideline to decide
the optimal amount of SVM classifiers in the WRSVMC.

Feature Selection of the WRSVMC
Each SVM randomly selects features, resulting in different
classification performances. However, the SVMs with high
performances make more contributions to the performance of
the WRSVMC. We extract the features of the above-mentioned
SVMs and thus obtain the important features of the WRSVMC.
Details are as follows.

Firstly, the 73 unseen samples are utilized to evaluate the
performance of each of 500 weighted SVM classifiers. The SVMs
with classification accuracies above 50% are considered to be
effective classifiers and these SVMs would be retained in the
WRSVMC. Then the value of each feature of the selected SVMs
is multiplied by the corresponding weight as the score of the
feature, denoted as Scorei,j :

Scorei,j =
∑T

k = 1
Hk,j ×Wi (4)

where Hk,j represents the j-th feature value of the k-th test
sample.

The scores of the same feature are accumulated and the
features ranking in the top 400 in terms of total scores are
considered as important features (as shown in Figure 3).

Scorej =
∑n

i = 1
Scorei,j (5)

FIGURE 3 | The extraction of important features.

Feature selection is conducted because of the fact that some
input features are redundant and less relevant for the WRSVMC.
Specifically, the 65 dimensional features are randomly chosen
from the top p features of the 400 important features to
perform the WRSVMC. We select a value for p from the
set {70, 72, · · · , 400}. The classification performance of the
WRSVMC is regarded as a guideline to find the optimal p in the
experiment. The feature set of the top p features extracted from
the 400 important features of the WRSVMC with the highest
performance is considered as the optimal subset of features.
As a result, the most discriminative features are chosen and
meanwhile the redundant features are excluded.

In this study, we utilize the optimal subset of features to
explore the most discriminative brain areas. Firstly, we detect
the brain areas corresponding to each optimal feature. Then the
brain areas are ranked in accordance with the frequencies of brain
areas. The higher the frequency is, the more abnormal the brain
area becomes.

RESULTS

The Performances of WRSVMC
Figure 4 shows three boxplots comparing the generalization
performances of the WRSVMC, RSVMC (33) and a non-SVM
classifier, i.e., random forest (RF) which is an ensemble learner
and has considerably wide applications in neuroimaging data.
The box plots refer to the results of 50 experiments which
perform these three classification algorithm respectively. It can
be seen from the Figure 4 that the WRSVMC reports the
comparatively higher classification accuracies in the range of 75–
85% compared to the RSVMC with the range of 70–80% and
the RF with the range of 70–78%. The maximum accuracy of
the WRSVMC that we put forward is higher, and the overall
performance is better.

Frontiers in Psychiatry | www.frontiersin.org 4 July 2018 | Volume 9 | Article 340

https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychiatry#articles


Bi et al. WRSVM Analysis of MCI

FIGURE 4 | The generalization performance of the WRSVMC, RSVMC, and

RF.

TABLE 1 | The statistical significance of results between the algorithms.

Classifiers

(Mean ± SD)

WRSVMC RSVMC RF P-value

Accuracy (%) 0.80 ± 0.02 0.75 ± 0.03 0.73 ± 0.02 0.000a/0.000b

aThe P-value of the two-sample t-test between the WRSVMC and RSVMC.
bThe P-value of the two-sample t-test between the WRSVMC and RF.

Table 1 exhibits the statistical significance of results between
the WRSVMC and other two methods. The two-sample t-test is
conducted to examine the differences of the WRSVMC/RSVMC
and WRSVMC/RF respectively and the P-values are close to
0.00 and 0.00, which indicates that the differences between the
WRSVMC and other two classification methods are statistical
significance. In addition, the complexities of these three ensemble
classifiers depend on the number n of the base classifiers.
Accordingly, all the complexities of the three algorithms are O(n).
In a word, the experimental results show that our newWRSVMC
is highly effective and stable.

The Optimal Amount of Base Classifiers
The amount of SVM classifiers in the WRSVMC with the
minimum classification error is regarded as the optimal amount
of SVM classifiers. In the first place, we gradually adjust the
amount of SVMs from 20 to 600, with a step size of 10. Then,
the classification performances of the WRSVMC with different
amounts of SVMs are calculated. It can be seen from Figure 5

that our proposed WRSVMC based on all the original features
achieves a maximum accuracy of 83.56%, and it becomes stable
at the stage where the amount of the SVM classifier is 500.
Therefore, 500 is selected to be the optimal amount of the SVM
base classifiers.

The Important Features
The important features should make important influences on the
WRSVMC. We employ the score to measure the influence of

FIGURE 5 | The optimal amount of SVM classifiers.

TABLE 2 | The features with higher scores.

Score (rounded) Feature

13 ORBinf.L-IOGL

12 IFGoperc.L-PCL.R PHG.L- LING.L PAL.L- MTG.L

HIP.L -PCL.R SMG.R- TPOsup.L

11 REC.L- PHG.L SPG.R- MTG.R LING.L- HES.L

SMG.L- ITG.L SMA.R- CAL.L ORBinf.L- ROL.R

each feature, and finally extract the features ranking in the top
400 in terms of scores as important features. Table 2 shows the
features whose scores are rounded to 13, 12, and 11 sequentially.
All of the features listed are the shortest paths between two
ROIs, indicating that shortest path makes greater contribution
to classification compared to other graph theory metrics. The
features with the scores rounded to 13 or 12 are the shortest paths
between ORBinf.L and IOG.L, IFGoperc.L and PCL.R, ORBinf.L
and IOG.L, PHG.L and LING.L, PAL.L and MTG.L, HIP.L and
PCL.R, SMG.R, and TPOsup.L respectively.

The Optimal Subset of Features
Feature selection is performed for exploring the optimal subset
of features from 400 “important features” to further enhance
the final performance. The optimal p (70 ≤ p ≤ 400)
could be found when the WRSVMC using the features set which
consists of the top p features achieves the highest performance. As
shown in Figure 6, the WRSVMC reports the highest accuracy
of 87.67% when p is 270. Hence, the optimal subset of features
comprises the top 270 dimensional features. At the same time,
the WRSVMC achieves a sensitivity of 91.67% and specificity of
83.78% based on the most discriminative features. These features
are used to explore the corresponding brain areas in the next
experiment.
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FIGURE 6 | The number of optimal features.

The Abnormal Brain Areas
Figure 7 depicts the locations of ROIs. Each node in the graph
represents a ROI. The higher the frequency is, the larger the
node becomes. The specific frequencies for some discriminative
ROIs are shown in Table 3. The brain areas corresponding to
the optimal subset of features with relatively higher frequecnies
(11, 10 and 9) are as bellow: gyrus rectus (REC.L), precentral
gyrus (PreCG.R), olfactory cortex (OLF.L), middle occipital
gyrus (MOG.R), median cingulate and paracingulate gyri
(DCG.L), superior parietal gyrus (SPG.L), inferior frontal gyrus
(IFGoperc.L) and middle frontal gyrus (ORBmid.R).

DISCUSSION

Classification Effect
In this paper, we combine RS-fMRI with the graph theory,
and put forward a novel approach of WRSVMC to accurately
distinguish MCI patients and HC. RS-fMRI is a reliable tool in
mapping the brain FC networks due to its high-spatial resolution
and noninvasive. Graph theory represents a powerful framework
for the study of complex brain network properties. Furthermore,
to the best of our knowledge, the WRSVMC is first applied
to the neuroimaging data, which may be of great impact on
neuroimaging research. The WRSVMC not only achieves a high
accuracy of 87.67% (as shown in Figure 6), but also is employed
to facilitate the detection of abnormal brain areas, which provides
valuable insight into the diagnosis of MCI.

The SVM as a high-dimensional pattern classification
technique has attracted more and more attention recently and
has been showed to be an effective approach for the identification
of MCI patients using medical imaging data. Zhang et al. (34)
employed a multi-kernel SVM (MK-SVM) method for 91 MCI
vs. 50 HC classifications and achieved an accuracy of 76.4%.
Granziera et al. (35) used the SVM classifier to reach an accuracy
of 75%when separating 42MCI and 77 HC. Ye et al. (36) adopted

FIGURE 7 | The frequency of each brain area.

the MK-SVM method fusing multi-modality data and achieved
an accuracy of 82.13% discriminating between 52 HC and 99
MCI patients. Long et al. (37) reported an accuracy of 82.8%
using the SVM based identification algorithm to classify 64 MCI
patients from 60 HC. The performance metrics, e.g., accuracy,
sensitivity and specificity of these SVM algorithms are listed in
Table 4.

Most of the single SVM algorithms dealing with neuroimaging
data possess the low classification accuracy because of the small
number of samples and image noise. In addition, plenty of
researches only focus on classification and rarely study abnormal
brain regions associated with MCI. To address these problems,
we innovatively propose the WRSVMC which represents the
weighted ensemble of individual SVM, and produces better
classification performance compared to a single SVM classifier.
Feature selection is a crucial stage to deal with large-size
feature vectors based on the graph theory metrics in our
proposed WRSVMC algorithm. Specifically, we utilize the score
to assess the influence of each input feature, and extract
the top 400 features as the important features. Then, the
classification performance of the WRSVMC is considered as
a criterion to explore the optimal subset of features from the
400 important features. Finally, we utilize the optimal subset
of features to search the corresponding brain areas which
are mapped in Figure 7. The high accuracy of 87.67% (as
shown in Figure 6) given by the WRSVMC suggests that the
abnormal brain areas that we have found are considerably
convincing.

In the process of building a WRSVMC, the training set is
randomly selected from all the data and the features are randomly
chosen from all the features, reflecting the randomness of the
WRSVMC. As a result, each SVM classifier is considerably
differentiated due to the random samples and random features,
which could ensure that there is no overfitting issue during
the training procedure of the proposed WRSVMC method to
some extent. In addition, the WRSVMC works well on the test
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TABLE 3 | The brain areas with higher frequency.

Frequency Brain area

11 REC.L

10 PreCG.R OLF.L

9 MOG.R DCG.L SPG.L IFGoperc.L ORBmid.R

8 SFGdor.L ORBmid.L SMA.R SFGmed.L INS.R

ACG.R DCG.R HIP.R PHG.L PHG.R

PCL.R PUT.L HES.L TPOsup.L

set, which demonstrates an excellent generalization performance,
implying a very low possibility of overfitting.

In the experiment, some initial parameter values are set to
build the WRSVMC. We now discuss whether these parameter
values are appropriate. On the one hand, the cost parameter c for
each SVM is set to Inf and the RBF kernel with a bandwidth σ of 3
is chosen. Although we artificially select these specific parameter
values, we test other parameter values and find no considerable
differences with respect to the classification accuracy of the
WRSVMC, which indicates that the WRSVMC is stable and
universal. On the other, a cut-off value of 0.25 is employed for
the brain FC network. When a larger cut-off value is given, the
network turns into more granular and fragmented. We conduct
a grid search of different cut-off values and find that the optimal
cut-off value is still 0.25.

Analysis of the Brain Areas With Higher
Frequencies
Our findings suggest that abnormal brain areas associated with
MCI mainly involve in gyrus rectus, olfactory cortex, precentral
gyrus, and middle occipital gyrus. Next, detailed analysis of these
brain areas was discussed.

Gyrus Rectus
The gyrus rectus possesses the highest frequency compared to
other ROIs, which indicates that the gyrus rectus makes a great
contribution to our WRSVMC algorithm.

The gyrus rectus is located in the frontal lobe’s basal surface
(38). The frontal lobe plays an important part in executive
function, memory, decision-making and so on Fang et al. (39).
Hence, the gyrus rectusmay associate with cognitive andmemory
functions. Joo et al. (40) reported that the gyrus rectus resection
had a temporary negative influence on memory recall and
language. Qiu et al. (41) showed that the gyrus rectus played a
vital role in efficient communications. Kristine et al. (42) found
that the gyrus rectus was crucial to inhibit improper behavior.
Georgiopoulos et al. (43) reported that the gyrus rectus may be
relevant to executive function.

A great deal of previous literature showed that Alzheimer’s
disease (AD) was linked to abnormal gyrus rectus (44, 45).
However, little was known about the relationship between MCI
and abnormal gyrus rectus. Neuroimaging literature has shown
that MCI is a precursor to AD (46, 47), indicating that MCI
patients may have the certain gyrus rectus abnormality which is
found in patients with AD. In this paper, we considered gurus
rectus to be a newly discovered abnormal brain area in patients

TABLE 4 | The performance of our WRSVMC and existing SVM algorithm.

Author Method Accuracy(%) Sensitivity(%) Specificity(%)

(34) MK-SVM 76.4 81.8 66

(35) SVM 75 60 83

(36) MK-SVM 82.13 87.68 71.54

(37) SVM 83.1 82.8 83.3

This paper WRSVMC 87.67 91.67 83.78

with MCI due to the highest frequency. Bahar-Fuchs et al. (48)
found out considerable amyloid-β burden in gyrus rectus region
of amnestic MCI patients compared to HC, which supported our
findings to some extents.

The abnormal gyrus rectus is likely to bring about deficits in
executive and cognitive functions and lead to memory loss in
patients with MCI. The discovery of this new abnormal brain
area provides a new perspective for the clinical diagnosis and
intervention of MCI.

Olfactory Cortex
The olfactory cortex obtains a relatively high frequency which
suggests that the olfactory cortex plays a decisive role in our
WRSVMCmethod.

The olfactory cortex refers to the classical cellular structure
of nervous cortex, which is primarily involved in associative
learning and memory (49). Yaniv et al. (50) observed the changes
in the olfactory (piriform) cortex in the odor memory task.
Daniels et al. (51) found out the crucial role of the olfactory
cortex in emotional memory processing. Stone et al. (52) reported
that the stimulation of olfactory cortex led to enhanced spatial
memory. Goto et al. (53) showed that the verbal memory function
had a positive correlation with the olfactory cortex volume.

The abnormal olfactory cortex was observed in numerous
MCI studies. Zhang et al. (54) found out the disrupted
connectivity between the right olfactory cortex and other hub
areas in patients with amnestic MCI. Kirova et al. (55) mentioned
thatMCI patients showed neurofibrillary tau tangles and amyloid
plaques in the olfactory cortex. Risacher et al. (24) found that
olfactory cortex’s in vivo activation was lessened in MCI patients.
Vasavada et al. (56) observed the alterations of olfactory cortex
activity in patients with MCI. Guzman et al. (57) discovered that
olfactory cortex and hippocampus volume play the important
roles in affecting memory impairment in patients with amnestic
MCI.

The abnormal olfactory cortex may refer to a decline in
higher-order memory processing and spatial cognitive function
in MCI patients. The discovery of olfactory cortex provides
assistance for clinical diagnosis of MCI.

Precentral Gyrus
The precentral gyrus gets a comparatively high frequency which
make clears that the precentral gyrus is a crucial part in our
WRSVMC algorithm.

The precentral gyrus is a major motor cortex which is parallel
to the central sulcus. Qiu et al. (41) mentioned that the precentral
gyrus is involved in language, memory and motor functions,
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and have a large impact on efficient communications. Sakurai
et al. (58) discoverd that the damage of the precentral gyrus led
to acalculia with decreased verbal short-term memory. Sakreida
et al. (59) found that the core regions of the precentral gyrus
were activated when understanding the language content. Chang
(60) reported that the 6-year-old children learning instrumental
musical for more than a year showed alterations in the precentral
gyrus.

Several studies of MCI reported the correlations betweenMCI
and abnormal precentral gyrus. Chirles et al. (23) found that
bilateral precentral gyrus showed increased correlations with
other brain areas after an exercise intervention in theMCI group.
Han et al. (61) pointed out significantly increased connectivity
between the posterior cingulate cortex and the precentral gyrus
in MCI patients. Rose et al. (62) observed considerably increased
mean diffusivity measurements in the right precentral gyrus in
MCI patients. Lin et al. (63) mentioned that the right precentral
gyrus was identified with significantly interaction effects by
employing the analysis of covariance in patients with MCI.

The abnormal precentral gyrus may lead to challenges in
learning knowledge, sluggish behavior, and reduced executive
functions in MCI patients. The discovery of precentral gyrus
provides new insights into the identification of MCI.

Middle Occipital Gyrus
The middle occipital gyrus gains the relatively high frequency
which means that the middle occipital gyrus has a significant
influence on our WRSVMCmethod.

The middle occipital gyrus is the largest gyrus in the occipital
lobe, which is the visual processing center of brain. Mickley
Steinmetz et al. (64) observed that the amygdala activation was
associated with modulation of the middle occipital gyrus when
processing emotional stimuli. van Dam et al. (65) reported that
the fractional amplitude of low frequency fluctuations (fALFF)
had a significant correlation with short-term memory within
left middle occipital gyrus. Lauer et al. (66) found that patients
with abnormal middle occipital gurus had a poor performance
on visual memory. Arsalidou et al. (67) found that static faces
showed less activity than dynamic faces in left middle occipital
gyrus.

The middle occipital gyrus abnormality was found in a mass
of MCI studies. Jacobs et al. (68) found out the significantly
increased connectivity from the right middle occipital/angular
gyrus to the inferior parietal lobule in amnestic MCI patients.
Alexopoulos et al. (69) observed the lower perfusion in the left
middle occipital lobe in MCI patients. Makizako et al. (70) found
that poor performance in the 6-min walking distance (6MWD)
was linked to the decreased cerebral gray matter volume in
middle occipital gyrus in MCI patients. Wang et al. (25) found
out the significantly decreased FC between the middle occipital
lobe and the left thalamus in MCI patients.

The abnormal middle occipital gyrus may result in visual
memory impairment and cognitive loss in MCI patients. The
discovery of middle occipital gyrus offers assistance for clinical
diagnosis and discrimination of MCI.

LIMITATIONS

The current study still has some limitations. First of all, the
internationally accepted AAL template is employed to define the
brain areas and the whole brain is divided into 90 ROIs, which
leads to the fact that the division scale of the complex brain
is still not small enough. The template for dividing the brain
can be selected at a smaller scale to offer more informative and
precise description for brain neural network. Then, the choice
of graph theory metrics in this paper is based on the existing
literature. However, there is no unified conclusion on how to
select the most discriminative input features. With the deepening
of research, more significant and meaningful predictor features
can be considered to build the WRSVMC algorithm. Finally,
the neuroimaging data we have obtained is the fMRI data of all
subjects. Othermodality of data could be utilized at the same time
such as structural magnetic resonance imaging (sMRI), which
could provide complementary information.
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