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The habenula (Hb), a bilateral nucleus located next to the dorsomedial thalamus, is of

particular relevance to psychiatric disorders based on preclinical evidence linking the Hb

to depressive and amotivational states. However, studies in clinical samples are scant

because segmentation of the Hb in neuroimaging data is challenging due to its small

size and low contrast from the surrounding tissues. Negative affective states dominate

the clinical course of schizophrenia and bipolar disorder and represent a major cause

of disability. Diagnosis-related alterations in the volume of Hb in these disorders have

therefore been hypothesized but remain largely untested. To probe this question, we used

a recently developed objective and reliable semi-automated Hb segmentation method

based on myelin-sensitive magnetic resonance imaging (MRI) data. We ascertained

case-control differences in Hb volume from high resolution structural MRI data obtained

from patients with schizophrenia (n = 95), bipolar disorder (n = 44) and demographically

matched healthy individuals (n = 52). Following strict quality control of the MRI data,

the final sample comprised 68 patients with schizophrenia, 32 with bipolar disorder and

40 healthy individuals. Regardless of diagnosis, age, sex, and IQ were not correlated

with Hb volume. This was also the case for age of illness onset and medication (i.e.,

antipsychotic dose and lithium-treatment status). Case-control differences in Hb volume

did not reach statistical significance; their effect size (Cohen’s d) was negligible on the

left (schizophrenia: 0.14; bipolar disorder: −0.03) and small on the right (schizophrenia:

0.34; bipolar disorder: 0.26). Nevertheless, variability in the volume of the right Hb was

associated with suicidality in the entire patient sample (ρ = 0.29, p = 0.004) as well as

in each patient group (bipolar disorder: ρ = 0.34, p = 0.04; schizophrenia: ρ = 0.25,

p = 0.04). These findings warrant replication in larger samples and longitudinal designs

and encourage more comprehensive characterization of Hb connectivity and function in

clinical populations.
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INTRODUCTION

Schizophrenia (SCZ) and bipolar disorder (BD) consistently
rank among the leading causes of disability worldwide (1).
These disorders show similarities acrossmultiple levels, including
shared genetic risk factors (2, 3), overlapping brain structural
(4–7) and cognitive deficits (8, 9) and common abnormalities
in reality testing and affect regulation (10, 11). Amongst these
multiple components of impairment, there is an increasing
emphasis on the role of negative affective states because they
dominate the clinical picture of both disorders. It is estimated
that about 50% of patients with SCZ experience depression
(12) while depressive symptoms are more pervasive than
manic/hypomanic or mixed symptoms in the natural history of
BD (13, 14). A similar overlap is noted for amotivational states
as patients with either SCZ or BD seem to report similar rates of
anhedonia, avolition and asociality (15, 16). Both disorders are
also associated with increased suicidality in recent onset and in
chronic patients (17–20).

Using the Research Domain Criteria (RDoC) framework
(21), current mechanistic models of psychopathology in SCZ
and BD implicate abnormalities in the Positive (PVS) and
Negative Valence (NVS) Systems. In the case of SCZ, erratic
signaling in response to reward is thought to disrupt stimulus-
outcome associations resulting in inappropriate value (or
salience) attribution to stimuli and predictive cues; consequently,
appropriate reward responses are blunted leading to negative
symptoms while responses to irrelevant stimuli are enhanced,
leading to psychotic symptoms (22–25). In the case of BD, the
prevailing hypothesis is that responsivity to rewarding stimuli
and cues is increased in mania and blunted during depressive
episodes (25, 26). Despite this progress, there are significant gaps
to our understanding of valence processing in SCZ and BD and
particularly with regards to the contribution of the Negative
Valence Systems.

Although the PVS and NVS are considered separately within
the RDoC framework, both animal and human studies indicate
that their corresponding circuits intersect in the anterior (ACC)
and posterior cingulate cortex (PCC), regions of the lateral and
medial prefrontal cortex (PFC), insula, amygdala/hippocampus
complex (AMG/HIPP), striatum, thalamus, ventral tegmental
area (VTA) and habenula (Hb) (27–29). Within this extensive
network, the Hb has a unique role as it preferentially signals
negative outcomes or cues (30). The Hb is a bilateral nucleus,
with lateral (LHb) and medial (MHb) subdivisions, located next
to the dorsomedial thalamus. One histological study showed that
the lateral subdivision is larger on the left than the right while no
left-right differences have been noted for the medial subdivision
in postmortem human brain (31). Notably, the asymmetrical
lateralization of the Hb seems phylogenetically conserved (32,
33). Preclinical studies also suggest that the LHb and MHb differ
in their anatomical connectivity with the rest of the brain. The
LHb is mainly connected with forebrain areas, hypothalamus, the
globus pallidus and ventral tegmental area and the medial PFC
and interacts with dopaminergic, serotonergic and noradrenergic
systems (34). The MHb primarily receives inputs from the
medial and lateral septal nuclei while its efferent connections

are almost entirely directed to interpeduncular nucleus (IPN)
and is characterized by the abundance of nicotinic acetylcholine
receptors (nAChRs) (34). In humans, the functional connectivity
of the Hb largely follows its anatomical connections, but also
extends to other neocortical regions, such as ACC, PCC, and
dorsal PFC, the AMG/HIPP and the ventral striatum (35–37).
Increased activity in the LHb neurons is thought to elicit aversion
by exciting GABAergic neurons in the rostromedial tegmental
nucleus thus reducing activity in the VTA dopaminergic neurons
that project to the medial PFC (38). Thus the LHb has been
shown to be reliably inhibited by rewarding cues and outcomes
while being activated by negative stimuli and predictive cues
(39–42). The MHb has been implicated in mood regulation
based on the depressive-like behaviors associated with targeted
genetic lesions of this region in rodents (34, 43). Additionally,
inactivation of cholinergic input from the MHb to the nucleus
accumbens (NAc) via the IPN has been linked to fear (44) and
anhedonia (43, 45).

Despite the potentially important role of the Hb for negative
affect processing in BD and SCZ, research on its morphology and
function is generally sparse. This is partly due to the multiple
methodological challenges in imaging the Hb in vivo because this
region is very small and difficult to delineate from the adjacent
thalamus (46–48). A single post-mortem study of the Hb in
patients with Major Depressive Disorder (MDD; n = 6), BD
(n = 8) and SCZ (n = 17) found that volume reduction in the
Hb was associated with affective disorders (49). This association
was contradicted in subsequent in-vivo imaging studies that were
unable to find case-control differences in the Hb volume in
patients with MDD (50, 51) but reported a significant reduction
in patients with SCZ (52). A further study suggested that Hb
volume reductions may be restricted to unmedicated BD patients
and to depressed women with MDD (53). Key methodological
concerns about the inconsistencies in the Hb volumetric studies
relate to the small number of patients involved (range 16–34) and
the reliance on manual Hb segmentation.

The primary aim of the current study was to test for Hb
volume reductions in patients with either BD or SCZ compared
to healthy individuals using a recently developed objective
semi-automated Hb segmentation method with reliable and
reproducible boundary definitions (46, 47). A secondary goal
was to explore the relationship between the Hb volume with the
severity of blunted affect, depression, emotional withdrawal and
suicidality in patients with SCZ or BD given the association of the
Hb with negative affective states.

METHODS

Participants
We recruited individuals with SCZ (n= 95), individuals with BD,
type I (n = 44), and healthy individuals (HI; n = 52). Patients
were recruited via clinician referrals from the psychiatric services
of the Mount Sinai Health System, NY. Healthy individuals were
recruited via advertisement in the local press. The eligibility
criteria for all participants were (a) 18–45 years; (b) English
fluency; (c) IQ > 70; (d) no history of head trauma or loss of
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consciousness; (e) no current or lifetime history of medical or
neurological disorders; (f) no lifetime history of substance use
disorder; (g) no MRI contra-indications (e.g., metal implants,
claustrophobia). In addition, patients fulfilled diagnostic criteria
of either BD, type I or SCZ based on the Diagnostic and
Statistical Manual of Mental Disorders (DSM-5) (54) while
healthy individuals were included if they had no lifetime personal
history of mental disorders and no family history (up to second-
degree relatives) of SCZ or BD.

The diagnostic status of all participants was determined
using the research version of the Structured Clinical interview
for DSM-5 (55) supplemented by information from medical
records in the case of patients. In all participants, the
presence and severity of psychopathology in the preceding 2-
weeks were assessed immediately prior to the scan using the
expanded 24-item Brief Psychotic Rating Scale (BPRS) (56)
which allows decomposition of the clinical profile into four
dimensions comprising positive symptoms, negative symptoms,
depression/anxiety and disorganization/mania (57, 58). Master’s-
level research coordinators with at least 2 years of clinical
experience conducted the assessments following standardized
training to ensure inter-rater reliability of at least 0.90 for
diagnostic and psychopathology ratings. An estimate of IQ was
obtained from all participants using the Wechsler Abbreviated
Scale of Intelligence, 2nd Edition (WASI-II) (59). Medication
type and dose was recorded in all patients and the daily
antipsychotic dose was converted to chlorpromazine equivalents
(CPZE) (60). The study was approved by the Institutional Review
Board of the Icahn School of Medicine at Mount Sinai (ISMMS).
All participants provided written informed consent.

Neuroimaging Acquisition
Structural imaging data (T1-weighted and T2-weighted)
were acquired at ISMMS on a 3T Skyra scanner (Siemens,
Erlangen, Germany) with a 32-channel receiver coil. Anatomical
acquisitions were identical for all participants. The T1-weighted
(T1w), 3D magnetization-prepared rapid gradient-echo
(MPRAGE) sequence was acquired with the following
parameters: Field of view (FOV) = 256 × 256 × 179 mm3,
matrix size: 320 × 320, 0.8mm isotropic resolution, Time to
Echo (TE)/Repetition time (TR) = 2.07/2,400ms, inversion
time (TI) = 1,000ms, 8◦ flip-angle with binomial (1, −1)
fat saturation, bandwidth 240 Hz/Pixel, echo spacing 7.6ms,
in-plane acceleration (GRAPPA; GeneRalized Autocalibrating
Partial Parallel Acquisition) factor 2 and total acquisition time
of ∼7min. The T2-weighted (T2w), 3D variable-flip angle
turbo-spin-echo (SPACE) sequence was acquired with the
following parameters: FOV: 256 × 256 × 179 mm3, matrix size:
320 × 320, 0.8mm isotropic resolution, TE/TR = 565/3,200ms,
120◦ flip-angle, bandwidth 680 Hz/Pixel, echo spacing 3.87ms,
in-plane acceleration GRAPPA factor 2, turbo factor 314, and
total acquisition time of∼7min.

Habenula Extraction
We applied the FreeSurfer processing of the HumanConnectome
Project Pipelines (61) on the T1w and T2w images, including
gradient non-linearity distortion correction (62), anterior

commissure (AC)-posterior (PC) commissure alignment and
T2w-to-T1w registration, but excluded bias field correction
which reduces Hb-thalamus contrast (46). Myelin-sensitive
images were created using T1w-to-T2w ratios (63).

From the myelin-sensitive, T1w and T2w images,
we generated both binary segmentation and probability
map of the left and right Hb using the objective semi-
automated human Hb segmentation scheme (www.github.com/
junqianxulab/habenula_segmentation). Information regarding
the development and validation of this approach has been
described in previous publications (46, 47). Specifically, (i) we
have corroborated the method used here against Hb boundary
definitions derived from in vivo 7Tmyelin-sensitive images (T1w
over T2w ratio images), 7T ex vivo proton density-weighted
images and images from the Allen Brain Atlas (http://www.
brain-map.org/); (ii) an expert neuroanatomist (Dr. Thomas
Naidich) reviewed and approved the segmented Hb boundaries
in previous methodological studies (46, 47); (iii) we have tested
inter-site reliability by obtaining 3T scans from the same healthy
individuals (n = 12) at 3 different sites; (iv) we have affirmed
inter-site reliability by obtaining 3T scans from 27 healthy
individuals scanned twice at the Icahn School of Medicine at
Mount Sinai with an interval of 2 weeks; and (v) we have shown
better reliability of our method compared to the geometric
method (48). Briefly, this scheme consists of five steps: (i) Hb
region-of-interest initialization, (ii) intensity thresholding, (iii)
region growing segmentation, (iv) lateral and inferior geometric
constraint, and (v) partial volume estimation (46). The only
manual process was to select an initialization voxel within each
of the left and right Hb in step (i). The output of this algorithm
provides a probabilistic map of the right and left Hb and Hb
volumes in mm3. The structural processing and Hb extraction
steps were done blind to diagnosis.

Quality Control
The Hb was covered by 4 coronal slices and 5 axial slices on
average across all participants. There was no difference in
the number of slices covering the right and left habenula or
between the diagnostic groups. All scans were reviewed by a
clinical radiologist to exclude incidental pathological findings
including pineal gland cysts. None of the participants was
excluded on these grounds. To minimize biases in the Hb
segmentation, we applied strict quality control criteria blind
to diagnosis. Each structural scan was included only if passing
a quality control process that involved manual viewing (done
by coauthors JJ and GD) and rating of each scan on a 4-point
scale (1 = poor and 4 = excellent). A scan with a score = 4
did not show any evidence of head motion, significant ringing
or blurriness, a scan with a score = 3 showed minor ringing, a
scan with a score = 2 showed posterior blurriness, and a scan
with a score = 1 showed significant blurriness due to severe
head motion and ringing. These ratings were based on the
quality control criteria and protocols developed by the Human
Connectome Project (https://www.humanconnectome.org/
storage/app/media/documentation/s1200/HCP_S1200_Release_
Appendix_IV.pdf).
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Participants with at least one poor quality scan (i.e., a rating
of 1 or 2 for either T1w or T2w scans) were excluded from
further analyses. After the Hb segmentation, the results were
manually inspected (by coauthors JJ, JWK, and GD) for under-
and over-estimation, and atypical shape (48). Following quality
control, the final sample comprised 140 participants (73% from
the initial sample; 68 patients with SCZ, 32 patients with bipolar
disorder, 40 healthy participants) (Table 1). Excluded individuals
were similarly distributed across diagnostic groups. The excluded
participants did not differ compared to the remaining sample
in terms of age (p = 0.2), sex (p = 0.8), total BPRS score
(p= 0.3), blunted affect (p= 0.9), depression (p= 0.6), emotional
withdrawal (p = 0.5) and suicidality (p = 0.9). Representative
Hb segmentation probability maps for each diagnostic group are
shown in Figure 1.

Lastly, in order to ensure no group-level biases in the
overestimation of the Hb volume along the emergence of the
fasciculus retroflexus (FR) (48, 64), we computed the average
probabilistic maps of the Hb, for each group, after normalizing
each individual map to the MNI template (Figure 2). There was
no observable overestimation along FR for any of the diagnostic
groups.

Statistical Analyses
Group differences in age, sex, and IQ were examined using
t- and χ2 tests as appropriate. The study sample (n = 140)

was powered at α = 0.05 and β = 0.20 for an effect size
of 0.5 for each case-control comparison. This effect size was
chosen as it is large enough to be considered meaningful
(65) while remaining conservative despite the reported effect
sizes of approximately 0.7 in the two previous positive studies
(52, 53). The normality of distribution of the continuous
variables of interest was tested using one-sample Kolmogorov–
Smirnov test. After confirming the normality of the Hb volume
distributions within the entire sample and within each group
(p > 0.1 for all tests), the effect of diagnosis was tested using
analyses of variance models (ANOVA). We used Cohen’s d to
express the effect size of case-control differences. Hypotheses
testing Spearman’s correlations were computed between the
right and left Hb volume and BPRS items of depression
(item 3), suicidality (item 4), blunted affect (item 16) and
emotional withdrawal (item 17); A p-value of 0.006 was
considered as significant following Bonferroni correction for
eight comparisons.

Associations between left and right Hb volume and
demographic, cognitive and clinical variables [age of onset,
daily antipsychotic dose (in CPZE), and lithium treatment
status (binarized as on or not-on)] were assessed using
Pearson’s or Spearman correlation or χ2 tests as appropriate.
Statistical significance for these latter analyses was set at p < 0.05
uncorrected to ensure that all potentially informative results were
reported.

TABLE 1 | Study sample characteristics.

Variable Healthy

individuals

N = 40

Patients with

bipolar disorder

N = 32

Patients with

schizophrenia

N = 68

Age, mean (SD), years 29.78 (8.65) 28.19 (8.74) 27.64 (7.37)

Women, no (%) 16 (40%) 12 (37.5%) 19 (28%)

IQ, mean (SD)a 119.50 (15.65) 103.78 (16.91) 93.12 (16.0)

Age of onset, mean (SD), years n/a 20.52 (4.75) 21.74 (5.03)

BPRS total score, mean (SD)b 24.16 (0.37) 46.83 (17.89) 50.94 (19.55)

BPRS positive symptoms score, mean (SD)c 4.0 (0) 9.90 (5.25) 12.87 (6.21)

BPRS negative symptoms score, mean (SD)d 3.03 (0.17) 4.21 (1.84) 6.67 (3.88)

BPRS depression/anxiety symptoms score, mean (SD)b 4.0 (0) 9.03 (4.42) 8.56 (4.97)

BPRS mania/disorganization

symptoms score, mean (SD)e
5.0 (0) 11.37 (8.54) 8.00 (5.22)

Antipsychotic dose, mean (SD), CPZEf n/a 232.48 (210.33) 269.86 (224.48)

Any antipsychotic, n (%) n/a 27 (84%) 62 (91%)

First-generation antipsychotics, n (%)*,f n/a 6 (19%) 12 (18%)

Second-generation antipsychotics, n (%)*,f n/a 27 (84%) 56 (82%)

Antidepressants, n (%)f n/a 8 (25%) 20 (29%)

Lithium, n (%)g n/a 15 (47%) 4 (6%)

Anti-Epileptic n (%)f n/a 6 (19%) 14 (21%)

Two or more medication classes, n (%) n/a 19 (59%) 30 (44%)

No medication, n (%) n/a 1 (3%) 2 (3%)

BPRS, Brief Psychiatric Rating Scale; CPZE, chlorpromazine equivalents; n/a, not applicable.

In the BPRS symptoms are coded as 1 (absent) to 7 (extremely severe); BPRS Total Score, sum of scores of the 24 items; BPRS positive symptoms, sum of scores for hallucinations,

unusual thought content, bizarre behavior items; BPRS negative symptoms, sum of scores for blunted affect, emotional withdrawal, motor retardation items; BPRS Depression/Anxiety

Scores, sum of scores for anxiety, depression, suicidality, guilt items; BPRSMania/Disorganization Scores, sum of scores for motor hyperactivity, elevatedmood, excitement, distractibility,

grandiosity items.

*Some patients were on both first and second-generation antipsychotics.

BD, Bipolar Disorder; HI, healthy individuals; SCZ, Schizophrenia; aHI > BD > SCZ; bSCZ = BD > HI; cSCZ > BD > HI; dSCZ > BD = HI; eBD > SCZ > HI; fBD = SCZ; gBD > SCZ;

based on appropriate tests at p < 0.05.
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FIGURE 1 | Representative coronal views of myelin-sensitive (T1w/T2w, top row) images, and the habenula segmentation probability map (bottom row, in red) for a

patient with schizophrenia (A), a patient with bipolar disorder (B) and a healthy participant (C).

All analyses were conducted separately for absolute and
total intracranial volume (ICV)-corrected Hb volumes. In each
individual dataset, we used the FreeSurfer image analysis suite
(v.5.3.0; http://surfer.nmr.mgh.harvard.edu/) to extract the ICV.
Hb volumes were corrected for variation in ICV using an
established formula (66): Voladj = Vol− β∗(ICV− ICV), where
Voladj is the ICV-adjusted volume,Vol is the original uncorrected
volume, β is the slope from the linear regression of Vol on ICV,
and ICV is the mean ICV across all participants. As the results
(i.e., group differences and correlations with clinical symptoms)

were statistically unchanged, we report the findings from the
analyses using absolute volumes.

RESULTS

Tables 1, 2 summarize the sample characteristics and Table 3

shows the mean absolute values of the Hb volumes per diagnostic
group and sex. The groups did not significantly differ in age or sex
(Table 1) and the patients’ groups did not differ in age of onset or
BPRS total scores (Table 1).
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FIGURE 2 | Group average habenula (Hb) probability maps. (A) Sagittal, (B)

coronal, and (C) axial views. For each diagnostic group, the Hb probability

map represents the average of the participants’ unthresholded Hb maps. The

overlap of the maps between the three diagnostic groups is shown in purple.

For visualization a threshold of 0.1 (10%) was applied. Red = Hb probability

map of the patients with schizophrenia, Orange = Hb probability map of the

patients with bipolar disorder, Blue = Hb probability map of the healthy

individuals.

Effect of Potential Confounding Variables
Regardless of diagnosis, the association between age and the Hb
volumes was negligible and not statistically significant (all |r| <

0.05). Similarly, there were no differences in Hb volumes between
men and women (t < 0.43, p > 0.87). Although the groups
differed in IQ (Table 1), this was not associated with the Hb
volumes (all |r| < 0.1). Analyses restricted in patients only found
no significant associations between the Hb volumes and age at
illness onset (all |r| < 0.1) or antipsychotic dose (all |r| < 0.15).
No difference in Hb volumes was identified in patients with BD
based on lithium treatment status (t < 0.94, p > 0.34, for either
left or right Hb).

Effect of Diagnosis
We did not find a statistical significant effect of diagnosis in
Hb volumes (Right Hb: F = 1.59, p = 0.21; Left Hb: F = 0.98,
p = 0.38) (Figures 2, 3, Table 3). The results remain unchanged
when we used repeated measures ANOVA with hemisphere (left,
right) as the within-subject factor and diagnosis as between-
subject factor. Male patients with schizophrenia had larger right
Hb than healthy male participants but this analysis was only
nominally significant at p = 0.01, uncorrected for multiple
comparisons. Adding sex, age or IQ as covariates to the ANOVA
models did not affect the results either. In SCZ, the effect size of
case control differences was d= 0.14 and d= 0.34 for the left and
right Hb volume respectively. In BD, the effect size of case control
differences was d = −0.03 and d = 0.26 for the left and right Hb
volume respectively.

Correlation With Clinical Symptoms
Consistent with our hypotheses we examined correlations
between the right and left Hb and BPRS items of depression,
suicidality, blunted affect and emotional withdrawal. The right
Hb volume was significantly and positively correlated with
suicidality (Spearman’s ρ = 0.29, p = 0.004) in the entire patient
sample (Figure 4) as well as in each diagnostic group (BD:
ρ = 0.34, p = 0.04; SCZ: Spearman’s ρ = 0.25, p = 0.04). No
association was found between the left and right Hb volume
and depression, blunted affect and emotional withdrawal even at

TABLE 2 | Patients’ clinical profile.

BPRS items

Mean (SD)/(range)

Patients with bipolar

disorder

N = 32

Patients with

schizophrenia

N = 68

Somatic concern 1.62 (1.69)/(1–7) 2.04 (2.08)/(1–7)

Anxiety 2.94 (1.831)/(1–7) 2.91 (1.86)/(1–7)

Depression 2.78 (1.91)/(1–7) 2.57 (1.99)/(1–7)

Suicidality 1.72 (1.27)/(1–5) 1.62 (1.45)/(1–7)

Guilt 1.44 (0.759)/(1–3) 1.46 (1.37)/(1–7)

Hostility 1.47 (1.21)/(1–7) 1.54 (1.33)/(1–7)

Elevated mood 2.72 (2.14)/(1–7) 1.57 (1.34)/(1–7)

Grandiosity 2.42 (2.04)/(1–7) 1.84 (1.78)/(1–7)

Suspiciousness 2.59 (1.93)/(1–7) 3.29 (2.24)/((1–7)

Hallucinations 2.28 (1.61)/(1–6) 3.49 (2.28)/((1–7)

Unusual thought content 2.78 (2.18)/(1–7) 4.19 (2.19)/(1–7)

Bizarre behavior 2.50 (1.72)/(1–6) 3.26 (2.20)/((1–7)

Self- neglect 1.47 (1.10)/(1–6) 1.87 (1.47)/(1–7)

Disorientation 1.16 (0..62)/(1–4) 1.22 (0.96)/(1–5)

Conceptual disorganization 1.97 (1.53)/(1–7) 2.06 (1.49)/(1–6)

Blunted affect 1.66 (1.00)/(1–5) 2.75 (1.65)/(1–7)

Emotional withdrawal 1.19 (0.39)/(1–2) 2.26 (1.61)/(1–7)

Motor retardation 1.44 (0.80)/(1–4) 1.61 (1.21)/(1–6)

Tension 1.81 (1.42)/(1–6) 1.75 (1.38)/(1–7)

Uncooperativeness 1.22 (1.07)/(1–7) 1.38 (0.79)/(1–5)

Excitement 2.25 (2.01)/(1–7) 1.37 (1.07)/(1–7)

Distractibility 2.28 (1.74)/(1–7) 1.82 (1.26)/(1–5)

Motor hyperactivity 2.22 (1.82)/(1–7) 1.40 (1.01)/(1–6)

Mannerisms and posturing 1.55 (1.20)/(1–6) 1.65 (1.34)/(1–6)

BPRS, Brief Psychiatric Rating Scale; SD, standard deviation; In the BPRS symptoms are

rated from 1 (absent) to 7 (extremely severe).

uncorrected p-values (all Spearman’s |ρ| < 0.11, p > 0.15). The
Exploratory analyses with the remaining BPRS items (Table 2)
did not identify any further correlations (all |ρ| < 0.19, p > 0.05).

DISCUSSION

This is the largest neuroimaging investigation of the in vivo Hb
morphology in BD and SCZ implemented using strict quality
control criteria and an objective semi-automated segmentation
method shown to yield consistent Hb boundary definitions (47).
The results suggest that volumetric case-control differences are
small but the variability in Hb volume may be linked to the
severity of suicidality both in SCZ and BD.

To our knowledge, there are only two prior neuroimaging
studies of the Hb in the clinical populations considered here.
Zhang et al. (52) compared the volume, manually segmented
using a geometric method, and resting state connectivity of the
Hb of 15 patients with SCZ and 16 healthy individuals. They
reported bilateral Hb volume reductions with large effect size
(d = −0.84 on the left and d = −0.72 on the right) that did not
correlate with the patients’ total BPRS scores. By contrast, they
found a positive correlation between overall symptom severity
and the functional connectivity of the right Hb and the left
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TABLE 3 | Absolute habenula volumes.

Left habenula volume Right habenula volume

W M Total W M Total

Patients with schizophrenia 14.59 (4.09) 15.30 (3.28) 15.10 (3.51) 16.64 (4.02) 17.05 (3.86) 16.93 (3.92)

Patients with bipolar disorder 15.37 (4.67) 14.36 (5.14) 14.74 (4.91) 15.90 (3.62) 15.95 (4.30) 15.93 (3.99)

Healthy individuals 15.01 (3.69) 14.83 (3.95) 14.91 (3.78) 16.21 (4.24) 14.87 (3.58) 15.41 (3.86)

Mean (Standard-deviation). W, Women; M, Men; Volumes are in mm3.

FIGURE 3 | Distribution of the absolute volumes of the habenula in each diagnostic group. (A) Left habenula, (B) Right habenula.

FIGURE 4 | Correlation between suicidality and habenula volume. (A) Right habenula, (B) Left habenula. Suicidality was rated using the Brief Psychiatric Rating Scale

from 1 indicating absence to 7 indicating severe suicidal intent and behavior. Ratings of suicidality showed a positive correlation with the right habenula volume (in

mm3) (ρ = 0.29; p = 0.004) but not the left habenula volume (ρ = 0.06; p = 0.52).

mPFC. Savitz et al. (53) assessed the volume of the Hb, manually
segmented based on T1w image contrast, in medicated (n = 15)
and unmedicated (n = 22) patients with BD and in healthy
individuals (n= 74). Case-control differences inHb volumewere
of large effect size in unmedicated patients (d=−0.74 on the left
and d = −0.66 on the right) but were negligible in medicated
patients (both |d|< 0.1). The reason for this discrepancy remains
unclear as no association was found between Hb volume and
treatment variables (including lithium status). In the same study

no correlation was observed betweenHb volumes in patients with
BD and the total scores of the Montgomery-Asberg Depression
Rating Scale (67) and the Young Mania Rating Scale (68). Here,
we found larger right Hb volumes in patients with SCZ or BD
compared to healthy individuals; the case-control differences
were of small effect size and not statistically significant. On the
left, the Hb volume in SCZ was marginally larger than that of
healthy individuals while case-control differences in BD were
negligible. Given, the very sparse evidence-base (including the
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present study) the most parsimonious conclusion is that these
case-control differences for the right Hb are inconsistent and
probably small to moderate. The data are insufficient to allow
conclusions about volumetric changes in the left Hb in SCZ and
BD.

The functional significance of such Hb volume alterations
is also unclear given the divergence of findings across studies;
this divergence may be attributable to inter-study differences
in Hb segmentation methods, in assessing the association
between Hb volume and symptoms and in the variability in
the clinical state of study samples. Nevertheless, the present
study points to a link between the volume of the Hb and
BPRS ratings of the severity of suicidal desire, intent and
behaviors. Results from a recent post-mortem study of suicide
victims (43) offer a speculative but heuristic interpretation of
our findings. Specifically, Han et al. (43) showed downregulation
of cholinergic signaling genes in the postmortem Hb tissue
of 12 male Caucasian suicide victims compared to that of 11
psychiatrically healthy men. These findings are important in the
context of the transdiagnostic relevance of the cholinergic system.
Specifically, in-vivo and ex-vivo studies have reported persistent
dysfunction involving nAChRs) in MDD (69) while similar
abnormalities in BD have been observed during depressive
episodes only (70). Hypofunction of nAChRs has also been
consistently reported in SCZ (71, 72) where it has been associated
with cognitive and hedonic impairment (73, 74). Han et al.
(43) implicate the cholinergic MHb-IPN pathway, which is
phylogenetically conserved (31, 32, 75) and has been shown to
regulate response to acute and chronic stress across species (40).
Acetylcholine (ACh) is synthesized by choline acetyltransferase
(CHAT) and its release in the MHb-IPN pathway is mediated
by presynaptic nAChRs). Depression models of chronic restraint
or learned helplessness, lead to decrease CHAT levels and its
corresponding gene expression in the Hb of rats while CHAT
knockout mice show anhedonia-like behaviors (43). Although
previous research has mainly focused on the role of LHb
in positive valence processing (34, 39) our results indicate a
potential significant contribution from the MHb particularly for
suicidality.

There are several limitations to this study. The spatial pattern
of myelin content of the Hb is higher toward the stria medialis
and lower in the ventromedial portions (64). Because of this
pattern, any segmentation that is based primarily on anatomical
image contrast may underestimate the voxels located at the
ventral medial portion of the Hb. This observation is likely to
account for the lower in-vivo Hb volumes reported here and in
previous studies (46, 47, 50–53) compared to ex-vivo estimates

(31, 46, 49). The volumetric measurements obtained here did
not distinguish between the lateral and medial subdivision of
the Hb because such distinction was beyond the resolution
of our imaging approach. Image contrasts between Hb sub-
regions have been shown two ex-vivo MRI studies (46, 76).
A single high-resolution in-vivo 7T anatomical MRI study has
reported that it is possible to differentiate between the LHb and
MHb (77) but this distinction was not based on clear boundary
definitions nor was it validated against histology. Differentiating
subdivisions of the Hb using MRI in-vivo is still an unmet
need.

The majority of the patients in our study were medicated.
We did not find an association between medication type and
dose and Hb volumes in either patient group. This is in line
with all available neuroimaging findings with the exception of
a single study in which Hb volume reduction was observed
in unmedicated but not in medicated patients with BD (53).
Nevertheless the possibility that medication exposure may have
minimized differences between diagnostic groups cannot be
fully refuted. The cross-sectional nature of this study does not
allow inferences as to whether possible Hb volume reductions
are vulnerability traits or whether they arise after illness onset.
Future directions include confirmation of these findings in
larger samples using longitudinal designs and highlight the
importance of testing for alterations in functional engagement
and connectivity of the Hb in SCZ and BD.
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