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Background: The chronic phase of post-traumatic stress disorder (PTSD) and the

limited effectiveness of existing treatments creates the need for the development of

potential biomarkers to predict response to antidepressant medication at an early stage.

However, findings at present focus on acute therapeutic effect without following-up the

long-term clinical outcome of PTSD. So far, studies predicting the long-term clinical

outcome of short-term treatment based on both pre-treatment and post-treatment

functional MRI in PTSD remains limited.

Methods: Twenty-two PTSD patients were scanned using resting-state functional

MRI (rs-fMRI) before and after 12 weeks of treatment with paroxetine. Twenty patients

were followed up using the same psychopathological assessments 2 years after

they underwent the second MRI scan. Based on clinical outcome, the follow-up

patients were divided into those with remitted PTSD or persistent PTSD. Amplitude of

low-frequency fluctuations (ALFF) and degree centrality (DC) derived from pre-treatment

and post-treatment rs-fMRI were used as classification features in a support vector

machine (SVM) classifier.

Results: Prediction of long-term clinical outcome by combined ALFF and DC features

derived from pre-treatment rs-fMRI yielded an accuracy rate of 72.5% (p < 0.005). The

most informative voxels for outcome prediction were mainly located in the precuneus,

superior temporal area, insula, dorsal medial prefrontal cortex, frontal orbital cortex,

supplementary motor area, lingual gyrus, and cerebellum. Long-term outcome could not

be successfully classified by post-treatment imaging features with accuracy rates <50%.

Conclusions: Combined information from ALFF and DC from rs-fMRI data before

treatment could predict the long-term clinical outcome of PTSD, which is critical for

defining potential biomarkers to customize PTSD treatment and improve the prognosis.

Keywords: posttraumatic stress disorder, pharmacotherapy, clinical outcome, amplitude of low-frequency

fluctuations, degree centrality, support vector machine
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INTRODUCTION

Posttraumatic stress disorder (PTSD) is a debilitating psychiatric
disorder characterized by re-experiencing, avoidance, numbing,
and hyperarousal (1), and is a major worldwide public health
problem (2, 3). Antidepressants are the one of the predominant
pharmacotherapies for PTSD. The selective serotonin reuptake
inhibitors (SSRIs), sertraline and paroxetine, are approved by
the Food and Drug Administration (FDA) for the treatment of
PTSD based on multicenter trials (4, 5). However, studies were
inconclusive regarding evidence of the efficacy of these drugs
(6–8). The chronic phase of PTSD and the limited effectiveness
of existing treatments combine to create an urgent need for
the development of potential biomarkers to predict response to
antidepressant medication at an early stage. Indeed, a number
of potential biomarkers of neuroimaging have been proposed
in recent years. For example, preliminary evidence showed that
increased orbitofrontal cortex (OFC) function is specifically
associated with paroxetine treatment in PTSD (9). More recently,
we have demonstrated that regional spontaneous activity of the
precuneus reflects the clinical improvement of patients, and
manipulating the activity of the precuneus and OFC could be
a prognostic indicator of PTSD (10). In addition, the least
recruitment of prefrontal emotion regulatory brain regions has
been associated with most reduction in PTSD symptoms with
SSRI treatment (11).

These findings, however, investigate acute therapeutic effect
and assess the symptom changes only immediately after
treatments, without following up the long-term treatment
outcome of PTSD. Moreover, none of these studies associated
the post-treatment brain magnetic resonance imaging (MRI)
features with treatment outcomes, although it was observed in
previous single photon emission computed tomography study
that the post-treatment activation in the medial prefrontal
cortex region was correlated with Clinician-Administered
PTSD Scale reduction (12). The post-treatment MRI contains
brain functional changes after the shot-term treatment, and
may as well provide useful information in predicting long-
term treatment outcome. Many studies have emphasized the
relapse prevention after acute treatment for PTSD (13, 14),
therefore, it is important to be able to predict the long-term
prognosis based on both pre-treatment and post-treatment MRI,
guiding the clinicians and patients to make optimal treatment
plans.

In the past several years, the application of machine learning
techniques to neuroimaging data analysis has made promising
improvements in brain disease classification (15, 16) or the
prediction of remission in treated patients (17, 18). In contrast
to the group comparisons that are based on mass-univariate
analyses, machine learning techniques allow prediction of
individual cases, and they are sensitive to subtle and spatially
distributed differences in the brain (19). In clinical practice,
machine learning techniques such as support vector machine
(SVM) have considerable translational value. It has been
demonstrated that when applying machine learning methods
to characterize PTSD, the classification accuracy obtained
using multi-level features from resting-state functional MRI

(rs-fMRI) data was increased from the two-level and single-level
feature–based methods, respectively (20). Rs-fMRI studies have
identified that altered amplitude of low-frequency fluctuations
(ALFF) (10, 21) and degree centrality (DC) (22), which represent
regional spontaneous neural activity and the level of integration
of that local activity across brain regions, respectively, underlie
PTSD. Investigating the ALFF may advance our understanding
of the functional segregation of the brain, while investigation
on DC may increase our understanding of the functional
integration within the brain (23). The combined levels of rs-fMRI
data provide complementary information for classification, and
may give better classification performance than single-level
features (24).

Therefore, we used SVM to examine the long-term prognostic
value of both pre-treatment and post-treatment rs-fMRI data in
patients with PTSD. Specifically, ALFF and DC were used as
classification features and effectively combined.We hypothesized
that complementary information conveyed among regional and
integrated features could be combined to discriminate between
remitted patients and consistent patients in the long term with
statistically significant accuracy. Since we found a significant
correlation between the changes of mean ALFF and CAPS scores
in the PTSD group before and after treatment in our previous
study (10) and the 2-year follow-up data of the current study is
continuation of our previous work (10), we also hypothesized
that the post-treatment rs-fMRI would be more predictive than
the pre-treatment rs-fMRI data.

MATERIALS AND METHODS

Participants
The sample of PTSD patients were a cohort of
earthquake survivors, from our previous study, where detailed
information of trauma events and inclusion/exclusion criteria
were described (10). In brief, imaging data from 22 patients were
included for statistical analysis (5 males and 17 females, with a
mean age of 45.82 ± 7.01 years) before and after treatment. All
individuals met the DSM-IV criteria for PTSD, right-handed.
None of the patients had received any regular medication or
psychological therapy before the first MRI scan. Any history
of neurological disease or alcohol and/or other substance
abuse/dependence; history of major head injury involving loss of
consciousness for more than 10min; pregnancy, serious systemic
illness, MR imaging contraindications ormental retardation were
excluded. Individuals with head motion of more than 1.5mm
or 1.5◦ during rs-fMRI were excluded. Diagnosis of PTSD was
determined by consensus of two attending psychiatrists using
the Clinician-Administered PTSD Scale (CAPS) (25) and the
Structured Clinical Interview (SCID) Diagnostic and Statistical
Manual of Mental Disorders, Fourth Edition (DSM-IV), Patients
Version (26). All 22 participants were followed up using the
SCID and CAPS 2 years after they underwent the second MRI
scan, two of whom were unavailable for follow-up.

According to the SCID, participants met criteria for current
comorbid diagnoses before treatment: major depression (N = 5),
dysthymia (N = 1), and general anxiety disorder (N = 2);
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only two individuals were comorbid with depression during the
follow-up period of 2 years.

Treatment Phase
As was described in our previous study (10), participants with
PTSD received paroxetine (Seroxat) treatment for 12 weeks. The
dosage at the beginning of treatment was 10 mg/day, which was
increased to 20 mg/day after 4 days. The paroxetine dosage was
adjusted based on the judgment of the investigating psychiatrist
every 4 weeks by 10 mg/day up to 40 mg/day. The CAPS, Clinical
Global Impression (CGI), Hamilton Rating Scale for Depression
(HAMD-24), Hamilton Rating Scale for Anxiety (HAMA-14),
and Asberg’s antidepressant side-effect rating scales (SERS) were
assessed every 4 weeks to evaluate the patient’s condition and
adverse drug reactions. Medication was dispensed during every
visit to enhance compliance and reduce chance of misuse. The
study psychiatrist and staff inquired about missed doses and
conducted a pill count to confirm the participant’s report. No
participants in the study ever missed more than 2 consecutive
daily doses and no subject regularly (>3 times) missed a dose
over the course of the 12-week study. The 24/7 emergency
telephone number of a psychiatrist was given to all subjects in
case of any emergency during treatment. No other drugs were
permitted during treatment, unless required for the patients’
safety.

The 3-month pharmacotherapy was free of charge for all the
participants, and after that, the participants chose to buy and
continue taking paroxetine at their own expense. At follow-up,
only two participants reported to have continued paroxetine
for another 2 months. Other participants did not take any
antipsychotic medication after the 3-month treatment for various
reasons, primarily because of (1) living in remote mountain areas
where antipsychotic medications were locally unavailable, (2)
poor socioeconomic conditions that limited travel and funds for
medical care, (3) feeling well after the 3-month pharmacotherapy
and a lack of understanding or recognition of the severity of
mental illness. No participants reported any other life events
according to the Life Events Checklist during the follow-up
period of 2 years. In addition, three patients reported use of
complementary medical treatments with Chinese traditional
medicine during the 2 years. Because the effects of the ingredients
on brain structure and function were unknown and the three
patients stopped taking the medicine for more than 6 months,
we did not exclude them from the study.

This study was approved by the Medical Ethics Committee of
West China Hospital, Sichuan University, and all subjects gave
written informed consent.

MR Data Acquisition and Data
Preprocessing
All participants underwent rs-fMRI before and after
pharmacotherapy with a 3.0-T MR imaging system (Siemens
Trio Tim) and a twelve-channel phased-array head coil.
Thirty transverse slices (field of view [FOV] = 24 cm, in-plane
matrix= 64 × 64, slice thickness = 5mm, no slice gap,
voxel size = 3.75 × 3.75 × 5), aligned along the anterior
commissure-posterior commissure (AC-PC) line, were acquired

using an echo planar imaging (EPI) sequence (time repetition
[TR] = 2,000ms, time echo [TE] = 30ms, flip angle = 90◦),
resulting in a total of 205 volumes for each participant. During
imaging, the participants were fitted with soft ear plugs and
instructed to relax with their eyes closed; without falling
asleep; and without directed, systematic thought. Subsequently,
high-resolution, three-dimensional T1-weighted images
(TR = 1,900ms, TE = 2.26ms, flip angle = 9◦, 176 sagittal slices
with thickness= 1mm, FOV= 240× 240 mm2 and data matrix
= 256 × 256, yielding an in-plane resolution of 0.94 × 0.94
mm2) were acquired.

Data processing was performed using the Data Processing
Assistant for Resting-State fMRI (DPARSF) software package
(http://rfmri.org/DPARSF) (27), implemented in MATLAB
(MathWorks, Inc., USA). Considering the magnetization
saturation effects and participants’ adaptation to the
environment, the first 5 volumes of each data set were discarded.
Functional volumes were first slice-time corrected and then
motion corrected. All participants in this study had <1.5mm
displacement and 1.5◦ of rotation in any direction. Moreover,
examination of the movement parameters showed that there was
no significant association between the mean displacement and
long-term outcome (CAPS change) (pre-treatment r = 0.296,
p= 0.181; post-treatment r = 0.063, p = 0.781) or initial CAPS
(pre-treatment r = 0.031, p = 0.890; post-treatment r = −0.042,
p = 0.852). The T1 images were registered to the averaged EPI
image and then spatial normalization was performed to a 3-mm
Montreal Neurological Institute template, and smoothed using
a 6-mm, full-width half maximum (FWHM) Gaussian kernel
(28, 29) for ALFF calculation. For DC calculation, smoothness
was the last step after the DC was calculated to avoid disturbing
correlations between these voxels, as the DC was based on
Pearson’s correlations between the time series of all pairs of brain
voxels. The covariates of no interest, including white matter
signal, cerebrospinal fluid signal, and the Friston 24-parameter
model, were sequentially regressed from the time series (30).
Global signal regression (GSR) was not performed because
it might have removed neural (functionally relevant) BOLD
signal and potentially altered group differences in functional
connectivity (31, 32). The ALFF and the DC measures were
calculated using DPARSF.

ALFF Calculation
After preprocessing, the corrected BOLD time series were
transformed to the frequency domain using fast Fourier
transform (FFT) (parameters: taper percent = 0; FFT length =

shortest) to obtain the power spectrum. To calculate the ALFF,
the power spectrumwas square-rooted and averaged across 0.01–
0.08Hz at each voxel. Finally, the ALFF of each voxel was then
divided by the global mean of ALFF values for standardization.

Degree Centrality Calculation
After preprocessing, the corrected BOLD time series were low
pass-filtered using a cut-off frequency of 0.08Hz to reduce
low frequency drift and high frequency. Furthermore, binarized
DC measures were calculated using DPARSF. First, Pearson’s
correlations between the times series of all pairs of gray matter
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voxels were calculated to obtain a whole functional connectivity
matrix for each participant. Second, we restricted our analysis
to positive correlations above a threshold of Pearson’s r = 0.25
to obtain an undirected binarized matrix according to previous
studies (28, 33, 34). If the correlation between the two voxels
was >0.25, the elements of the binarized matrix were set to 1;
otherwise, they were set to 0 (33). This threshold avoids taking
the voxels that had low temporal correlation into consideration,
which was attributed to signal noise. We also used other
correlation coefficient thresholds (i.e., 0.15, 0.2, 0.3, 0.35) for DC
calculation to investigate whether the subsequent SVM results
preserved (see Supplementary Materials). Then, standardized
binarized DC maps were acquired by dividing by the global
mean of DC values. Finally, the DC images were smoothed using
a 6-mm full-width half-maximum (FWHM) isotropic Gaussian
filter.

Statistical Analysis
We divided the 2-year follow-up participants into two groups:
the remitted patients, who were the 9 patients with a CAPS
improvement of 50% or greater, and the persistent patients
who were the 11 patients with <50% improvement according
to previous studies (35, 36). To determine how accurately
individual patients could be classified into those two groups
on the basis of preprocessed imaging datasets, a binary SVM
was used as implemented in PRoNTo (http:// www.mlnl.
cs.ucl.ac.uk/pronto/) running under MATLAB (MathWorks,
Inc., USA). We used ALFF, DC, and combined ALFF and
DC information to train a linear SVM with a Gaussian
kernel, respectively. Similar to other studies, we used the
default parameter C = 1, which is recommended for high-
dimensional data and relatively small sample sizes (15, 16).
After feature space calculation, features were mean-centered,
and cross-validation was performed based on a leave-one-
subject-out scheme, indexed using the total accuracy and
class accuracy (representing the sensitivity and specificity). The
significance of both indices was estimated using a permutation
test whereby the input-target data were randomly paired and
the SVM rerun 1,000 times. Finally, the receiver operating
characteristic (ROC) curve was plotted and the area under ROC
curve (AUC) was calculated to illustrate the performance of
classification.

In this study, each voxel carries a certain weight value
representing its contribution toward the classification function
since the input space is voxel space (one dimension per voxel).
The larger the absolute magnitude of a weight vector is, the
stronger it affects the final discrimination (37). Therefore, a
discrimination map showing the global spatial pattern by which
the groups differ could be generated. Because of the multivariate
character of the SVM classifier and the discrimination is
based on the whole brain pattern (all voxels contribute to the
classification), local inferences should not be made from the
weights. For ease of visualization, by setting the threshold to
30% of the maximum (absolute) weight value for all successful
SVM-derived weight maps (16, 37), we obtained a spatial
representation of the regions that contributed most to the group
discrimination.

RESULTS

Demographics and Clinical Scores
The demographic information and psychological variables in
PTSD before and after treatment and at follow-up are shown
in Table 1. Three months later, 21 patients responded to the
pharmacotherapy with a CAPS improvement of at least 50%,
and only one patient did not respond to the pharmacotherapy
with a CAPS decrease by three scores. Compared to baseline, the
patient group showed significant differences in CAPS, HAMD,
andHAMA after treatment (paired t-test, p< 0.001) (Table 1). In
the first month of the study, 12 patients reported drymouth, eight
reported constipation, five reported drowsiness, three reported
dizziness, three reported hyperhidrosis, two reported palpitation,
one reported headache, and one reported tinnitus, all of which
gradually diminished without use of any additional drugs. At
the 2-year follow-up, 9 patients were in remission, with a CAPS
improvement of 50% or greater, 11 patients had persistent PTSD
with less than a 50% improvement.

Classification Performance
Table 2 lists the classification results of the single-feature method
and our multi-level feature combination method (i.e., combined
ALFF and DC information). The multi-level feature combination
approach resulted in an accuracy of 72.50% (p = 0.004) at
pre-treatment, with a sensitivity of 66.67%, and a specificity
of 77.27%. The single-feature classification (when using ALFF
or DC) failed to survive the permutation test (p > 0.05). The
binary and linear prediction of long-term therapeutic response by
combined ALFF and DC information obtained before treatment
yielded accuracy rates significantly above the level of chance.
However, long-term treatment outcome could not be successfully
classified by post-treatment imaging features with accuracy rates
<50% (p > 0.05). The corresponding ROC curves were plotted
(see Figure 1). The larger the area under the ROC is obtained,
the better the classification performance.

The Most Discriminative Regions
Classification was based on functional alterations across the
whole brain (Figure 2). In comparison of remitted patients
and persistent patients, regions displaying most difference in
combined ALFF and DC appeared in the bilateral precuneus,
bilateral superior temporal area, bilateral insula, bilateral dorsal
medial prefrontal cortex (dmPFC), right frontal orbital cortex,
right supplementary motor area, bilateral lingual gyrus, and
bilateral Cerebelum_Crus1 (see Table 3 for a full list).

DISSCUSION

In the present longitudinal rs-fMRI study, we investigated the
potential alterations of brain function related to the long-
term treatment outcome of paroxetine that was taken 2 years
ago in individuals with PTSD. To the best of our knowledge,
this is the first study to examine the prognostic value of rs-
fMRI in relation to the long-term clinical outcome in PTSD.
By applying an SVM method to the pre-treatment fMRI
data, we successfully discriminated the remitted patients from
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TABLE 1 | Participant characteristics before, after treatment, and at follow-up.

Variables (mean ± SD) Pre-treatment Post-treatment Follow-up

remitted

Follow-up

persistent

p-value

(pre-treatment vs.

post-treatment)

p-value

(remitted vs.

persistent)

Gender(f/m) 22 (17/5) 22 (17/5) 9 (8/1) 11 (7/4) _ 0.319a

Age(yrs) 45.8 ± 7.0 45.8 ± 7.0 46.2 ± 6.8 47.9 ± 7.0 _ 0.593

Education

(yrs)

6.8 ± 3.3 6.8 ± 3.3 6.7 ± 3.3 7.4 ± 2.8 _ 0.616

CAPS 67.3 ± 14.5 16.4 ± 13.7 21.7 ± 9.4 62.6 ± 25.0 <0.001 <0.001

HAMD 19.5 ± 8.6 5.8 ± 6.6 _ _ <0.001

HAMA 17.0 ± 7.6 7.4 ± 8.8 _ _ <0.001

CGI-S 5.1 ± 0.7 1.7 ± 0.9 _ _ _

CGI-I _ 1.2 ± 0.5 _ _ _

CAPS, Clinician Administered Posttraumatic Stress Disorder Scale; HAMD, the Hamilton Rating Scale for Depression. HAMA, the Hamilton Rating Scale for Anxiety; CGI-S, Clinical

global impressions severity; CGI-I, Clinical global impressions-improvement. aFisher’s Exact Test.

TABLE 2 | Prediction of Long-term Clinical Outcome by Multimodal Imaging Obtained before and after Treatment.

Modality Pre-treatment Post-treatment

TA (%) SEN (%) SPE (%) AUC value p-value TA (%) SEN (%) SPE (%) AUC value p-value

ALFF 65.00 66.67 63.64 0.64 0.074 40.00 22.22 54.55 0.25 0.677

DC 65.00 55.56 72.73 0.61 0.073 55.00 44.44 63.64 0.56 0.207

Combined 72.50 66.67 77.27 0.72 0.004 47.50 27.78 63.64 0.45 0.488

TA, total accuracy; SEN, sensitivity; SPE, specificity; AUC, area under receiver operating characteristic curve.

FIGURE 1 | ROC curves of different methods show the trade-off between the true positives/sensitivity (y-axis) and false positives/specificity (x-axis, 1-specificity).

the persistent patients with 72.50% accuracy (p < 0.005).
Moreover, we demonstrated that the performance of the
classification could be significantly improved using the combined
ALFF and DC features. The most informative voxels for
prognostic value were mainly located in the precuneus,

superior temporal area, insula, dorsal medial prefrontal cortex
(dmPFC), frontal orbital cortex, supplementary motor area,
cerebellum and lingual gyrus, which have been consistently
reported as important brain regions in the pathophysiology
of PTSD.
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FIGURE 2 | Brain regions which showed the highest prognostic value of integrated ALFF and DC features. These regions were identified by setting the threshold to

the top 30% of the weight vector scores. Red indicates higher values in the remitted than the persistent patients, while blue indicates higher values for the persistent

than the remitted patients.

The ability to advise psychiatrists and patients accurately
regarding the chances of successful pharmacotherapy is of
considerable value, particularly because pharmacotherapy is a
time-consuming procedure (38) and has some adverse effects
(39). The binary pattern classification analyses based on the
combined features of ALFF and DC yielded accuracy rated as
great as 72.50% accompanied by an AUC of 0.72 in the present
study, which was efficient to provide preliminary support to
develop the prognostic aid. However, SVM based on ALFF or
DC alone did not reach sufficient overall predictive accuracies
(65.0%) in the therapeutic outcome of PTSD patients, nor did
it pass through the permutation test. The combined ALFF and
DC measures represents both the functional segregation of the
brain and the integration within the brain (23). These results
suggested that single-level features could only afford limited
information for discrimination of clinical outcome. Information
from different levels of features may complement each other
and potentially improve the prediction accuracy. Previous studies
highlighted a pattern of brain activation that might predict
response to a short-term PTSD treatment without reference to
the long-term prognosis (40, 41). Therefore, our study not only
confirmed that functional neuroimaging data has the potential
to serve as prognostic biomarkers, but also provided further
evidence that the multi-level rsfMRI method could help support
a predictability of treatment outcome in the long run, which
may be particularly important to guide personalized treatment
decisions.

Contrary to the hypothesis, our study demonstrated the value
of pre-treatment MRI for predicting clinical outcome; however,
the post-treatment functionalMRI was not able to predict clinical
outcome (permutation test, p > 0.05) in the SVM. Changed

brain function after short-term treatment of SSRIs has been
observed frequently in a number of previous functional imaging
studies of PTSD (9–11, 42). In our previous study, which used
the same sample as in the present study, we have found that
the abnormal ALFF of OFC and precuneus at pre-treatment
was normalized compared to traumatized healthy controls at
post-treatment (10). The OFC and the precuneus are among
the most discriminative brain regions using pre-treatment rs-
fMRI data in the present study. In other words, some of the
brain activity or network information that could be used to
discriminate the clinical outcome was interfered after SSRI
treatment. Furthermore, taking medication alone can make a
difference on the classification performance of post-treatment rs-
fMRI data, as there were side effects from the medication. Studies
involving both pre- and post-treatment fMRI data using different
treatment methods are needed to replicate the findings.

The brain regions that showed the highest prognostic value
(i.e., the most substantial contribution to the SVM decision
function), by setting a threshold to the top 30% of the weight
vector scores, are presented in Figure 2 and listed in Table 3.
Interpretation of these results must take the multivariate nature
of the SVMmethod into account. There are two possible reasons
for an individual region to display high discriminative power:
first, a difference in ALFF/DC between groups in that region and,
second, a difference in the correlation between that region and
other areas between groups. Results from multivariate methods
such as SVM should not only be interpreted as individual regions
but also as a spatially distributed pattern. Themost discriminative
regions we identified by SVMwere widespread and not restrict to
particular brain regions in the present study. Two discriminating
patterns were revealed: first, the precuneus, dmPFC, lingual
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TABLE 3 | The most discriminating regions revealed by combined ALFF and DC

discriminative map (in the Top 30% of the maximum absolute weight vector

score), for the comparison between remitted patients and persistent patients.

Region Number

of voxels

MNI coordinate

(x, y, z)

wi (×10−2)

REMITTED PATIENTS > PERSISTENT PATIENTS

Cerebellum_Crus1_L /

Lingual_L

176 −9, −87, −15 1.92

Cerebellum_Crus1_R /

Lingual_R / Inferior Occipital

Gyrus_R

95 27, −84, −18 1.84

Cerebellum_Crus1_R 20 9, −87, −21 1.63

dmPFC_R 61 15, 63, 3 1.72

dmPFC_L 22 0, 66, 18 1.44

Bilateral dmPFC 22 0, 54, 30 1.15

Bilateral precuneus 44 3, −78, 39 1.78

86 3, −48, 69 3.16

Frontal_Sup_R/

Supp_Motor_Area_R

21 12, −3, 75 2.00

REMITTED PATIENTS < PERSISTENT PATIENTS

Superior temporal area/

Frontal Orbital Cortex_R

28 36, 21, −21 −2.26

Superior temporal area_L /

left insula

27 −45, 9, −15 −2.23

Superior temporal area_R /

right insula

100 48, 0,−3 −1.71

Fusiform_R/Lingual

Gyrus_R

21 21, −75, −3 −1.50

Right Superior temporal

area

200 60, −21, 15 −2.06

Supp_Motor_Area_R 38 6, 24, 66 −1.48

Supp_Motor_Area_R /

Precentral Gyrus_R

24 9, −18, 78 −1.71

The wi Refers to The Peak Weight Vector Score in Each Cluster.dmPFC, dorsal medial

prefrontal cortex; Supp_Motor_Area, supplementary motor area; L, left; R, right.

gyrus, the right supplementary area, and the Cerebelum_Crus1
showed a strong contribution favoring remitted over persistent
patients with PTSD. Second, the superior temporal area, the
insula, the right frontal orbital cortex, the right supplementary
motor cortex, the right lingual gyrus, and fusiform gyrus showed
a strong contribution favoring persistent patients over remitted
ones.

The precuneus and dmPFC were core regions of the default
mode network (DMN) (43, 44). Recently, the cerebellum_Crus1
was demonstrated to be associated with emotion processing
(45–48) and cognitive function (49). Moreover, rs-fMRI studies
have revealed that the cerebellum_Crus1 participated the DMN
(50, 51). Therefore, our findings provided preliminary evidence
that the DMN counts for the long-term clinical outcome of
PTSD, which were supported by previous studies showing that
the DMN connectivity was associated with PTSD symptom
severity (52, 53). The supplementary area was believed to be
among the network of neural regions mediating top-down
control of negative affect in a recent meta-analysis (54) and
change in the supplementary motor area over time in veterans
with PTSD after paroxetine treatment was observed (11). The

functional alteration of temporal lobe including the insula has
been implicated in the treatment outcome of pharmacotherapy
in PTSD in a number of studies (42). The insula is an important
component in the salience network (55) and dysconnectivity in
the salience network was thought to be related to low threshold
for saliency and a hypervigilant state in PTSD (56). In addition,
the anterior insula of the salience network is thought to mediate
the disengagement of the DMN (57). Taken together, our results
suggested that the long-term clinical outcome after paroxetine
treatment was best predicted by alterations in widespread
networks including the default mode and salience network,
providing potential biomarkers in PTSD prognosis. It may
be surprising that the amygdala and the anterior cingulate
cortex were not found to be the most discriminate regions,
given that these regions have been associated with treatment
outcome in previous fMRI studies (41). However, a recent
investigation using a multivariate analytical method did not
detect treatment outcome associations with these regions (11).
We also speculated that this might be related to the methods we
used (i.e., discrimination is based on the whole brain pattern at
resting-state).

The present study has a number of important limitations.
First, the sample size of this study is very small, especially for
machine learning analysis, which restricted us to using more
restrictive cross-validationmethods. Second, the small number of
males in our sample (5 males out of 22 subjects at baseline) may
to some extent limit the generalizability of our results. Studies
in larger samples with a more balanced female to male ratio
could tackle the limitations. Third, most patients who underwent
the 12-week treatment showed a significant improvement in
symptoms, which was not very generalizable. This may be
due to Hawthorne effect because professional treatment was
out of reach for the patients and they were never medicated
before. Forth, this study was not a randomized trial inclusive
of a placebo or waitlist control hence it is quite difficult to
attribute the benefits directly to paroxetine treatment. Although
the participants reported no life events during the 2-year follow-
up, other potential factors might affect the prognosis of the PTSD
patients, not just the treatment. Nevertheless, the current findings
do suggest a predictive pattern indicative of general recovery
course of PTSD even though it is difficult to determine to what
degree the findings are relevant to the medication. Finally, we
failed to perform regular follow-ups after the SSRI treatment;
thus, we could not discover the time when the clinical symptoms
of some PTSD patients reappeared after they reported a symptom
relief right after treatment. Future studies might conduct regular
follow-ups of symptom severity as well as fMRI to investigate the
underlying mechanisms of prognosis of PTSD further.

CONCLUSION

The present study revealed that combined information from
ALFF and DC data before paroxetine treatment could predict the
long-term clinical outcome of PTSD, suggesting that integration
of regional and integrated network measurement could yield
higher accuracy in PTSD prognostic identification. Moreover,
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widespread networks including the default mode and salience
network showed the best discriminative performance between
remitted and persistent PTSD. These results add to evidence
that multi-level resting-state imaging could be used to develop
biomarkers of improved and more personalized treatment
interventions, which can potentially improve the prognosis of
PTSD.
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