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Objective: Autism spectrum (ASD) and attention-deficit/hyperactivity disorder (ADHD)

are neurodevelopmental disorders with a high rate of comorbidity. To date, diagnosis

is based on clinical presentation and distinct reliable biomarkers have been identified

neither for ASD nor ADHD. Most previous neuroimaging studies investigated ASD and

ADHD separately.

Method: To address the question of structural brain differences between ASD and

ADHD, we performed FreeSurfer analysis in a sample of children with ADHD (n = 30),

with high-functioning ASD (n = 14), with comorbid high-functioning ASD and ADHD

(n= 15), and of typically developed controls (TD; n= 36). With FreeSurfer, an automated

brain imaging processing and analyzing suite, we reconstructed the cerebral cortex and

calculated gray matter volumes as well as cortical surface parameters in terms of cortical

thickness and mean curvature.

Results: A significant main effect of the factor ADHD was detected for the

left inferior frontal gyrus (Pars orbitalis) volume, with the ADHD group exhibiting

smaller Pars orbitalis volumes. Dimensional measures of autism (SRS total raw score)

and ADHD (DISYPS-II FBB-ADHD score) had no significant influence on the left

Pars orbitalis volume. Both, ASD and ADHD tended to have an effect on cortical

thickness or mean curvature, which did not survive correction for multiple comparisons.
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Conclusion: Our results underline that ADHD rather than ASD is associated with volume

loss in the left inferior frontal gyrus (Pars orbitalis). This area might play a relevant role in

modulating symptoms of inattention and/or impulsivity in ADHD. The effect of comorbid

ADHD in ASD samples and vice versa, on cortical thickness andmean curvature, requires

further investigation in larger samples.

Keywords: autism spectrum disorder (ASD), attention-deficit/hyperactivity disorder (ADHD), FreeSurfer, cortical

thickness, mean curvature

INTRODUCTION

Previous studies mainly investigated autism spectrum disorder
(ASD) and attention-deficit/hyperactivity disorder (ADHD) in
isolation. The question to what extent there is a clinical overlap
between ADHD and ASD, whether they represent distinct
diagnostic categories or form a continuous disorder with a
continuum of brain dysfunction remains open to discussion
(1, 2). To identify endophenotypes across diagnostic categories,
it is important to further investigate the overlap between ADHD
and ASD on a behavioral, neurocognitive, and neurobiological
level (3, 4).

Co-occurrence of ASD and ADHD
ASD is characterized by impairment in social communication
and interaction as well as by a range of stereotypic behaviors
whereas deficits in attention, hyperactivity, impulsiveness,
disorganization and affective instability represent the core
symptoms of ADHD (5). As ASD is a frequent comorbid
condition in ADHD and vice versa (1), there is the possibility
of dual diagnosis according to DSM-5 (5). The interpretation
of studies prior to 2013 is limited by DSM-IV guidelines not
permitting the dual diagnosis of ASD and ADHD (6).

Studies report frequent co-occurrence with 30-50%
of individuals with ASD manifesting ADHD symptoms
(particularly at pre-school age) and two-thirds of individuals
with ADHD showing features of ASD (7). Social difficulties
in ADHD are often interpreted as part of ADHD symptoms
rather than reflecting impairments in social communication
being characteristic for ASD (8). Both disorders are highly
heritable (9).

Previous Volumetric Studies in ASD and
ADHD
Previous structural neuroimaging studies encompassing children
and adolescents with both, ADHD and ASD, are scarce and
show heterogeneous results (Table 1). There is only one previous
FreeSurfer study on ASD children with and without comorbid
ADHD, but without a separate ADHD group (12). Mahajan et al.
(12) found that gray matter (GM) volume and surface area (SA)
were increased in the left postcentral and the right precentral
gyrus which in this study was specific for ASD children without
ADHD, whereas an increase in the left precentral gyrus was
specific for children with ASD and comorbid ADHD. Regardless

of ADHD comorbidity, all children with ASD showed increases
in GM volume and SA in the left inferior parietal cortex (12).

Voxel based morphometry (VBM) studies display a
heterogeneous picture. The most recent VBM study suggested
GM reduction in the right posterior cerebellum to be disorder-
specific for ADHD relative to ASD. GM enlargement in the
middle/superior temporal gyrus, on the other hand, was reported
to be disorder-specific for ASD relative to ADHD (11). An earlier
VBM study pointed toward shared GM volume reduction within
the medial temporal and higher GM in the inferior parietal
cortex (3). Further, increased GM volume of the supramarginal
gyrus was reported in ASD, but not ADHD, relative to controls
(3). In the largest VBM study so far an increasing ASD score was
associated with greater global GM volume (10).

In ASD it has frequently been reported that after having
a normal (13) or smaller (14) brain size at birth, there is a
period of early brain overgrowth prior to 4 years of age (14–
16). The pathophysiology of such alterations is unknown, but
it is proposed to result from deviant neuronal proliferation and
axonal growth during fetal development that in turn leads to
an aberrant developmental pruning (17). In contrast, in children
with ADHD, smaller whole brain volumes (18–20) and lower GM
volumes have been described (21). It is hypothesized that ADHD
children show a delayed brain maturation process (22).

Despite similarities in clinical presentation as well as mutual
comorbidity rates in ASD and ADHD, these disorders present
a rather different neuroanatomical profile. Most studies report
subcortical temporal structures such as the amygdala to be
enlarged in young children (at ages 2–4) with ASD (23) with a
normalization in late childhood and adolescence (24). Amygdala
volumes in adults with ADHD have been found to be relatively
normal (25, 26) or smaller than in controls (27). Basal ganglia are
reported to be enlarged (15) in ASD and smaller in ADHD (1).
With regard to the corpus callosum, thalamus and cerebellum,
however, in many studies ASD and ADHD show a volume
reduction (1).

Previous Cortical Surface Parameter
Studies in ASD and ADHD
Studies focusing on cortical surface parameters in ASD also
reported mixed results. When investigating cortical surface
parameters, it has to be reflected that cortical development in
ASD varies across developmental stages or brain regions. Three
different phases have been proposed: accelerated expansion in
early childhood, accelerated thinning in later childhood and
adolescence, and decelerated thinning in early adulthood (28).
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TABLE 1 | Previous volumetric studies comparing children with ADHD and ASD.

Study n

(ADHD/ASD/TD)

Age in years

(ADHD/ASD/TD)

IQ Methods Region(s) and results

(Mean ± SD)

1. Brieber et al. (3) 15 ADHD

15 ASD

15 TD

13.13 ± 1.4

14.2 ± 1.9

13.3 ± 1.8

(10–16 y)

104.1 ± 15.8

106.8 ± 21.4

107.7 ± 12.7

VBM Smaller GM in left medial temporal lobe and higher

GM volume in left inferior parietal cortex in ADHD

and ASD vs. TD

Increased GM volume in right supramarginal gyrus

in ASD vs. ADHD and TD

2. O’Dwyer et al.

(10)

180 ADHD

140 TD

124 unaffected

siblings

16.2 ± 3.7

16.8 ± 3.6

16.9 ± 4.0

(7.4–28.5 y)

98.8 ± 14.9

106.6 ± 13.2

101.8 ± 14.2

VBM Increasing ASD score is associated with greater GM

volume

3. Lim et al. (11) 44 ADHD

19 ASD

33 TD

13.6 ± 1.87

14.9 ± 1.86

14.3 ± 2.52

92.2 ± 11.7

113 ± 15.7

110 ± 11.5

VBM Smaller right posterior cerebellar GM volume in

ADHD vs. ASD and TD

Larger left middle/superior temporal gyrus GM

volume in ASD vs. ADHD and TD

4. Mahajan et al.

(12)

30 ASD-

33 ASD+

63 TD

10.5 ± 1.7

10.3 ± 1.4

10.5 ± 1.3

(8–12 y)

102 ± 14

103 ± 17

112 ± 11

Free

Surfer

ROI

Increased GM volume and SA in the left inferior

parietal cortex in ASD+ and ASD-

Increased GM volume and SA in the left post-central

gyrus and the right precentral gyrus in ASD-

Increased GM volume and SA in the left precentral

gyrus in ASD+

n, number; SD, standard deviation; ADHD, attention-deficit/hyperactivity disorder; ASD, autism spectrum disorder; ASD+, autism spectrum disorder with comorbid ADHD; ASD-, autism

spectrum disorder without comorbid ADHD; TD, typically developed; VBM, voxel based morphometry; ROI, region of interest; GM, gray matter; IQ, intelligence quotient.

Hazlett et al. (29) examined young children with ASD (ages 2–
5 years) and found increased cortical volumes, but no alterations
in cortical thickness implicating that brain enlargement may be
associated with increased cortical SA in ASD. Increased cortical
thickness in temporal lobes was reported in children (ages 8–
12 years) with ASD (30) with greater cortical thinning in ASD
over time especially in occipital regions (31). Greater cortical
thinning was associated with more severe symptoms in ASD
(31). Further investigations pointed toward cortical thinning in
adolescents (ages 12–25 years) with ASD (32–34). Studies in
adults are divergent with some reporting cortical thinning (35–
37) in brain regions involved in social cognition, others cortical
thickening within frontal lobe regions (38) or regions from
all four lobes (36). A large recent study found no significant
difference in overall cortical thickness or surface area between
ASD and typically developed (TD) (39).

In children and adults with ADHD, cortical thinning has
been described in parietal and frontal regions responsible for
executive function and attention (40–42). Another study detected
no differences in cortical thickness of ADHD children, but
decreased SA and cortical folding (43).

The unclear and puzzling current state requires further studies
directly comparing volumetric and cortical thickness parameters
between ASD and ADHD. Individuals with isolated autism
and individuals, who present comorbid conditions in terms of
ADHD, can be distinguished behaviorally as already documented
by our research group (44).

Rationale of Our Study
Based on the available evidence, we aimed to study the brain
structure in children with ASD with and without comorbid

ADHD as well as TD. To address the question of a potential
neurobiological overlap between ADHD and ASD, we analyzed
the brain scans for shared and disorder-specific abnormalities.
We investigated differences in terms of GM as well as cortical
thickness and mean curvature.

In doing so, this study represents the first FreeSurfer study
comprising ASD and ADHD groups, as well as subjects with co-
occurrence of both conditions. Because previous studies showed
inconsistent and widely distributed changes, we did not limit the
analysis to individual a priori regions of interest (ROIs).

MATERIALS AND METHODS

Participants
The ethics committee of the University Medical Center Freiburg
approved the study (approval ID: 279/06). Magnetic resonance
imaging (MRI) scans were acquired following written informed
consent of the children’s parents. Male children with ASD
and ADHD were recruited from the Department of Child and
Adolescent Psychiatry, Psychotherapy, and Psychosomatics of the
University Medical Center Freiburg.

We obtained scans of high quality in 40 male children with
a diagnosis of ASD according to ICD-10 and DSM-5 criteria.
Twenty-nine ASD patients were included in the final analysis
after 7 patients were excluded due to image artifacts, 3 due to IQ
< 70 and one patient due to comorbid seizures. All ASD children
were high-functioning and with no language delay. Intellectual
disability (full scale IQ below 70), comorbid Tourette syndrome
or severe neurological diseases were defined as exclusion criteria.
With the exception of 2 patients, no ASD participant had
comorbid depressive or anxiety symptoms. The diagnostic
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process followed international guidelines, including the Autism
Diagnostic Observation Schedule [ADOS-G, (45)] and the
Autism Diagnostic Interview [ADI-R, (46)]. Psychometric tools
included the Child Behavior Checklist [CBCL, (47)], the Social
Responsiveness Scale [SRS, (48)], and the diagnostic interview K-
SADS-PL (49). According to the K-SADS-PL, 15 autistic children
additionally met the diagnostic criteria for ADHD. The ADHD
diagnosis was confirmed with the DISYPS-II FBB-ADHD (50),
and verified by a multi-professional team of expert clinicians
to ensure a comorbid ADHD. The group without (14 patients)
and the group with comorbid ADHD (15 patients) were not
significantly different for age and IQ.

Additionally, MRI-scans of 50 male patients with ICD-10
and DSM-5 ADHD diagnosis without a comorbid ASD were
acquired. Twelve scans were excluded due to poor image quality,
7 due to the low IQ of the subjects (<70) and one due to
an arachnoid cyst, so that finally 30 ADHD patients were
analyzed. ADHD diagnosis was clinically based on ICD-10 and
DSM-5 criteria and additionally confirmed with the DISYPS-
II FBB-ADHD (50). ASD symptoms were ruled out applying
the SRS score (48), also the CBCL (47) was consulted. With
the exception of one ADHD patient, no one suffered from
comorbid depression or anxiety disorder as assessed by the K-
SADS-PL (49). Methylphenidate medication in children with an
ADHD diagnosis was discontinued at least 24 h prior to scanning
procedure.

Fourty-eight typically developed male children (TD) were
recruited from local schools and sport groups. Control subjects
were included after a phone interview with the parents who
additionally completed a sociodemographic questionnaire, the
CBCL (47) and the SRS (48) for ruling out ASD and ADHD
symptoms. Four children were excluded from the TD group,
because of the presence of ADHD or autistic symptoms, 7 due
to imaging artifacts and one due to an IQ < 70, so that we finally
included 36 male TD participants in the study.

Subjects were matched according to IQ assessed with Raven’s
Standard Progressive Matrices (51), age and sex.

All subjects included in the study accomplished behavioral
tasks of executive functions and planning as well. The results are
published elsewhere (44).

Image Acquisition
A standard magnetization-prepared rapid gradient echo
(MPRAGE) T1-weighted anatomical scan was conducted
(relaxation time = 2,200ms, echo time = 2.15ms, flip angle
= 12◦, inversion time = 1,100ms) on a 3T Siemens TIM Trio
Magnetom scanner (Erlangen, Germany). Slice thickness was
1mm and voxel size 1× 1× 1 mm3.

Brain Segmentation
Cortical reconstruction and segmentation was performed using
FreeSurfer version 5.3 (http://surfer.nmr.mgh.harvard.edu/).
FreeSurfer is a fully automated suite of tools that enables analysis
of key features in the human brain such as segmentation of most
macroscopically visible brain structures (52). FreeSurfer allows
to compute the volume of subcortical areas and reconstructs
the cerebral cortex (53). It also provides information about

mapping of cortical GM thickness (54) and the construction of
surface models of the cerebral cortex (55). The technical details
of FreeSurfer procedures are described elsewhere (52). Applying
FreeSurfer, we removed non-brain tissue and segmented cortical
and subcortical GM and WM depending on image intensity.
FreeSurfer output was inspected by three blinded trainees
and rated on a scale ranging from 1 to 4. A “1” means no
visible artifacts, whereas “4” denotes distinct blurred and low-
quality images. Manual correction followed recommendations
of FreeSurfer developers (https://surfer.nmr.mgh.harvard.edu/
fswiki/FsTutorial/PialEdits_freeview).

MRI scans of poor quality, which showed geometric
inaccuracies, were rated “4” (blurred and low quality) or for
which the segmentation procedure failed, were excluded.

Region of Interest Parcellation
Individual brains were registered on a spherical atlas for
parcellation, taking into account individual cortical folding
patterns to match brain geometry between the subjects.
FreeSurfer parcellated each brain into 148 GM and 32 subcortical
ROIs using the Desikan-Killiany-Atlas (56). Afterwards, ROI
labels were transformed back into each subject’s individual space
to compute the volume of each ROI.

Surface and Cortical Thickness
Cortical surface area was calculated with FreeSurfer based on
a 2D representation of cortical surface after estimation of
GM/WM boundary and pial surface (54). Cortical thickness
was then calculated for each vertex as distance from the
GM/WM boundary and the pial surface. FreeSurfer offers better
alignment of cortical landmarks than volume-based registration
and does not produce an age-associated bias between older
and younger children when registering children’s brains to a
common space (57).

Statistical Analysis
Psychometric Data

Group comparisons of demographic and psychometric data (age,
IQ, psychometric scores) were carried out using SPSS software,
version 22 (IBM Corp., Armonk, NY, USA). We used analysis of
variance (ANOVAs) for the assessment of significance of putative
differences.

Analysis of Imaging Data

Further analysis of imaging data was carried out using R
statistical computing software (58). We tested for differences
in cortical GM volumes respecting all regions of FreeSurfer
segmentation according to the Desikan-Killiany-Atlas (56).
Additionally, we focused on cortical surface parameters in terms
of cortical thickness and mean curvature of ROIs, again defined
with the Desikan-Killiany-Atlas (56).

We adjusted volume, mean curvature and thickness data for
differences in age and IQ using a linear model applying the
groups mean age and IQ.

Type III two-way 2 × 2 ANOVAs on the adjusted
volume, thickness and curvature data were calculated using the
independent between-subject factors ASD diagnosis (yes vs. no)

Frontiers in Psychiatry | www.frontiersin.org 4 October 2018 | Volume 9 | Article 521

http://surfer.nmr.mgh.harvard.edu/
https://surfer.nmr.mgh.harvard.edu/fswiki/FsTutorial/PialEdits_freeview
https://surfer.nmr.mgh.harvard.edu/fswiki/FsTutorial/PialEdits_freeview
https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychiatry#articles


Nickel et al. A FreeSurfer Analysis in Children

and ADHD diagnosis (yes vs. no; see Table 2). Results were
corrected for multiple comparisons applying false discovery rate
(FDR) correction. FDR corrected p < 0.05 were considered
significant, and uncorrected p < 0.05 were regarded as trends.
We didn’t restrict our analysis to a priori regions of interest.

Multiple regression models with either SRS total raw score or
DISYPS-II FBB-ADHD as independent variables were conducted
with the adjusted left Pars orbitalis volume as dependent
variables. The regression model included an interaction term
with the binary moderator variables ASD and ADHD.

RESULTS

Demographic and Psychometric Data
Table 3 summarizes the demographic and psychometric data of
the ASD, ADHD, and TD group. The study included 95 male
participants (6–13 years old): 14 with ASD without comorbid
ADHD, 15 with ASD and comorbid ADHD, 30 ADHD, and 36
TD controls. Groups did not differ significantly with respect to
age and IQ.

Volumetric Results
The two-way ANOVA model showed a significant main effect of
the factor ADHD for the left Pars orbitalis volume after FDR
correction [F(1, 91) = 12.63; pFDR = 0.039, puncorr < 0.001].
Children with an ADHD diagnosis exhibited smaller left Pars
orbitalis volumes (Figure 1). Uncorrected significant effects were
regarded as trends (Table 4). A main effect of ADHD on trend
level could also be observed in the right Pars orbitalis and
precuneus cortex, in terms of a volume reduction. An interaction
of the factors ADHD and ASD could be detected for the right
isthmus cingulate cortex.

Cortical Thickness
Two-wayANOVAmodels exhibited no significantmain effects or
interaction surviving FDR correction. The following uncorrected
significant effects were regarded as trends (Table 4):

A main effect for the diagnosis ASD emerged in the bilateral
postcentral gyrus and the left pericalcarine and cuneus cortex, as
well as in the right superior parietal cortex, in terms of cortical
thinning. ADHD effects were observable in the left Pars orbitalis,
again, linked to a cortical thinning. An interaction of diagnosis
ADHD and ASD could be observed for the left inferior parietal,
parahippocampal, pericalcarine, transverse temporal, and right
post-central thickness measures.

TABLE 2 | Factor levels of the 2 × 2 ANOVA model.

ADHD diagnosis No ADHD diagnosis

ASD diagnosis ASD with comorbid ADHD ASD

No ASD diagnosis ADHD TD

TD, typically developed; ASD, autism spectrum disorder; ADHD,

attention-deficit/hyperactivity disorder.

Mean Curvature
The two-way ANOVA model showed no significant interaction
or main effects for the factors ASD or ADHD on mean
curvature after FDR correction. Uncorrected significant
results we regard as trends (Table 4). The right medial
orbitofrontal cortex showed a significant main effect of
the factor ASD, as did the left postcentral gyrus and right
cuneus cortex. ADHD, in turn, had an effect on mean
curvature of the left transverse temporal cortex and right
Pars triangularis. Uncorrected significant interactions could be
found in the left pericalcarine and right medial orbitofrontal
cortex.

SRS-Total Score and DISYPS-II Effect on
Main Result
Neither the multiple regression model with the independent
variable SRS total score nor DISYPS-II FBB-ADHD revealed any
significant effect of these scores or their interaction with the
factors ADHD and/or ASD on left Pars orbitalis volume.

DISCUSSION

To our knowledge, this is the first FreeSurfer study that examines
children with ADHD, ASD, and comorbid ASD and ADHD in
a single study. Our investigation focused on the detection of
possible morphometric differences (cortical volume, thickness
and mean curvature).

Due to the heterogeneity of findings in earlier studies, we did
not limit our analysis to a priori regions of interest.

Volumetric Results
The diagnosis ADHD has a significant effect on the left
Pars orbitalis volume with ADHD-diagnosed children
showing smaller left Pars orbitalis volumes. These findings
suggest that ADHD rather than ASD is related to left
Pars orbitalis volume loss. Whether there are weaker
“additive” effects on the Pars orbitalis volume of ASD
and ADHD cannot be ruled out with a study of the given
sample size.

On trend level, we additionally found an ADHD main
effect for the right Pars orbitalis and precuneus cortex and an
interaction of diagnosis ADHD and ASD for the right isthmus
cingulate cortex.

The so-called default-mode network (DMN) has been
described as comprising the precuneus/posterior cingulate
cortex, the medial prefrontal cortex and the medial, lateral and
inferior parietal cortex. It is a network of brain regions associated
with task-irrelevant mental processes and mind wandering (59,
60) In line with our results, Castellanos et al. (61) showed
ADHD-related decreases in functional connectivity between the
precuneus and other DMN components.

The Pars Orbitalis of the Inferior Frontal
Gyrus
The Pars orbitalis represents a subdivision of the inferior frontal
gyrus which more or less corresponds well to the Brodman
Area 47.
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TABLE 3 | Demographic and psychometric data.

ADHD ASD with

comorbid ADHD

ASD TD ANOVA

Mean ± SD Mean ± SD Mean ± SD Mean ± SD

N 30 15 14 36

Age 9.89 ± 2.18 10.32 ± 2.21 10.35 ± 2.47 9.86 ± 2.33 F (3,91) = 0.274; p = 0.844

IQ 93.71 ± 13.32 98.24 ± 13.37 93.71 ± 14.17 97.79 ± 13.05 F (3,91) = 0.789; p = 0.503

SRS total score 59.23 ± 31.03 92.93 ± 40.60 81.29 ± 22.10 18.83 ± 14.39 F (3,91) = 36.76; p < 0.001

DISYPS-II FBB-ADHD 1.44 ± 0.65 1.85 ± 0.61 0.80 ± 0.35 0.20 ± 0.15 F (3,64) = 25.25; p < 0.001

N, number; SD, standard deviation; ADHD, attention-deficit/hyperactivity disorder; ASD, autism spectrum disorder; TD, typically developed; IQ, intelligence quotient; SRS, Social

Responsiveness Scale; DISYPS, Diagnostik System für Psychische Störungen.

FIGURE 1 | Adjusted left Pars orbitalis volume in children with and without ASD or ADHD, respectively. ADHD, attention-deficit/hyperactivity disorder; ASD, autism

spectrum disorder. Boxes indicate upper/lower quartile as well as the median. The black line indicates the sample mean.

Functionally it has been linked to the recognition of facial
expressions of basic emotions (62) and to the modulation of
positive emotionality (63). It is also assumed that besides the
specific association between the right inferior frontal gyrus and
the inhibitory control, the left inferior frontal gyrus is also
involved in the successful implementation of inhibitory control
over motor responses (64). This could be partly responsible for
the impulsive behavior that can be observed in ADHD.

Children with ADHD and autism have a lot of similar
features and there is high frequency of ADHD symptoms
in autism (65). Also, in autistic patients, difficulties with
emotion and facial recognition have been described (66–
69). In addition, it was assumed that Brodmann Area

47 is involved in semantic/syntactic processing (70, 71).
Previous studies pointed toward abnormalities in the
pragmatic understanding and the use of language in ASD
(72). Brothers (73) proposed that there is a network of neural
regions (the amygdala, the orbito-frontal cortex, the superior
temporal sulcus and gyrus) comprising the “social brain.”
Accordingly, reduced Pars orbitalis volume in ASD with
comorbid ADHD might not necessarily be responsible for the
aforementioned symptoms in ASD, but it may be a complicating
factor.

In a recent publication the Pars orbitalis has been implicated
as being part of a critical network for the identification of specific
ADHD/ASD subtypes (74).
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TABLE 4 | Uncorrected adjusted volume, thickness, and mean curvature results.

Measure Region ADHD ASD- ASD + TD Two-way ANOVAs

Mean ± SD Mean ± SD Mean ± SD Mean ± SD (p-values)

Volume Left pars orbitalis 2738.70 ± 328.53 2884.21 ± 284.83 2621.54 ± 241.09 3043.94 ± 413.61 ASD: p = 0.148

ADHD: p < 0.001

ASD × ADHD: p = 0.784

Right pars orbitalis 3387.65 ± 485.42 3676.62 ± 613.57 3285.59 ± 463.18 3656.61 ± 430.33 ASD: p = 0.896

ADHD: p = 0.027

ASD × ADHD: p = 0.572

Right isthmus

cingulate

3204.79 ± 512.29 3244.11 ± 425.46 2875.96 ± 477.66 3075.76 ± 575.98 ASD: p = 0.308

ADHD:p = 0.320

ASD × ADHD: p = 0.035

Right precuneus 12868.08 ± 1570.15 13284.51 ± 1850.61 12637.10 ± 1968.18 13783.22 ± 1989.24 ASD: p = 0.392

ADHD: p = 0.047

ASD × ADHD: p = 0.745

Thickness Left inferior parietal 2.83 ± 0.14 2.85 ± 0.12 2.70 ± 0.21 2.84 ± 0.14 ASD: p = 0.829

ADHD: p = 0.708

ASD × ADHD: p = 0.039

Left post-central 2.24 ± 0.14 2.17 ± 0.12 2.21 ± 0.13 2.31 ± 0.17 ASD: p = 0.004

ADHD: p = 0.059

ASD × ADHD: p = 0.107

Right post-central 2.20 ± 0.12 2.11 ± 0.10 2.20 ± 0.14 2.24 ± 0.15 ASD: p = 0.004

ADHD: p = 0.218

ASD × ADHD: p = 0.030

Right superior

parietal

2.44 ± 0.14 2.36 ± 0.12 2.37 ± 0.12 2.48 ± 0.14 ASD: p = 0.008

ADHD: p = 0.280

ASD × ADHD: p = 0.485

Left cuneus 2.01 ± 0.18 1.92 ± 0.13 2.00 ± 0.15 2.04 ± 0.16 ASD: p = 0.017

ADHD: p = 0.346

ASD × ADHD: p = 0.104

Left

parahippocampal

2.89 ± 0.33 2.97 ± 0.29 2.76 ± 0.27 2.84 ± 0.24 ASD: p = 0.130

ADHD: p = 0.491

ASD × ADHD: p = 0.040

Left pars orbitalis 2.89 ± 0.33 2.97 ± 0.29 2.76 ± 0.27 2.84 ± 0.24 ASD: p = 0.062

ADHD: p = 0.049

ASD × ADHD: p = 0.377

Left pericalcarine 1.59 ± 0.11 1.54 ± 0.10 1.66 ± 0.19 1.64 ± 0.15 ASD: p = 0.032

ADHD: p = 0.177

ASD × ADHD: p = 0.010

Left transverse

temporal

2.45 ± 0.25 2.39 ± 0.24 2.61 ± 0.22 2.52 ± 0.28 ASD: p = 0.124

ADHD: p = 0.300

ASD × ADHD: p = 0.016

Mean

curvature

Left transverse

temporal

0.141 ± 0.010 0.129 ± 0.010 0.140 ± 0.015 0.133± 0.014 ASD: p = 0.304

ADHD: p = 0.012

ASD × ADHD: p = 0.544

Left pericalcarine 0.158 ± 0.016 0.160 ± 0.034 0.150 ± 0.013 0.152 ± 0.014 ASD: p = 0.168

ADHD: p = 0.179

ASD × ADHD: p = 0.048

Left post-central 0.143 ± 0.021 0.149 ± 0.021 0.142 ± 0.016 0.137 ± 0.011 ASD: p = 0.036

ADHD: p = 0.188

ASD × ADHD: p = 0.100

Right cuneus 0.165 ± 0.008 0.167 ± 0.013 0.166 ± 0.010 0.161 ± 0.010 ASD: p = 0.016

ADHD: p = 0.650

ASD × ADHD: p = 0.018

Right medial

orbitofrontal

0.147 ± 0.010 0.141 ± 0.006 0.150 ± 0.012 0.148 ± 0.010 ASD: p = 0.016

ADHD: p = 0.650

ASD × ADHD: p = 0.018

Right pars

triangularis

0.144 ± 0.010 0.138 ± 0.011 0.142 ± 0.013 0.139 ± 0.009 ASD: 0.873

ADHD: p = 0.046

ASD × ADHD: p = 0.748

SD, standard deviation; ADHD, attention-deficit/hyperactivity disorder; ASD, autism spectrum disorder; TD, typically developed. Bold: p < 0.05.
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Relationship to Other Publications
The volume reduction in the Pars orbitalis is partly consistent
with one previous study which reported a trend toward a lower
Pars orbitalis volume in ADHD, but in this investigation, the
right Pars orbitalis was affected (75). In the present study,
decreased right Pars orbitalis volume could only be observed
on an uncorrected level (see Table 4). It is assumed that besides
the specific association between the right inferior frontal gyrus
and the inhibitory control, the left inferior frontal gyrus is
also involved in the successful implementation of inhibitory
control over motor responses (64). We could not replicate
other volumetric results of the few earlier heterogeneous studies
that combined ASD and ADHD patients into a single study
(3, 10–12, 76). However, it should be mentioned that previous
studies are not directly comparable to our study design.
Heterogeneous findings are difficult to interpret due to the often
arbitrary distinction between both clinical groups without careful
consideration of ASD/ADHD comorbidities (74). Furthermore,
different methodology in terms of voxel-based morphometry
(VBM) was applied in most previous investigations (3, 10,
11) and none of the earlier investigations included ASD–
(ASD without comorbid ADHD), ASD+ (ASD with comorbid
ADHD), ADHD, and TD participants (3, 10–12).

Additionally, VBM studies examined adolescent samples.
Only the study by Mahajan et al. (12) studied children whose
average age corresponded to our study (but a smaller age range
than our sample). In fact, age and IQ differences across studies
are potential factors leading to heterogeneity of results. Even
if covariates are used to correct for age effects, the results
cannot be transferred to samples from other age groups or age
structures.

Dimensional Correlations
Multiple regression models with the independent variable SRS
total score or DISYPS-II FBB-ADHD revealed no significant
effect of these scores or their interaction with the factors ADHD
and/or ASD on left Pars orbitalis volume. It can therefore be
assumed that the reduction of the left Pars orbitalis volume
is a categorical effect due to ADHD diagnosis and is not due
to the severity of different symptoms or traits represented by
questionnaires.

Surface Parameters
No significant interaction or main effects for the factors ASD or
ADHDon cortical thickness or mean curvature could be detected
after FDR correction. The fact that significant group effects only
emerged on an uncorrected level might indicate that the effect
sizes of possible differences are too small to be detected with
the present group size. We decided to interpret the uncorrected
significant differences as possible trends.

In doing so, a main effect for ASD diagnosis emerged for
the bilateral post-central, left pericalcarine, left cuneus as well
as right superior parietal cortical thickness, and an effect for
the factor ADHD resulted for the left Pars orbitalis thickness.
An interaction of ASD and ADHD diagnosis was detected for
left inferior parietal, parahippocampal, pericalcarine, transverse
temporal, and right post-central thickness measures.

Our results of cortical thinning in several areas in ASD
children (aged 6–13 years) are concordant with studies reporting
accelerated thinning in childhood ASD (28). Greater cortical
thinning was associated with more severe symptomatology
in ASD (31). Another previous study focusing on ASD
children (aged 6–12 years) revealed widespread, but mostly left-
hemispheric thinning in frontal, temporal, parietal and occipital
brain areas related to the theory-of-mind network (77). It
should be noted that cortical development in ASD is most
likely subject to three different phases: accelerated expansion
in early childhood, accelerated thinning in later childhood and
adolescence, and decelerated thinning in early adulthood (28).
Therefore, when comparing different studies in childhood and
adulthood, the exact stage of development must be taken into
account.

The detected cortical thinning in the superior parietal cortex
in ASD relates well with previous investigations (28, 33). The
superior parietal lobule showed decreased activation during
learning in ASD and was suggested to play an important
role in motor learning and repetitive behaviors (78). Higher
SRS- total scores, indicating autistic traits, were associated with
thinner cortex in the left superior parietal lobule (79). The
postcentral gyrus is important for the representation of haptic
and proprioceptive feedback (12). In line with this observation,
previous research revealed differences of ASD children in tactile
discrimination in comparison to TD (80, 81).

The definite pathomechanisms resulting in cortical thinning
are not yet clarified. Regressive (e.g., synaptic pruning) and
progressive (e.g., myelination) events are supposed to result in
the appearance of GMdensity reduction or cortical thinning (82),
but further research is required.

Methodological Issues and Limitations
The study was conducted with a sample of children with ASD
or ADHD being prone to motion artifacts (83). Therefore, many
of the MRI brain images were excluded from analysis due to
poor image quality, which could have biased the study results.
We applied manual inspection and correction as suggested by the
recommendations of the developers of FreeSurfer. Nevertheless,
we cannot completely rule out any confounding effects induced
by head motion. Most previous studies did not quantify the
degree of observed motion in groups (1). Therefore, differences
in the applied (or not applied) motion correction or exclusion
criteria might partly be responsible for the heterogeneity of
results across studies. To date, a quantification of head motion
as described in diffusion tensor imaging (DTI) studies is not
possible in FreeSurfer morphometric studies (84). There is very
sparse evidence of utilization of automated quality metrics in
FreeSurfer studies (85, 86).

Due to the study’s focus on primary forms of ASD the results
presented here can not necessarily be generalized to forms of ASD
with intellectual impairment or to syndromal-secondary autism
(defined as autism with known etiology) (87). Additionally, a
larger total sample size would have been desirable to detect more
potential subtle differences.

Methylphenidate medication was discontinued at least 24 h
prior to scanning procedure. Evidence suggests an impact
of long-term neurotropic medication on brain structure with
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stimulant medication being associated with normalization of
structural abnormalities in ADHD (88). This confounding factor
might have influenced our results, yet, given the earlier literature,
not in terms of a volume loss as we report in this study (89).
Furthermore, for future studies, it would be helpful to choose
longitudinal designs to study longitudinal neurodevelopmental
trajectories of ASD and ADHD vs. TD.

CONCLUSION

In summary, we detected that ADHD rather than ASD mediates
volume loss in the inferior frontal gyrus (Pars orbitalis). The
volume reduction in the left Pars orbitalis seems to be primarily a
categorical diagnostic effect than to reflect the severity of various
traits or symptoms. ASD and ADHD diagnoses tended to have
an effect on cortical thickness or mean curvature, which did
not survive correction for multiple comparisons. Further studies
of more power in larger samples are necessary to investigate
the effect of ADHD and ASD on cortical thickness and mean
curvature. Additionally, further research is needed to disentangle
the precise causal pathways.
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