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Autism spectrum disorders (ASD) are characterized by impairments in verbal

and non-verbal communication, in social interactions, and often accompanied by

stereotypical interests and behaviors. A role for immune dysfunction has long been

implicated in ASD pathophysiology, behavioral severity, and co-morbidities. The

pro-inflammatory cytokine tumor necrosis factor alpha (TNFα) has been associated with

ASD in some studies but little is known about its receptors. There are two receptors

for TNFα, with TNFRI relaying many of the signals from TNFα, especially those that are

rapid, whilst TNFRII relays later more long-term effects of TNFα. Proteolytic cleavage

can lead to the soluble versions of these receptors which can neutralize the effects

of TNFα. Here, we determined levels of TNFα and its receptors in 36 children with a

confirmed diagnosis of ASD and 27 confirmed typically developing (TD) controls, 2–5

years-of-age. Children with ASD had higher levels of TNFRII on T cells compared to

controls following cell stimulation. Levels of sTNFRII were decreased in cell supernatants

following stimulation in ASD. Overall these data corroborate the role of inflammatory

events in ASD and align with previous studies that have shown differential changes in

cellular adaptive immunity in children with ASD. Future longitudinal analyzes of cellular

immune function and downstream signaling from immune receptors will help further

delineate the role of inflammation in ASD.
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INTRODUCTION

Autism spectrum disorders (ASD) are neurodevelopmental disorders affecting 1 in 59 children
whom are characterized by significant deficits in communication, social interactions and frequently
accompanied by stereotyped or restricted behaviors and interests. The etiology of ASD is complex
and largely unknown; however, potential genetic candidates linked with ASD include many genes
that regulate immune responses, for instance human leukocyte antigen (HLA)-DR, phosphatase
and tensin homolog (PTEN), macrophage migration inhibitory factor (MIF), complement C4B,
MET tyrosine receptors, interleukin (IL)-4 receptor, and reelin [Reviewed in (1, 2)]. Significant
immune dysfunction is also seen in children with ASD, including prominent neuroinflammation in
brain specimens, and alterations in adaptive and innate immune responses in the periphery (3–15).
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Tumor necrosis factor-α (TNFα) is a pleiotropic and highly
regulated pro-inflammatory cytokine secreted by a number of
different cells that plays an important role in coordinating
early inflammatory processes, cell proliferation and apoptosis
(16). Biologically the activities of TNFα are mediated via
two different ubiquitously expressed TNFα receptors, TNF
receptor type I (TNFRI; also known as CD120a), and type
II (TNFRII; CD120b) (17, 18). TNFRI seems to be the main
mediator of TNFα rapid signaling and is found on most
tissues, whereas TNFRII mediates later more long-term effects
of TNFα and are more commonly expressed on immune
cells (17, 19). Proteolytic cleavage of these receptors from the
cell surface results in soluble forms (sTNFRI and sTNFRII)
that can neutralize TNFα and thus modulate its biological
activity (20). The measurement of levels of sTNFRs and TNFα
together may be more useful and reliable markers of the
inflammatory response and TNFα bioactivity than just TNFα
alone.

Although many studies have documented increased
expression of TNFα in different neuropsychiatric diseases,
for example schizophrenia, depressive disorder, and Alzheimer’s
disease, only a few have evaluated TNFα in serum/plasma or
following stimulation of immune cells in ASD, and the results
are often conflicting (3, 4, 21–36). Information on the levels of
sTNFRs are even more scant in ASD. Finally, no previous study
has assessed both levels of TNFRs on the cell surface of immune
cells and production of sTNFRs in ASD.

The present study sought to evaluate levels of TNFRs on
T cells and sTNFRs in supernatants following immune challenge
in ASD patients compared to TD control subjects.

METHODS

Subjects
This study examined 63 participants enrolled through the
Childhood Autism Risk from Genetics and Environment
(CHARGE) study at U.C. Davis (37). Full details regarding
behavioral measures/assessments and recruitment in the
CHARGE study protocols have previously been described (37).
Children were consecutively assessed. Participants were free
of medication and without chronic clinically defined illness or
fever at time of blood draw. The participants were 27 typically
developing (TD) controls median age 3.9 years [(interquartile
range 2.2–6.1), 4 females] and 36 children with ASD [median
age 3.6 years (interquartile range 2.5–4.8), 5 females]. Diagnoses
of ASD was based on Diagnostic and Statistical Manual of
Mental Disorders, Fourth Edition (DSM-IV) criteria, and
defined as autistic disorder. Further evaluation was confirmed
using the Autism Diagnostic Interview-Revised (ADI-R)
and the Autism Diagnostic Observation Schedule (ADOS)
assessments. Children from the TD groups were screened for
autism traits using the Social Communication Questionnaire
(SCQ). This study was approved by the UC Davis institutional
review board and complied with all requirements regarding
human subjects. Parents gave both written and informed
consent.

Cell Isolation, Stimulation, and
Biochemical Measures
Peripheral bloodmononuclear cells (PBMC)were separated from
the whole blood by centrifugation over Histopaque-1077 Hybri-
Max lymphocyte separation medium (Sigma; St. Louis, MO)
before washing twice in Hanks Balanced Salt Solution (HBSS;
VWR; Brisbane, CA). PBMCwere either cultured in media alone,
or stimulated with PHA (10µg/mL; Sigma), for 24 h at 37◦C
in 5% CO2. Following culture, plates were centrifuged before
supernatants were harvested and stored at −80◦C until cytokine
analysis and cells processed for flow cytometry.

The quantification of TNFα and its soluble receptors
(sTNFRI and sTNFRII) were assessed by ELISA using standard
procedures recommended by the manufacturer (Quantikine,
R&D Systems, Minneapolis, Minn., USA). All samples were
on unstimulated and stimulated cell culture supernatants, in
duplicates. The detection limits for the kits were <0.5 pg/ml.
Concentrations obtained below the sensitivity limit of detection
(LOD) of the method were calculated as LOD/2 for statistical
comparisons. Culture supernatants had not undergone any
previous freeze/thaws cycle.

Cells were harvested after culture and were washed three
times in FACS buffer (PBS, 1% fetal bovine serum albumin
(VWR, USA) and 0.1 % sodium azide (Sigma), before being
resuspended and stained in 100 µl FACS buffer containing either
the following monoclonal antibodies fluorescein isothiocyanate
(FITC)-conjugated mouse anti-human TNFRI (CD120a);
phycoerythrin (PE)-conjugated mouse anti-human TNFRII
(CD120b); (PE)-Cy5-conjugated mouse anti-human CD3; and
allophycocyanin (APC)-conjugated mouse anti-human CD4,
CD8 (all antibodies were from BD Biosciences, CA, USA).
Appropriate IgG isotype controls (BD bioscience) were used to
correct for compensation issues. Cells were incubated at 4◦C for
30min before being spun down and washed with staining buffer.
Cells were then analyzed on a LSR II flow cytometer and the data
acquired analyzed with FlowJo software (BD Immunocytometry
Systems). Lymphocytes were gated using forward scatter and
side scatter parameters and CD3+ cells for analysis of cell
surface TNFRI and TNFRII expression, with further analysis of
CD4 and CD8 expression where each parameter was measured
separately on CD3+ populations, CD3+CD4+ populations, and
CD3+CD8+ populations.

Statistical Analysis
In primary analyses, induced TNFα and soluble receptors and
cell surface markers levels (outcome) were compared by group
(predictor) and statistical significance was determined using a
parametric Student’s t-test, following confirmation of normal
distribution, with a p-value of <0.05 considered significant.
Multiple comparisons were adjusted for by using the Benjamini-
Hochberg False Discovery Rate. Using answers to questions
regarding loss of language (Q11) and loss of social skills (Q25) of
the ADI-R, the autism population was further divided into two
groups based on the clinical onset of autistic symptoms; namely,
children who regressed in acquired language or social skills after
initial typical development, and secondly, children who did not

Frontiers in Psychiatry | www.frontiersin.org 2 November 2018 | Volume 9 | Article 543

https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychiatry#articles


Ashwood Immune and ASD

TABLE 1 | Comparison of the TNFα and soluble receptors (pg/ml) following cell

culture in media alone or stimulation with PHA in children with autism (n = 36) and

typically developing controls (n = 27). Data are presented as mean ± standard

error of means (SEM).

TNα sTNFRI sTNFRII

Media ASD 34.38 ± 2.81 57.80 ± 2.13 147.7 ± 13.07

TD 33.09 ± 3.844 58.23 ± 2.70 182.4 ± 22.80

PHA ASD 54.50 ± 1.89 63.83 ± 2.48 1, 060 ± 77.72

TD 54.71 ± 1.96 66.17 ± 3.49 1, 766 ± 213.61*

*p = 0.014 stimulated levels of sTNFRII were decreased in ASD children compared with

PHA stimulated levels in typically developing controls.

regress. We also compared ADOS scores with immune outcomes
using Pearson correlations. There were too few subjects with
clinical co-morbid features such as gastrointestinal symptoms
or sleep disorders to determine differences between cytokine
production or cell surface receptor expression. All analyses
were carried out using SAS version 9.1 (SAS Inc.; Cary, NC)
and graphed with Prism 5 Software (GraphPad Software; San
Diego, CA).

RESULTS

Cytokine and soluble receptors were measured in harvested
supernatants from unstimulated and PHA-stimulated, PBMC
cultures. No difference between children with ASD and TD
controls were observed in TNFα or its receptors in unstimulated
media alone conditions (Table 1). Activation with PHA led to an
increase in all analytes measured across both groups. Observed
levels of sTNFRII after PHA-stimulation were significantly less
in ASD group compared to the TD group (p = 0.014; Table 1).
When comparisons were made among children with ASD who
had regressed compared to those that had not, unstimulated
sTNFRII levels were lower in children with ASD who had not
regressed, compared to those that had and to TD controls
(p < 0.04). However, following PHA-stimulation, both groups
were decreased for sTNFRII compared with TD controls and
were not significantly different from each other. No other
differences were observed in ASD children based on regression.
Levels of sTNFRII were significantly negatively correlated
with impairments in ADOS social interactions (r = −0.383,
p < 0.025), suggesting lower levels were associated with worse
behaviors.

No significant differences in the frequencies of CD3+, CD4+,
and CD8+ T cells between TD controls and children with ASD,
with or without PHA stimulation were observed. The frequency
of TNFRI expressing or TNFRII expressing T cell subsets was
not different between groups in unstimulated or stimulated
conditions (data not shown). Following immune stimulation
both the frequency of cells expressing TNFRI (CD120a) and
TNFRII (CD120b) on the cell surface were similar in both groups.
However, after PHA stimulation, the amount of cell surface
TNFRII (CD120b) receptors, as measured by mean fluorescence
intensity (MFI), was significantly increased in children with

FIGURE 1 | Comparison of CD120b (TNFRII) on T cells and T cell subsets

following PHA stimulation in children with autism (Au: n = 36) and frequency

and geographically matched typically developing (TD; n = 27). Data are

expressed as a Mean Fluorescence intensity (MFI) of CD120b on (A) CD3+

T cells, and (B) CD3+CD4+ and (C) CD3+CD8+ T cell subsets. Data is

represented as Mean and standard error of mean, exact p-values included.

ASD compared to controls on CD3+ T cells as a whole, and
both the T helper CD3+CD4+CD120b+ subsets and cytolytic
CD3+CD8+CD120b+ T cells (p< 0.03; Figure 1). No differences
were seen between those children with ASD who had regression
and those children with ASD that did not have regression. In the
ASD group frequency of CD3+CD120b+ were associated with
worse social behavior on ADOS (r = 0.238, p < 0.035).
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DISCUSSION

To the best of our knowledge this is the first study to assess
levels of TNFRs on immune cells and release of sTNFR into cell
culture supernatants following immune challenge in ASD. Our
results demonstrated increased levels of TNFRII on T cells and
T cell subsets following stimulation, and decreased sTNFRII in
supernatants in children with ASD, but no differences in TNFα
and cell surface or sTNFRI levels were found.

Moreover, we found associations between TNFRII levels on
cells or in the supernatants and more impairments in behavior.
It is currently unclear how TNFα can affect neurodevelopmental
outcomes and behaviors during childhood in ASD, and the data
should be treated with caution. However, of note, numerous
studies have shown that impairments in core ASD behaviors
and associated co-morbid and aberrant behaviors, are strongly
correlated with altered immune profiles (38). Further validation
of the link between observed behavioral severity and cytokine and
cytokine receptors is warranted.

Multiple studies have demonstrated that TNFα levels are
increased in serum of individuals with ASD when compared
to controls (21, 23, 25, 26, 34–36); however, studies on plasma
have provided conflicting results (4, 28, 35). These discordant
results may reflect the matrix used as well as methodological
issues, including different assessment instruments, and clinical
and demographic characteristics of ASD populations studied.
In addition, it is possible that TNFα is produced at affected
tissues and degraded shortly after its production. As TNFRs
can be induced by TNFα, the cellular expression may relate
to TNFα activity. Our data suggest an increase in TNFRII on
T cells, with subsequent decreases in supernatants presumably
due to decreased shedding. Previous studies by Jyonouchi and
colleagues corroborate our findings showing decreased sTNFRII
in cell culture supernatants after T cell mitogen stimulation
with PHA (29–32); however, cell surface expression of TNFR
was not previously determined. Soluble TNFRII is generated by
proteolytic cleavage by the metalloproteinase TNFα converting
enzyme (TACE, also known as ADAM17) which despite this
enzyme being increased in blood of ASD children (39) does not
result in increased sTNFRII in our study, perhaps suggesting
proteolytic cleavage is not the underlying mechanism and that
receptors are retained on cells. Another possibility is that cell
signaling after TNFα binding is weak and that proteolysis
does not occur due to altered signaling pathways (40). Soluble
TNFRII may lead to the inactivation of circulating TNFα by the
generation of high affinity complexes. These complexes reduce
the binding of TNFα to any cell membrane target receptors
thus downregulating the activity and response to TNFα (41). As
soluble TNFRs neutralize TNFα, measuring both receptor and
cytokine may be more reflective of the net effect of cytokines,
in that even though we did not see an increase in TNFα
after stimulation, the increased presence of receptors on the
cell surface and decreased levels of neutralizing sTNFRII in
supernatants may indicate that more TNFα-receptor ligand
binding and signaling occurred. Future studies should determine
TNFα-TNR responses in immune cells from children with ASD,
including other immune cell types not just T cells. Further

studies should also address whether cytokines such as TNFα are
involved in pro-apoptotic signaling or pro-life signaling and the
net balance of those signals induced by inflammatory responses
in ASD.

Differential expression of markers of T cell activation
have been shown in children with ASD following immune
stimulation including increased CD26, CD38, CD69, HLA-
DR, but decreases in CD25 (42–46). Another member of the
TNF receptor family, CD137 is a co-stimulatory molecule
expressed by activated T cells and enhances T cell proliferation,
effector functions, and survival was also increased on T cells
in ASD children (43). TNFRII is predominantly found on
immune cells and is primarily associated with lymphocyte
proliferation (17, 19). The TNFRs differ in their intracellular
domains which induce distinct intracellular signals. We recently
showed that T cell signaling was altered in children with
ASD (40) and may suggest that certain downstream signals
such as the mTOR pathway may lead to preferential immune
activation. Taken together these results may suggest potential
differential activation of T cell subsets in ASD when compared to
controls.

In summary, the results presented here are in agreement
with prior studies and suggest that inflammatory processes, as
evinced by alterations of pro-inflammatory cytokine signaling,
could contribute to ASD pathophysiology. It is also possible
that other aspects of ASD might provide additional feedback
that influences or compounds the altered immune state in ASD.
Further, future studies including longitudinal measurements of
the same participants might further reveal the putative role for
levels of TNFRs as bio signatures of ASD development and
progression. More studies will be required to characterize the
changes in TNFα and the TNRII and their temporal relationship
with ASD development, as well as assessment of cytokine and
cognate receptors in the brain.
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