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Magnetic resonance imaging (MRI) methods have been used to detect cerebral

anatomical distinction between obsessive-compulsive disorder (OCD) patients and

healthy controls (HC). Machine learning approach allows for the possibility of

discriminating patients on the individual level. However, few studies have used this

automatic technique based on multiple modalities to identify potential biomarkers of

OCD. High-resolution structural MRI and diffusion tensor imaging (DTI) data were

acquired from 48 OCD patients and 45 well-matched HC. Gray matter volume (GMV),

white matter volume (WMV), fractional anisotropy (FA), and mean diffusivity (MD)

were extracted as four features were examined using support vector machine (SVM).

Ten brain regions of each feature contributed most to the classification were also

estimated. Using different algorithms, the classifier achieved accuracies of 72.08, 61.29,

80.65, and 77.42% for GMV, WMV, FA, and MD, respectively. The most discriminative

gray matter regions that contributed to the classification were mainly distributed in

the orbitofronto-striatal “affective” circuit, the dorsolateral, prefronto-striatal “executive”

circuit and the cerebellum. For WMV feature and the two feature sets of DTI, the

shared regions contributed the most to the discrimination mainly included the uncinate

fasciculus, the cingulum in the hippocampus, corticospinal tract, as well as cerebellar

peduncle. Based on whole-brain volumetry and DTI images, SVM algorithm revealed

high accuracies for distinguishing OCD patients from healthy subjects at the individual

level. Computer-aided method is capable of providing accurate diagnostic information

and might provide a new perspective for clinical diagnosis of OCD.

Keywords: obsessive-compulsive disorder, support vectormachine, structuralmagnetic resonance imaging, brain

volumetry, diffusion tensor imaging
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INTRODUCTION

The core characteristics of obsessive-compulsive disorder
(OCD) are intrusive recurrent thoughts and/or repetitive
behaviors. Abnormalities of gray matter (GM) and white matter
(WM) microstructures are considered to be related with its
neural pathogenesis. Nowadays magnetic resonance imaging
(MRI) approaches provide a perspective to investigate the
neuropathological changes of OCD and allow researchers to
identify better biological markers of this disease. Voxel-based
morphometry (VBM) analysis allows the investigation of gray
matter volume (GMV) and white matter volume (WMV) in the
whole brain (1). Diffusion tensor imaging (DTI), on the other
hand, is available to measure the in vivo water molecule diffusion
within the WM fibers, which renders more exquisite details
on microstructure changes in WM (2). Fractional anisotropy
(FA) and mean diffusivity (MD) are the two most widely used
diffusion indices to investigate the pathology of OCD (3, 4).

To date numerous neuroimaging studies have used the
between—group comparison—types of analyses to investigate
subtle differences between OCD patients and healthy controls
(HC). Reported volumetric abnormalities lied in multiple neural
structures. Volume reduction in the medial orbitofrontal,
anterior cingulate and temporolimbic cortices, and tissue
expansion in the striatum and thalamus was among the
most widely accepted pathological model of OCD which
assumes brain abnormalities in the “affective circuit” (1,
5, 6). Additionally, volume changes of the cortical source
of the dorsolateral (DL) prefronto-striatal “executive” circuit
(dorsomedial, DL, ventrolateral and frontopolar prefrontal
cortices), and of reciprocally connected regions (temporo-
parieto-occipital associative areas) are consistently described in
OCD patients (6). Reported WM integrality abnormalities also
involved extensive brain areas, such as the corpus callosum (CC),
cingulum bundles, corticospinal tract, superior longitudinal
fasciculus (SLF), uncinate fasciculus (UNC), and cerebellum
(1, 4). However, the results obtained by various studies were
substantially heterogeneous. Neuropsychiatric disorders are
usually characterized by indistinct structure abnormalities rather
than a significant abnormal region (7). The group-level analysis
usually requires large samples and needs to be corrected by
strict multiple comparisons, and the alterations are often too
small to detect and lack a reliable differentiation between patients
and control subjects (8). Furthermore, group-based methods are
neither helpful to diagnose patients at the individual level nor to
infer specific clinical outcomes for an individual patient (9).

Advances in neuroimaging have resulted in the use of
automated techniques for multivariate pattern analysis. The
MRI-related machine learning technique offers a systematic
approach in developing sophisticated, automatic, and objective
classification frameworks for analyzing high-dimensional data
and provides promise for improving the sensitivity and/or
specificity of detection and diagnosis of disease (10–12). The
analysis based on multivariate pattern is more sensitive to
identify subtle differences in the brain structure than group-
level statistics. Machine learning-based pattern recognition
techniques hold the potential to detect biomarkers on the

basis of neuroimaging data and make it possible to combine
complementary information from different sources efficiently
(13). The techniques also enable people to predict the future
course of the disease and the response to treatment at the
individual patient level (14). Thus, it holds high clinical values.
The support vector machine (SVM) pattern recognition has
been demonstrated to be useful for MRI classification. The
SVM algorithm establishes model by discriminating the different
categories (such as patients and controls) and further applying
new data to test its generalizability (15, 16). So far, SVM
classifications have been successfully applied to a range of MRI
modalities aiming to automate the diagnosis of neuropsychiatric
disorders in numerous studies (17–29), and the high accuracies
were extremely impressive.

To our best knowledge, few studies have used the SVM
approach based on MRI data to perform diagnostic or predictive
investigations in OCD patients. A recent review of OCD
multivariate pattern analysis based on neuroimaging data found
that it is able to classify OCD diagnosis with accuracies ranging
from 66 up to 100% (30). Among these studies, Li et al. (16) found
FA value showed promise for discriminating OCD from healthy
controls (HC) using SVM. The study provided the first evidence
of a quite high identification rate presented as a sensitivity of 86%,
a specificity of 82% and a significant accuracy of 84%. Moreover,
they found the white matter regions which contributed the most
to such discrimination mainly included bilateral prefrontal and
temporal regions, inferior fronto-occipital fasciculus, superior
fronto-parietal fasciculus, splenium of corpus callosum, and
left middle cingulum bundle. Hu et al. (31) used structural
neuroanatomy of GM and WM volume and reported these
structural images could accurately discriminate between patients
with OCD and HC. They found the classification accuracies
for SVM using GM and WM anatomy were all above 75%,
and three main distributed networks including the fronto-
striatal circuit, the temporo-parieto-occipital junction and the
cerebellum provided high discriminative power. Several other
OCD studies conducted different feature selection algorithms
and revealed a more comprehensive characterization of the
disorder, thus yielding a superior identification of OCD patients
based on their brain anatomy (32, 33). Besides, in a psychiatric
symptoms predicting study, Hoexter et al. (34) employed support
vector regression (SVR) in 37 treatment-naïve adult patients to
evaluate whether gray matter volumes of the cortical–subcortical
loops contain informative value to predict OCD symptom
severity. They found the left medial orbitofrontal cortex and the
left putamen may identify neurobiological markers to predict
OCD symptom severity based on individual structural MRI
datasets.

Multimodal neuroimaging features may reflect different
aspects of brain tissue and may be a supplement to comprehend
the pathological mechanism of OCD (28, 35). Our previous
work has found that OCD patients exhibited symptom-related
reduced right posterior cingulate cortex cortical thickness, and
disrupted WM integrity in the genu and body of corpus
callosum (36). Biomarkers frommultiple modalities may provide
complementary information for the diagnosis of OCD. However,
existingMRI-based SVM analysis studies focused on only a single
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modality of MRI. To further comprehensively and systematically
evaluate the SVM approach applied in distinguishing patients
with OCD from HC, and also to provide classification result
of multiple indices and estimate which type of data is more
valuable for the detection of OCD, we performed an automated
classification with structural-MRI-derived GMV and WMV,
along with DTI-derived FA and MD values in a large sample of
OCD patients and matched HC. Ten brain regions that weighted
the most in the identification of the four features were also
calculated. To the best of our knowledge, this is the first study
using SVM for classification of OCD patients based on whole-
brain volumetry and tractography indices.We expected our study
would be informative for the early detection of patients with
OCD in future clinical applications.

MATERIALS AND METHODS

Subjects
This study was approved by the Ethics Review Board of Kunming
Medical University. The written informed consent of each
participant was obtained before the study.

In this study, 48 OCD patients were recruited from
the psychiatry department of the First Affiliated Hospital
of Kunming Medical University. One experienced clinical
psychiatrist made the OCD diagnosis according to the Diagnostic
and Statistical Manual of Mental Disorders-Fourth Edition
(DSM-IV) criteria. Medication status of OCD sample were
listed in the Supplementary Material (see, Table S1). Forty-
five well-matched healthy control volunteers were recruited
by advertisement. All the participants were right-handed Han
Chinese individuals aged from 18 to 55 years. The exclusion
criteria for participants involved in both groups were as below:
(1) having a previous history of other psychiatric or neurological
illness or serious physical disease, (2) present or previous history
of substance abuse, (3) physical limitations to undergo an MRI
scan, (4) pregnant women, (5) right handedness. Besides, all
patients’ obsessive-compulsive symptoms were not caused by
another mental disorder or physical disease. Demographic data,
including age, sex, duration of illness, and clinical symptom
ratings were obtained. The Yale-Brown Obsessive-Compulsive
Scale (Y-BOCS) was used to evaluate obsessive-compulsive
symptoms. In consideration of the results might be influenced by
comorbidity of depression and anxiety, the patients with elevated
depression (The Hamilton Depression Rating Scale score, HDRS
>17) or anxiety (Hamilton Anxiety Scale score, HAMA >14)
symptoms were excluded.

Demographic and clinical characteristics differences between
two groups were analyzed using IBM SPSS Statistics (version
21.0; IBM, Armonk, NY, USA). Age difference was assessed by
the Independent samples t-test. Chi-Square test was performed
to compare gender difference.

Image Acquisition
MRI scanning was carried out by a skilled radiological technician
at a Philips Achieva 3.0T scanner (Philips Healthcare, Best, the
Netherlands). First, acquisitions included a conventional normal

T1- and T2-weighted sequences to rule out obvious structural
abnormalities such as cerebrovascular diseases.

3D T1-weighted volumetric structural MRI scan sequence
was acquired using a fast spoiled gradient recalled acquisition
(FSPGR) with the following parameters: TR/TE = 7.38/3.4ms,
matrix size= 256× 256, FOV= 250× 250mm, number of slices:
230, flip angle= 90◦, scan time= 6min 53 s.

DTI images were acquired using an echo-planar imaging
(EPI) sequence in 50 axial planes and was collected along 33
independent orientations through the whole brain using the
following parameters: TR/TE = 6,800 ms/80ms, slice thickness
= 3mm, FOV= 230 mm²× 230 mm², matrix size= 116× 112,
voxel size= 1.98mm× 2.05mm× 3mm, b value= 1000 s/mm²,
flip angle= 90◦.

Image Preprocessing
Structural MRI images were preprocessed using the VBM8
toolbox (http://dbm.neuro.uni-jena.de/vbm) with the
Diffeomorphic Anatomical Registration using the Exponentiated
Liealgebra (DARTEL) toolbox (37) implemented in the statistic
parametric mapping software package (SPM8, http://www.fil.ion.
ucl.ac.uk/spm) running on Matlab 2012a (MathWorks, Natick,
MA, USA). This procedure comprises creating a study-specific
template and segmenting each individual image using the
template aiming to maximize accuracy and sensitivity (29). Then
the GM, WM and cerebrospinal fluid (CSF) were automatically
segmented. After Jacobian modulation, the GM images and WM
images were smoothed with 8-mm full width at half maximum
(FWHM) Gaussian kernel for further SVM analysis.

The diffusion MRI data were processed by the FMRIB
Software Library (FSL, Version 5.0; available from http://fsl.
fmrib.ox.ac.uk/fsl). Tract-based spatial statistics (TBSS) was used
to perform voxel-wise processing of diffusivity measures. First,
the skull was stripped using Brain Extraction Tool (BET) of FSL.
Then the head motion and eddy current distortion correction
were conducted using the b = 0 volume as a reference. FMRIB’s
Diffusion Toolbox (FDT) was used to fit the tensor model and to
compute the FA andMD images using the standard FSL protocol
similarly with the previous DTI studies (38–40). Then, the FA
andMD of each subject were aligned to the FMRI58-FA template
(http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FMRIB58_FA) by using the
non-linear image registration tool (FNIRT). Subsequently, the
mean FA and MD images in each WM tract were calculated for
each subject. Then a mean FA skeleton was generated as the
mean FA image was created by averaging all aligned FA maps,
which represents the centers of all fiber tracts common to all
subjects. A threshold of FA ≥0.2 was set to include the major
white matter pathways. The MD maps were acquired using the
same non-linear transformations as the FA maps.

Support Vector Machine Analysis
SVM was applied by using the Pattern Recognition for
Neuroimaging Toolbox (PRoNTo) (41) (http://www.mlnl.cs.ucl.
ac.uk/pronto) to estimate potential WM areas contribute most
in calcifying OCD. Briefly, the main steps of the SVM method
include: (i) feature extraction and feature selection, (ii) selecting
discriminative regions, (iii) training the SVM classifier model
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using the training data, and (iv) evaluating the performance of
the SVMmodel using the evaluation data (9, 38).

In neuroimaging studies, the number of features is much
more than the number of subjects, which induces the “curse of
dimensionality” in machine learning studies (42, 43). Feature
extraction allows the original data to transform into analyzable
input data of SVM. In the present study, each 3D image was
transformed into a column vector of features and each value
corresponded to a single corresponding voxel intensity. Thus,
this feature vector encoded the pattern of GMV, WMV, FA,
or MD values. By comparison, feature selection involves the
selection of a subset of features which facilitates learning (15, 44).
In this study, feature selection consisted of identifying brain
regions that are expected to differ between groups (15, 44). Above
procedures were automatically processed in PRoNTo’s “Prepare
feature set” programs.

A leave-one-out cross-validation method was carried out to
perform SVM classifier validation, where the feature selection
was performed each time on the training partition of the data to
avoid circularity effects. In this study, it involved the exclusion
of a single subject from each group and training the classifier
using the remaining subjects. Then the excluded subject pair
was used to test the ability of the classifier to classify new
cases reliably. Above procedures were repeated for each subject
pair so that it could obtain a relatively unbiased estimate
of generalizability (44). Above procedures were automatically
processed in PRoNTo’s “Specify model” programs. And the
whole process had been described in previous studies detailedly
(24).

As for performance evaluation, once the SVM algorithm has
been established, it is used to predict a new and previously
unseen subject to and decide which group it belongs (44). A
1,000-times non-parametric permutation test (24, 28, 45, 46) was
used to obtain a corrected p-value to determine the statistical
significance of the accuracy, sensitivity and specificity. In detail,
accuracy is the proportion of subjects correctly classified into
the patient or control group. Sensitivity and specificity represent
the proportion of subjects classified correctly. Besides, receiver
operating characteristic (ROC) analysis and AUC (the area under
the ROC curve) were used to evaluate the performance of the
classifiers. AUC represents the classification power of a classifier,
and a larger AUC indicates better classification ability (28, 47).
This involves the repetitions of the classification procedure
with training group labels by multiple random distribution of
the computer in the aim of generating a null distribution of
accuracies (44). We also performed a support vector regression
of the magnitude of differences and illness duration.

For each model, the PRoNTo allows it possible to calculate
images representing the weights per voxel and also images
summarizing the weights per regions of interest as defined
by an atlas (41). The region contributions can be ranked in
descending order, yielding a sorted list of regions according
to their contribution to the classification model. To investigate
classification power of specific locations in the brain, we
computed vector weights and listed 10 brain regions that
have the highest value of the discrimination map of each
feature. For the GMV feature, the most commonly used

TABLE 1 | Demographics and clinical characteristics of the sample.

OCD patients

(n = 48)

HC (n = 45) t/F/χ2 p-Value

Age, years 32.29 ± 12.62 30.62 ± 9.02 4.733 0.464

Gender

(male/female)

27/21 24/21 0.080 0.778

Duration (month) 45.42 ± 41.02 – – –

Y-BOCS total

score

25.50 ± 3.56 – – –

Y-BOCS

obsession score

12.90 ± 2.40 – – –

Y-BOCS

compulsion score

12.58 ± 3.07 – – –

HDRS score 8.10 ± 3.71 – – –

HAMA score 9.29 ± 2.89 – – –

OCD, obsessive-compulsive disorder; HC, Healthy Controls; Y-BOCS, Yale-Brown

Obsessive-Compulsive Scale; HDRS, Hamilton Depression Rating Scale; HAMA,

Hamilton Anxiety Scale.

AAL atlas (48) was selected, which contains 116 cortical and
subcortical anatomical structures. For theWMV and DTI feature
sets, the weights were calculated based on the ICBM-DTI-
81 white-matter atlas, containing 48 WM fiber tract labels
(49).

RESULT

Demographic and Clinical Characteristics
The demographic and clinical characteristics of the subjects
were presented in Table 1. No significant difference between
groups was found in gender and age. The 48 OCD patients
had an average duration of illness of 45.42 ± 41.02 months,
the total Y-BOCS score was 25.50 ± 3.56, the Y-BOCS
obsession score was 12.90 ± 2.40, the Y-BOCS compulsion
score was 12.58 ± 3.07. The total HDRS and HAMA
scores were 8.10 ± 3.71 and 9.29 ± 2.89, respectively
(Table 1).

Classifier Evaluation
In the classification of the two groups, for the whole brain
GMV, the accuracy was 72.04% (permutation p = 0.001) with
a sensitivity of 70.83% and a specificity of 73.33%. For the
whole brain WMV, the accuracy was 61.29% (permutation
p = 0.040) with a sensitivity of 64.58% and a specificity
of 57.78%. Results for the FA and MD values were more
promising. A classification accuracy of 80.65 to 77.42% were
achieved for the two feature sets of DTI (permutation
p = 0.001), respectively. Sensitivity of the two parameters
was 81.25 and 75%, respectively, and specificity of both FA
and MD values were 80% (Table 2). No significant results
were found between the four features and duration (see
Table S3).

Receiver Operating Characteristic (ROC) curve and area
under the ROC (AUC) were also achieved (Figure 1, Table 2).

Frontiers in Psychiatry | www.frontiersin.org 4 October 2018 | Volume 9 | Article 524

https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychiatry#articles


Zhou et al. SVM Classification of OCD

TABLE 2 | SVM Classification performances of the four features.

Accuracy

(%)

Sensitivity

(%)

Specificity

(%)

AUC Permutation

P-values

GMV 72.04 70.83 73.33 0.71 0.001

WMV 61.29 64.58 57.78 0.61 0.040

FA 80.65 81.25 80.00 0.83 0.001

MD 77.42 75.00 80.00 0.84 0.001

GMV, graymatter volume;WMV, white matter volume; FA, fractional anisotropy; MD,mean

diffusivity; AUC, area under the ROC curve.

FIGURE 1 | The ROC curves of classifier performance of distinct features.

GMV, gray matter volume; WMV, white matter volume; FA, fractional

anisotropy; MD, mean diffusivity.

Regions Contributed Most for
Classification
For GMV feature, the most informative regions for classification
between OCD patients and HC included right anterior cingulate
gyrus (ACG), right angular gyrus, right inferior parietal, bilateral
paracentral lobule, left inferior frontal gyrus, and bilateral
cerebelum regions. For the WMV feature and two feature sets
of DTI, regions contributed the most to the discrimination were
relatively consistent, mainly included the UNC, the cingulum
in the hippocampus, corticospinal tract, as well as cerebellar
peduncle. Additionally, right external capsule, left fornix and
stria terminalis, left anterior corona radiate, bilateral cerebral
peduncle, pontine crossing tract and bilateral cerebral peduncle
are among the informative regions for classification (Table 3).
(Detailed results could be obtained in Table S2).

DISCUSSION

To the best of our knowledge, the present study is the first to
simultaneously detect whole-brain volumetric and tractography

TABLE 3 | Ten brain regions contributed most for classification between OCD and

control groups of the four features.

Modality Hemisphere

L/R

Brain regions ROI

index

Discriminative

weight (%)

Cluster

Size

GMV

L Cerebelum 7b 101 1.677 1353

L Cerebelum 8 103 1.608 4504

R Cerebelum 7b 102 1.584 1233

R Angular gyrus 66 1.556 4097

R Cerebelum 8 104 1.442 5371

R Anterior cingulate

gyrus

32 1.429 2996

L Paracentral lobule 69 1.424 3227

R Inferior parietal 62 1.392 3071

L Inferior frontal

gyrus

11 1.340 2441

R Paracentral lobule 70 1.317 1944

WMV

R Uncinate

fasciculus

45 9.338 121

R Inferior cerebellar

peduncle

11 5.660 291

L Inferior cerebellar

peduncle

12 4.849 282

R Cingulum

(hippocampus)

37 4.273 370

L Corticospinal tract 8 3.714 395

L Cingulum

(hippocampus)

38 2.985 339

R External capsule 33 2.882 1609

L Anterior corona

radiata

24 2.841 2035

L Uncinate

fasciculus

46 2.595 111

L Fornix and stria

terminalis

40 2.541 307

FA

L Uncinate

fasciculus

46 8.593 155

R Corticospinal tract 7 5.504 168

R Inferior cerebellar

peduncle

11 4.861 134

R Cingulum

(hippocampus)

37 4.355 172

L Corticospinal tract 8 4.254 164

Pontine crossing

tract

2 4.051 198

L Superior cerebellar

peduncle

14 4.016 137

L Cerebral peduncle 16 3.643 312

R Cerebral peduncle 15 3.018 301

L Cingulum

(hippocampus)

38 2.950 157

MD

L Corticospinal tract 8 7.314 164

R Inferior cerebellar

peduncle

11 6.507 134

(Continued)

Frontiers in Psychiatry | www.frontiersin.org 5 October 2018 | Volume 9 | Article 524

https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychiatry#articles


Zhou et al. SVM Classification of OCD

TABLE 3 | Continued

Modality Hemisphere

L/R

Brain regions ROI

index

Discriminative

weight (%)

Cluster

Size

L Inferior cerebellar

peduncle

12 4.991 125

R Corticospinal tract 7 4.763 168

R Cingulum

(hippocampus)

37 3.709 172

R Cerebral peduncle 15 3.459 301

Pontine crossing

tract

2 3.326 198

L Cerebral peduncle 16 3.276 312

R Superior cerebellar

peduncle

13 3.268 128

L Cingulum

(hippocampus)

38 3.182 157

L, left; R, right. GMV feature was estimated using AAL atlas. WMV, FA, and MD features

were estimated using ICBM-DTI-81 white-matter atlas.

abnormalities of OCD patients using SVM. Compared with the
mass univariate analysis, SVM takes into account the inter-
regional correlations, and provides numerical indicators for
group membership without multiple comparison biases (44).
We made this study aiming to develop an objective method
facilitate the accuracy of the diagnosis and assist humans with
clinical judgment. The primary finding of this preliminary study
is that it is feasible to discriminate OCD patients from HC with
high accuracies by using a neuroimaging-based computer-aided
method.

According to the recent review of multivariate pattern analysis
techniques on neuroimaging data of OCD (30), studies was able
to classify OCD diagnosis with accuracies ranging from 66 up
to 100%. Methodological limitations such as heterogeneity of
sample characteristics, differences in data processing, acquisition
or statistical analyses might induce these inconsistencies. In
our study, the SVM analysis demonstrated better performance
by using diffusion parameters than volumetric features for
distinguishing OCD patients from HC. Among the four feature
sets, FA came out to be the most significant one with a
classification accuracy of 80.65%. This is close to the SVM
classification on DTI-derived FA features performed by Li
et al. (16). As FA and MD reflect white matter microstructure
characteristics, our finding indicated that OCD patients might
exhibited more detectable alterations in white matter integrity.

Our previous multimodal group-level study detected OCD
patients exhibited reduced cortical thickness of the right
posterior cingulate cortex and altered WM integrity in the
genu and body of corpus callosum. Other multimodal imaging
analyses reported OCD patients displayed alterations in brain
structures and functions, involving complex brain networks (50–
52). Multivariate methods provided a broader perspective to
clarify the neuropathological mechanism of OCD. Nowadays
SVM studies on OCD were mainly based on single modal.
The current results showed that it is achievable to classify
OCD patients and healthy people with multiple indices using

an automatic machine learning way. The SVM algorithm
calculates a region’s discriminative power depends not only
on between-group differences in its absolute values, but also
on any between-group differences in its structural correlations
with other regions. Therefore, this method is particularly
suitable to explore mental disorders such as OCD in which
abnormalities are distributed across the whole brain (16).
These provided various perspectives for the investigation of
pathological characteristics, as well as the detection of biomarkers
for OCD diagnosis.

GM regions with high discriminative power are consistent
with the previous structural MRI multivariate pattern analysis
(31) and numerous VBM studies of OCD (1, 6), mainly
distributed in the orbitofronto-striatal “affective” circuit, the
DL prefronto-striatal “executive” circuit and the cerebellum (6).
The cingulate cortex plays a key role in the “affective” circuit
and ACG is considered to be involved in executive control,
particularly of emotion-related processes (6, 53). Abnormal
regional ACG volume has also been reported in previous
VBM studies (54–57). The ACG volume deficit might mediate
the cognitive symptoms (e.g., cognitive behavioral inflexibility)
which were often observed in OCD patients (6). Previous
functional MRI study in our research group also found that
OCD patients exhibited decreased regional activity in the
posterior cingulate cortex and increased activity in the ACG
(58). Thus, characteristic morphometry changes of ACG might
be a crucial biomarker of OCD. The right angular gyrus
and right inferior parietal gyrus also showed a relatively
high weight in the classification. The angular gyrus lies in
the superior portion of the right lateral parietal cortex (59).
Neuroimaging studies have reported abnormalities in the right
parietal lobe, particularly in the angular gyrus (53, 60). Parietal
lobe is important in a variety of executive tasks involving
attention, spatial perception and working memory functions
(53). Considering that impairment in some of these functions
are consistently reported in OCD, such as attentional shifting,
it is conceivable that parietal lobe dysfunction, particularly
within the angular gyrus could contribute to the cognitive
deficits evident in OCD (53, 61). In addition, the parietal
lobe might interact with the frontal subcortical circuitry of
OCD through direct anatomical connections between associative
parietal areas and some of the key regions implicated in the
disorder such as the lateral orbitofrontal cortex, the striatum and
the mediodorsal thalamic nucleus (6). The paracentral lobule
is divided into anterior and posterior to the central sulcus.
The anterior portion of the paracentral lobule is part of the
frontal lobe and is often referred to as the supplementary
motor area; the posterior portion is considered part of the
parietal lobe (62, 63). The function of parietal lobe has
been proved to be primarily associated with skill learning,
attention, and working memory (63). Therefore, in addition
to the ACG, the frontal lobe and parietal lobe, paracentral
lobule may also play key roles in the pathology of OCD
and can provide much reference for classification of the
disease.

Myelin is closely related with the complex connectivity
of the human brain. Notably, in this study, three distinct

Frontiers in Psychiatry | www.frontiersin.org 6 October 2018 | Volume 9 | Article 524

https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychiatry#articles


Zhou et al. SVM Classification of OCD

WM classification models (WMV, FA, and MD) revealed a
coherent set of discriminative features, which were primarily
associated with processes of decision making or behavior
control. UNC and cingulum are within the association fiber
tracts (49). The UNC connects the frontal lobe (orbital cortex)
and the anterior temporal lobe, while cingulum especially the
hippocampal regions carries information from the cingulate
gyrus to the hippocampus (49). The corticospinal tract is an
important part of the motor system, and its integrity change
has been widely detected in various studies (4). Disrupted
white matter connectivity in these regions might underlie
the neural mechanisms of decline in memory and behavior
control in OCD patients. Since both the WM volumetric feature
and the tractography indices indicated high discriminative
power in the UNC, the cingulum in the hippocampus and
corticospinal tract, we hypothesized that the above three regions
(the UNC, the cingulum in the hippocampus and corticospinal
tract) hold the most discriminative WM connections of
OCD and are likely to be the specific biological markers
of OCD. Additionally, other discovered informative white
matter regions of the right external capsule, left fornix, and
stria terminalis are parts of the association fibers (cortex-
cortex connections), and the left anterior corona radiate and
bilateral cerebral peduncle are defined as projection fibers
(cortex–spinal cord, and cortex-thalamus connections) (49,
64). Damages of these WM tracts might interfere with the
connectivity between brain regions and disrupt the brain
networks involved in mood and cognition. These regions
might provide informative value for detection of OCD as
well.

It is particularly noteworthy that cerebellar regions showed
a fairly high discriminative weight in all four features. This
finding is in line with a previous structural study using the
multivariate pattern analysis in OCD (31). Existing structural
and functional neuroimaging studies have observed abnormal
structures and functions in the cerebellum of OCD patients
(65) and enriched our understanding of the great role of
cerebellum in OCD illness models. Increasing evidence has
demonstrated that in addition to its well-known role in motor
control, the cerebellum also plays roles in cognitive and
emotional regulatory processes (31, 66). The cerebellum is
structurally and functionally connected to the parallel cortico-
striato-thalamo-cortical circuits, as well as the limbic-cortical
network (31, 67), which forms a feedback information flow that
allows the cerebellum to involve in advanced neural activities.
Moreover, abnormal cerebellar functions are suggested to be
related to inflexible movements and repetitive behaviors in
OCD (68). Hence, the cerebellum deserves more attention in
future pathological model of OCD, and our results provide
further evidence for neural implications of this region in
OCD.

There are some limitations in this study to be addressed.
First, this study aims not only to use multi-modal features
for OCD classification, but also estimates which type of
data is more valuable for the detection of OCD. So, this
study did not investigate combined imaging modalities for
classification. Multi-kernel learning based on multi-modal

features with large sample might provide a better perspective to
classify OCD from healthy controls in future studies. Second,
our patients group consisted of both medicated and drug-
naïve subjects. Medication status of the OCD group were
various and complicated. Correlation between medication status
and brain images was not analyzed separately. Therefore,
we did not clarify how medication status would affect the
brain. Last but not least, we innovatively estimate the 10
most discriminative brain regions to exhibit a preliminary
result of the multiple feature sets. Some unlisted regions
may also contain valuable discriminative information and
these regions should receive full considerations in future
research.

CONCLUSION

Based on whole-brain volumetry and DTI images, SVM
algorithm revealed high accuracies for distinguishing OCD
patients from healthy controls at the level of the individual.
Feature sets of DTI seem to offer better predictive value
than volumetric features. Though machine learning method
sole is not enough to diagnose the OCD patient than the
clinical symptom, we believe neuroimaging-based machine
learning techniques may suggest neurobiological markers for
automatic detection of OCD patients and develop an objective
method to facilitate the accuracy of the diagnosis. We hope
computer-aided method based on imaging biomarker could
assist clinicians with the diagnosis of mental disorders in the
future.
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