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Due to advances over the last several decades, many fields of medicine are moving

toward a precision medicine approach where treatments are tailored to nuanced patient

factors. While in some disciplines these innovations are commonplace leading to unique

biomarker-guided experimental medicine trials, there are no such analogs in psychiatry. In

this brief review, we will overview two unique biomarker-guided trial designs for future use

in psychiatry: basket and umbrella trials. We will illustrate how such trials could be useful

in psychiatry using schizophrenia as a candidate illness, the EEG measure mismatch

negativity as the candidate biomarker, and cognitive impairment as the target disease

dimension.
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INTRODUCTION

In stark contrast to our growing understanding of mental illnesses, diagnoses and treatments
heavily rely on the clinical interview rather than direct, reliable assays of brain function. The results
are hardly surprising: we have not meaningfully improved clinically relevant endpoints for many
serious mental illnesses in the last several decades (1). Recent advances in biomarker development,
however, hold promise for ushering in a new era of precision medicine-style trials for treating
psychiatric illnesses.

Biomarker-informed clinical trial approaches are becoming common in other fields of medicine
[(2); for reviews see (3), (4)]. As one example, anti-neoplastic agents are currently selected not only
based on what type of cancer a patient has and its stage, but also on the molecular phenotype
and genetic aberrations unique to the cancer. Such biomarker-informed approaches are best
exemplified by two conceptually related clinical trial designs: “basket” and “umbrella” trials (5, 6).
Basket trials assess the effectiveness of a candidate drug based on the mechanism rather than the
underlying cancer type. For example, a neoplastic drug which targets a specific genetic mutation
would be given to cohorts, or “baskets,” of patients with cancers of different origin (i.e., prostate,
breast, lung, etc.) who share molecular signatures, vastly expanding the number of patients that
could benefit from such a precision intervention (7). Umbrella trials take patients with the same
type of cancer, and assign them to treatment arms based on unique mutations—thus, every
single arm is one spoke of the large “umbrella” of therapeutic interventions. As the prototypical
example, the National Cancer Institute’s MATCH trial recruits patients with advanced solid tumors,
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lymphomas and myelomas, performs extensive genotyping and
molecular stratification, and places participants into one of over
a dozen different treatment arms (8).

While psychiatry currently has no candidate biomarkers
which have graduated from academic laboratories to guide
treatments in real-world settings, the stage is being set for
a future which successfully leverages a precision psychiatry
approach. In this brief review, we provide an overview of what
a precision psychiatry approach could look like using a well-
validated translational electroencephalography (EEG) measure
calledmismatch negativity (MMN) as a candidate biomarker, and
neurocognitive impairment in schizophrenia as a target disease
dimension.

SCHIZOPHRENIA AND NEUROCOGNITIVE
IMPAIRMENT

Schizophrenia (SZ) is characterized by positive (e.g.,
hallucinations, delusions, etc.) and negative (e.g., avolition,
diminished emotional expressivity etc.) symptoms which
contribute to functional impairment. Beyond these defining
symptoms of SZ, hundreds of studies have suggested that
neurocognitive impairments are both core features of the
illness and robust determinants of psychosocial disability
(9–12). Neurocognitive deficits in SZ are broad, and include
abnormalities in perceptual functioning, attention, verbal and
non-verbal memory, language, and executive functioning (13).
The severity of deficits on these neuropsychological domains
are directly linked to diminished community functioning and
impaired activities of daily living (14, 15).

Indeed, recent analyses of over 1,400 patients with chronic
psychoses recruited for the multi-site Consortium on the
Genetics of Schizophrenia (COGS) provided strong empirical
support for a hierarchical model linking cognition with
functional outcome in SZ (16). In this study, structural
equation modeling was used to better understand how functional
outcome in SZ could be better understood in relation to
symptoms, cognition and early auditory information processing
(EAIP). Interestingly, abnormalities in EAIP, as indexed by EEG
biomarkers, had a direct and causal effect on cognition, which
in turn directly affected negative symptoms, impacting overall
functional outcome. Particularly noteworthy was the finding
that abnormalities in EEG biomarkers linked to EAIP also
independently affected functional outcome in SZ patients.

Neurophysiological indicators have indexed abnormalities
in EAIP in SZ for several decades, and differences in EAIP
in patients are prominently featured as endophenotypes in
genomic studies. The above analyses confirmed that the
neurocognitive impairments in SZ appear to be a core
disease component, reliably able to be measured and directly-
linked to the symptoms and functional outcomes. Despite this
advance, decades of clinical trials testing the effectiveness of
currently approved antipsychotic medications and other novel
therapeutics as putative pro-cognitive agents have failed to
improve cognitive symptoms in SZ in any durable, meaningful
way (17, 18). The development of novel pro-cognitive treatment

strategies is therefore of paramount importance but remains a
critical unmet need (19). These elements provide the ground
on which biomarkers can be used to guide research and
clinical implementation of novel precision-medicine therapeutic
strategies in SZ.

MISMATCH NEGATIVITY: A
NEUROPHYSIOLOGICAL BIOMARKER
FOR EARLY AUDITORY INFORMATION
PROCESSING

The usefulness of EEG measures in guiding new treatments
depends on their ability to serve as biomarkers. Useful
biomarkers must be accessible and measurable in preclinical
models of disease; should be sufficiently well-characterized such
that those biomarkers are linked to relevant underlying neural
circuits and known mechanisms of dysfunction in psychiatric
disease; and are able to be assessed in both healthy subjects and
affected individuals. For usefulness in human trials biomarkers
must be insensitive to practice or order effects, reliable, and
responsive to interventions. To succeed in real-world settings,
biomarker acquisition should also be scalable, low-cost, and
suitable for use in multi-center studies.

All of the above criteria have been identified for biomarker
development for neurocognitive impairment in SZ by a variety
of expert consensus panels (20–23). The first panel, the
Measurement and Treatment Research to Improve Cognition
in Schizophrenia (MATRICS) initiative, agreed that there was a
lack of consensus on a well-accepted instrument for measuring
neurocognition in clinical trials (20), on the best molecular
targets for drug development, on the optimal trial design for
studies of those targets, and how regulatory agencies ought to
approve and label novel agents. The outcome of this initiative
identified the following criteria as desirable in an FDA-approved
battery for use in clinical outcome measures: high test-retest
reliability, utility as a repeatedmeasure, relationship to functional
outcome, tolerability and practicality, and responsivity to pro-
cognitive therapeutics. The Cognitive Neuroscience Treatment
Research to Improve Cognition in Schizophrenia (CNTRICS)
initiative, launched after MATRICS, further expanded on the
MATRICS criteria by adding thatmeasures should have construct
validity, be mechanistically related to relevant neural circuitry,
and be measurable in animal models (21, 22).

At the time of CNTRICS, mismatch negativity (MMN) was
already considered a mature neurophysiologic biomarker based
on meeting the above criteria, and generally believed to be ready
for widespread implementation in clinical trial studies (21, 23).
In fact, as a real-world readiness demonstration, MMN has been
extensively characterized in multi-center trials without the use of
highly-trained specialists or centers (16, 24).

MMN is an event-related potential and a neurophysiological
measure of EAIP that is evoked when a train of “standard”
auditory stimuli is interrupted by an oddball or “deviant”
stimulus that differs from standards as shown in Figure 1

(25–27). Differences from standard stimuli in pitch, duration,
intensity, or spatial location can elicit a deviant MMN response.
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FIGURE 1 | Mismatch negativity. The left graph represents the event related potentials evoked by trains of standard stimuli (S; in red) with interposed rare deviant

stimuli (blue) in both healthy subject (solid lines) and patients with schizophrenia (dashed lines). The right graph represents the difference waveform, a negative

inflection 100–200ms after stimulus onset which is called mismatch negativity (MMN). Patients with schizophrenia show a reduction in the amplitude of MMN when

compared to healthy subjects.

MMN is pre-attentive, primarily reflects an automatic response
to sensory stimuli, and is able to be evoked without effort,
behavioral response, or conscious awareness (26–31). After
auditory deviant stimuli presentation, MMN onset begins after
∼50ms and peaks after an additional 100–150ms (32, 33).
Localization studies have consistently revealed cortical sources
located in broadly distributed temporal, frontal, and parietal
brain regions (34–36).

Reduction of auditory MMN amplitude was reported over
two decades ago in SZ and has been replicated numerous times
(37). MMN deficits are found in those with chronic psychosis
(27, 37–50), in unmedicated SZ patients (29, 40, 46, 47, 51, 52),
and are shown to be resistant to antipsychotics (46, 53–58).
Abnormal MMN is also found in recent-onset psychosis as well
as prodromal illness (30, 51, 59–66). Baseline MMN amplitude
appears to be smaller in clinically high risk populations who
eventually develop psychosis at follow up, and MMN in those
who do not convert appears to be similar to age-matched controls
(30, 51, 63). Strikingly,MMNamplitude seems to anticipate time-
to-convert to psychosis—more severe MMN deficits relate to
shorter time for psychosis to declare (51, 63).

Mechanistically, auditory MMN is thought to be an index of
N-methyl-D-aspartate receptor (NMDA) functioning (67, 68).
NMDA receptor antagonists diminish MMN in non-human
primates, and ketamine, an NMDA antagonist, reduces MMN
in healthy control human subjects (69–75). Lower baseline
MMN is also associated with psychotic-like behavioral effects
experienced by healthy subjects when exposed to ketamine
(72). Furthermore, MMN has shown to be highly heritable
with amplitude reductions present in asymptomatic first-degree
relatives of those with SZ (76–80). MMN deficits are also found

in patients with chromosome 22q deletion, which result in
congenital syndromes associated with SZ-like psychoses (81).

Arguably, the most important metric of biomarker
applicability in psychiatric illnesses is the ability to track
functional outcome. In patients with SZ, several studies have
detailed that MMN deficits are able to account for a large
degree of variance in cognitive and psychosocial functioning,
as well as the ability to achieve or maintain independent living
(17, 34, 46, 64, 82–86).

BIOMARKER-INFORMED INSIGHTS FOR A
PRECISION MEDICINE APPROACH: MMN
AND COGNITIVE ENHANCEMENT
STRATEGIES IN SCHIZOPHRENIA

Given the cognitive deficits observed in SZ, many studies have
attempted to use pro-cognitive drugs to help attenuate this
dimension of illness (87). In particular, there has been great
interest in the NMDA receptor antagonist, memantine, which has
been approved for use in Alzheimer’s disease (88, 89).

Memantine is a non-competitive moderate affinity NMDAR
antagonist (90, 91). It is thought to bind the same site as
magnesium, an endogenous blocker of the NMDA receptor
channel, and impedes current flow only if the NMDA
receptor channel is open. Upon depolarization, memantine
rapidly leaves the NMDA receptor channel. Thus, functionally,
memantine is thought to block sustained and pathological
activation of NMDA receptors, but not affect physiological
activity. In this sense, memantine is unique from other NMDA
receptor antagonists which have slower un-blocking kinetics,
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(i.e., ketamine, phencyclidine). Interestingly, ketamine and
phencyclidine are well-known to produce psychotogenic effects
but memantine does not exacerbate psychosis or cognitive
deficits in antipsychotic medicated patients (92–96). This
discrepancy remains an area of active investigation.

In clinical trials with Alzheimer’s disease patients, memantine
has been found to have a modest pro-cognitive impact (97,
98). However, clinical trials using memantine in SZ targeting
cognitive impairment have been inconsistent.Meta-analyses have
suggested that memantine is associated with improvement in
cognitive tests such as the Mini-Mental State Exam (94). While
some double blind randomized clinical trials where memantine
has been added on to antipsychotic medications also report
reduction in cognitive deficits, others have not, including a
study which showed cognitive improvement reported at 12
weeks was lost at 52 weeks (99–101). Given these discrepancies,
it has been speculated that patient factors may be obscuring
signals of memantine effects on cognition in SZ. Indeed, there
is evidence that suggests that within the spectrum of illnesses
in chronic psychotic disorders like SZ there exist separable
cognitive “biotypes” which have different profiles of cognitive
impairment (102, 103). Thus, without a clearer understanding of
knowing which patients with SZ are able to experience benefits of
memantine, results from clinical trials using such a pro-cognitive
intervention—and more broadly, all pro-cognitive interventions
in SZ—are difficult to interpret.

However, recent work assessing the effect of memantine on
MMN could provide insights into a precision-medicine approach
(94, 96, 103, 104). For example, our group has used a double
blind single-dose placebo-controlled trial assessing the effects
of memantine on MMN in patients with SZ (95, 96). This
study employed a within-subject cross-over design such that
all participants were randomized to receive either placebo or
memantine, and 7 days later, receive the other intervention,
thus allowing for each subject to serve as his or her own
baseline. MMN was assessed ∼ 6 h after placebo or memantine
ingestion, which is the approximate Tmax of memantine, on
both testing days. We found that memantine enhanced MMN
in patients with SZ; since improved MMN is associated with less
cognitive impairment and greater psychosocial success, this type
of signal suggests that MMN could be a biomarker of treatment
engagement in pro-cognitive interventions. While only a single
dose of memantine would not be expected to durably improve
cognition, the ability of memantine to alter MMN in a patient
could signify that such an individual has the neural plasticity to
benefit from pro-cognitive interventions (96, 103, 105). Indeed,
not all patients in the cohort showed MMN enhancement—but,
these results suggest that for future trials which aim to test the
effectiveness of pro-cognitive medications, MMN malleability in
response to early exposure to a putative pharmacologic agent
could be important for enriching trials to maximize a therapeutic
signal.

Beyond medication interventions, MMN also has the
potential to predict gains in non-pharmacologic pro-cognitive
interventions in SZ. For example, there has been significant
interest in using targeted cognitive training (TCT) for enhancing
cognition in patients with chronic psychoses (106, 107). TCT

is an emerging computerized, auditory-based intervention
which aims to improve EAIP through adaptive exercises with
participants (105, 108). TCT is typically delivered in 1 h sessions
3–5 h a week for ∼20–40 h. At the group level patients with
SZ show reduction in cognitive deficits which are linked to
improved functional outcomes. However, 20–40% of subjects
with SZ fail to show benefit, even in some cases, after 100 h of
training (108–111). A biomarker measure that would identify
which patients could benefit (or, conversely, which patients have
a high likelihood of not benefitting) would be critical in scaling
such a pro-cognitive intervention as part of a comprehensive
neurorehabilitation strategy (112). As with malleability of MMN
following initial exposure tomemantine,MMNalso appears to be
a sensitive index of the neural systems engaged by the first “dose”
of TCT exercises. In this context, Perez et al. found that MMN
was a sensitive index of the perceptual learning that takes place
in the first hour of training, with amplitude of MMN correlating
with gains in auditory perceptual learning (113). More work has
better elaborated this relationship, finding that on an individual
level MMN changes in the direction of normalization after 1 h of
TCT predict benefit from TCT after a full course (114).

UMBRELLAS AND BASKETS IN
PSYCHIATRY: A POSSIBLE FUTURE FOR
CLINICAL TRIALS IN PSYCHIATRY

With what is currently known about MMN and neurocognitive
impairment in SZ, we can consider how EEG biomarkers can be
used in the service of a precision medicine approach to clinical
trials in psychiatry.

While pro-cognitive interventions for psychotic illnesses
tend to focus on single diseases like SZ, cognitive impairment
has been noted in related illnesses, including schizoaffective
disorder and bipolar disorder with psychotic features. This
parallels genetic evidence which supports a link between SZ,
schizoaffective disorder and bipolar disorder. Despite this link,
in traditional drug development pro-cognitive interventions
are generally assessed in one population first (i.e., SZ), and
then subsequent trials assess if such an intervention is useful
in other related conditions. However, a basket-style precision
medicine approach using EEG biomarkers could offer a more
streamlined way to discover drugs targeted at transdiagnostically-
related illness domains like cognitive impairment. For example,
as shown in Figure 2A, a novel pro-cognitive trial testing a
new Drug X could recruit patients with SZ, schizoaffective
disorder and bipolar disorder and include only those who have
MMNmalleability. Since MMNmalleability is a strong indicator
of target engagement and neural plasticity, such an approach
would enrich the study population to benefit from a pro-
cognitive intervention. Furthermore, such a trial would test the
effectiveness of a new intervention and would not necessarily be
limited by traditional criteria, and have relevance across multiple
illnesses (115).

Similarly, using EEG-guided umbrella designs in psychiatry
would better improve pragmatic trials matching interventions to
patient strengths. For example, in a SZ trial comparing different
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FIGURE 2 | Using EEG biomarkers to design basket and umbrella trials. (A) Using EEG-guided basket trials could allow for different psychiatric populations who share

the same disease dimension to be given a therapeutic intervention, allowing more patients to potentially benefit. In this scheme subjects are separated by different

colors to denote different diseases. Those who have favorable EEG biomarker profiles are indicated by solid coloring while those are not responsive are in outline.

EEG-guided basket trials have the potential to select subjects for clinical trials assessing novel drugs for optimal response. (B) Similarly, using EEG-guided umbrella

trials could allow for patients with the same illness to be assigned to different treatments, allowing for a more specific intervention strategy. In this scheme, subjects with

different biological mechanisms underlying a particular illness domain are indicated by different gradations in coloring. EEG biomarkers can be used to assess which

patients may be suitable for which intervention. EEG-guided umbrella trials have the potential to improve pragmatic clinical trials assessing treatment effectiveness.

pro-cognitive interventions, positive response to particular EEG
biomarkers would help stratify different treatment strategies (see
Figure 2B). In such a trial, SZ patients with favorable auditory
MMNmalleability could receive TCT aimed to improve auditory
sensory processing, while those with equivocal or poor MMN
malleability could respectively receive pro-cognitive medications
or specialized behavioral therapy.

These new trial designs are not without limitations. First,
due to their relative novelty such designs have not yet been
attempted in psychiatry, and thus there is little precedent for
how these trials would be staged. Such trials require greater
logistical burdens, require larger cohorts of patients, and are
costlier to run. Furthermore, such trials may face barriers in
recruiting enough patients with specific biomarker profiles, and
experience challenges in balancing treatment arms. Both basket
and umbrella trials would require new collaborative frameworks,
and require nuanced statistical and administrative support.

Despite these potential limitations, using biomarkers to
inform clinical trials in psychiatry holds the potential to improve
our current understanding of psychiatric illness, and creates an
additional way to determine the effectiveness of novel therapeutic
strategies. Just as how various cancers are currently molecularly
phenotyped, neurophysiologically-guided basket and umbrella
trials could help “EEG-phenotype” cognitive impairment in
illnesses like SZ. This precision-medicine approach would
enhance the development of not only novel drugs, but also other
comprehensive rehabilitation strategies in SZ like TCT.

While this mini-review has focused on neurophysiological
biomarkers in SZ, the rationale described could broadly
apply to other psychiatric illnesses and other types of
biomarkers, including genetic and imaging biomarkers.
We anticipate that as the tools of neuroscience allow us
to understand complex diseases in a more nuanced way,
further development of biomarker-informed precision
medicine approaches to clinical trials will help further
optimize matching the right treatment to the right
patient.
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