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Discovery of the Hippo pathway and its core components has made a significant

impact on our progress in the understanding of organ development, tissue homeostasis,

and regeneration. Upon diverse extracellular and intracellular stimuli, Hippo signaling

regulates stemness, cell proliferation and apoptosis by a well-conserved signaling

cascade, and disruption of these systems has been implicated in cancer as well as

metabolic and neurodegenerative diseases. The central role of Hippo signaling in cell

biology also results in prominent links to stress-regulated pathways. Genetic variations,

epigenetically provoked upregulation of Hippo pathway members and dysregulation of

cellular processes implicated in learning and memory, are linked to an increased risk

of stress-related psychiatric disorders (SRPDs). In this review, we summarize recent

findings, supporting the role of Hippo signaling in SRPDs by canonical and non-canonical

Hippo pathway interactions.
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INTRODUCTION

When the Hippo pathway was first discovered in Drosophila, it appeared as a linear kinase
cascade highly relevant for proliferation and homeostasis, because deletion of core component
genes resulted in an uncontrolled growth of multiple tissues (1, 2). Subsequent research identified
mammalian orthologs of Hippo components and additional kinases, transcription factors and
various adapter proteins directly or indirectly involved in Hippo signaling, providing a complex
molecular network with strong regulatory effects on development, homeostasis, and regeneration
(3–5). Upstream activators of the Hippo pathway include G-protein-coupled receptors (GPCR),
integrins, and cell-cell adhesion factors, stress-reactive glucocorticoid hormones, metabolism-
regulating hormones, growth factors, and mitogens (6).

Dysregulated Hippo signaling is associated with various cancers and a wide range of metabolic,
cardiovascular, neurodevelopmental, and neurodegenerative diseases (3, 7). Regulators of Hippo
pathway are expressed in the adults’ brain suggesting their implementation in normal brain
performance. Recent research further extends the Hippo signaling network and its potential to
be therapeutically harnessed based on genetic association studies linking Hippo pathway members
to stress-related-psychiatric disorders (SRPDs) (8–11). Key molecular and cellular processes that
are thought to be involved in the pathophysiology of SPRDs are modulated by Hippo pathway
members. Furthermore, various proteins of the Hippo signaling pathway are linked via the GR,
GPCRs, Wnt-signaling and other pathways to stress-regulated signaling cascades (12–16).
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In this review we highlight emerging evidence of an
interaction between Hippo signaling and the stress axis and
suggest how this novel link may correlate with the genesis of
SRPDs.

THE HIPPO PATHWAY IN MAMMALS AND
ITS CANONICAL ACTIVATION

The regulatory endpoints of the Hippo pathway are the two
homologous transcriptional co-activators, yes-associated protein
(YAP) and transcriptional co-activator with PDZ-binding motif
(TAZ) (3, 7) (Figure 1). YAP and TAZ are widely expressed
throughout the brain and non-neuronal tissues especially during
embryogenesis1 In adult humans YAP is expressed in the
subventricular zone of the lateral ventricle and subgranular
zone of the dentate gyrus, the regions providing neurogenesis
in mammalian brains. Weak immunostaining was found in
the prefrontal cortex of humans (17). YAP expresses in the
midbrain, possibly, to protect dopaminergic neurons from
degeneration (18). TAZ expression appears to contribute to brain
mitochondrial respiration, the function of hippocampal neurons
and glia, and modulates cognitive abilities in mice (19). It is
of note that Hippo pathway activity is retained in the adult
hippocampus. A role of the hippocampus in neurogenesis and
stress resilience (20), denote the Hippo pathway as a target for
biomarker discovery and therapeutic interventions in SRPDs.

The regulation of YAP and TAZ is governed by two
major protein kinase complexes, the mammalian Sterile 20-
like kinases 1 and 2 (MST1/2), and the large tumor suppressor
homolog LATS1/2 and their direct interaction partners SAV1
(MST1/2) and MOB1A/MOB1B (LATS1/2). Activation of
MST1/2 and LATS1/2 causes phosphorylation of YAP/TAZ.
Phospho-YAP/TAZ is either degraded or sequestered in the
cytoplasm by the 14-3-3 protein, whereas after inactivation of the
upstream kinase cascade dephosphorylated YAP/TAZ translocate
to the nucleus. AJUBA antagonizes YAP phosphorylation and
therefore prevents its activation. Through association with
various transcription factors, like the TEAD family transcription
factors (TEAD1-4), YAP/TAZ initiates transcription of several
genes mainly involved in the regulation of development,
homeostasis, and regeneration (3, 7) (Figure 1). This core-
signaling cascade is activated/ inactivated by multiple stimuli
and modulated by various post-translational modifications or
through hetero complex re-organization, e.g., NF2 (Merlin)
inhibits LATS through phosphorylation (3, 7) (Figure 1).
Although, YAP and TAZ are primarily controlled at the level
of their nuclear accumulation (nucleocytoplasmic shuttling),
it is incompletely elucidated if nuclear entry occurs passively
(diffusion), if it is a mediated process, or a combination of both
(21). In a recent report mechanical forces have been shown to
increase the permeability of the nuclear pore thereby facilitating
the nuclear accumulation of YAP (22), whereas another study
identified a nuclear localization sequence (NLS) and a nuclear
export sequence (NES) for TAZ (21). Moreover 14-3-3 protein

1Mouse Brain Atlas. http://mousebrain.org/genesearch.html

and TEAD family members have been proposed to be cytosolic
and nuclear “retention factors,” respectively (21).

NON-CANONICAL REGULATION OF HIPPO
SIGNALING BY PSYCHOPHYSIOLOGICAL
STRESS

Accumlating evidence suggests that the core complexes and
accessory proteins of the Hippo pathway can be modulated
by molecular pathways that play a fundamental role in stress
signaling. The non-canonical regulation of the Hippo pathway
with regard to SRPDs will be the focus of the following chapter.

GLUCOCORTICOIDS IMPACT ON HIPPO
PATHWAY

Release of glucocorticoids (GCs), such as cortisol, from the
adrenal glands, is the final stage of hypothalamic-pituitary-
adrenal (HPA) axis activation during emotionally stressful
experiences [psychophysiological stress, depicted as “stress”
throughout the manuscript, (23)]. GCs belong to the class of
steroid hormones and act via specialized nuclear receptors to
adapt behavior to a constantly changing environment. Despite
the critical role that stress plays for body homeostasis, it is widely
implicated in the onset of SRPDs (23). Sorrentino and colleagues
described a molecular cascade that links glucocorticoid signaling
to YAP regulation. In an interdisciplinary approach the
researchers show, that the activation of glucocorticoid receptors
(GRs) results in elevated YAP protein levels, its translocation
to the nucleus and subsequently to enhanced transcriptional
activity. Fibronectin was identified as a target of the GR.
Increased fibronectin expression stimulates the focal adhesion-
Src pathway, which in turn activates cytoskeleton-dependent
YAP activation providing a direct link between the stress-
hormone axis and Hippo signaling (24).

GPCRs AND HIPPO PATHWAY IN SRPDs
AND RELATED PSYCHOPATHOLOGIES

GPCR Signaling
Extracellular signals act on synapses to drive spine
morphogenesis and synaptic plasticity. Among multiple
classes of receptors G protein-coupled receptors (GPCRs) are
the working horses of neuronal communication. Overexpression
or exogenous stimulation of a variety of GPCRs corresponds
to Hippo pathway activity. Serotonin 5-HT4, adrenerergic α1B,
metabotropic glutamate mGlu2, and adenosine A1A receptors
are directly mediating neuronal transmission in the brain
and are shown to contribute to stress-related abnormalities in
mammals (25–29). These receptors, which are linked to brain-
body crosstalk (LPA receptors, purinergic receptors, muscarinic
acetylcholine receptor M1, angiontensin II receptor, free fatty
acid receptor 1, platelet-activating factor receptor, thromboxane
A2, frizzled homolog D4, complement component 3a receptor
1, estrogen receptor 1, opioid receptor 11, secretin receptor,
thyroid-stimulating hormone receptor, gastrin-releasing peptide
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FIGURE 1 | The Hippo Pathway and its canonical upstream regulators. The translocation of YAP and TAZ and respective translational effects of the Hippo pathway

are omitted when these two factors are phosphorylated due to LAST1/2 and MST1/2 activity. Both components can be affected independently via a wide range of

canonical upsream regulators. Being retained in the cytoplasm YAP and TAZ are ubiquitinated and degraded. ADHD, attention deficit hyperactivity disorder. LATS 1/2,

large tumor suppressor kinase 1/2; MOB1A/MOB1B, Mps one binder kinase activator 1A/1B; MST1/2, macrophage-stimulating protein 1/2; SAV1, salvador family

WW domain containing protein 1 (protein WW45); TAZ, transcriptional co-activator with PDZ-binding motif; TEAD1-4, TEA domain transcription factors 1-4; YAP,

yes-associated protein.

receptor, melanocortin receptor 1, somatostatin receptor 1,
prostaglandin E receptor 2, and bombesin-like receptor 3) affect
both the Hippo-YAP and Hippo-TAZ signaling via activation of
Rho GTPases (16).

In contrast, dopamine D1 and adrenergic β2 receptors appear
as a way for the selective inhibition of Hippo-YAP signaling.
These GPCRs induce YAP phosphorylationmainly via cAMP and
PKA (16).

Selective regulation of the Hippo-YAP signaling by 5-HT2B
receptors activation has been shown in hepatocytes (30) and
cardiomyocytes (31). These data suggest an effect of acute
and chronic serotonin neurotransmission disturbance on Hippo
signaling and provides a strong link between stress and related
pathologies in peripheral organs. Although most available
drugs to treat the symptoms of SRPDs (antidepressants) target
serotonergic neurotransmission (32), a putative modulation of
Hippo signaling by antidepressants remains a topic of future
research.

Wnt SIGNALING

Components of the Wnt pathway are transcriptional targets
and therefore downstream targets for the Hippo pathway (13–
15). The upstream influence of the canonical Wnt/β-catenin
signaling on the Hippo pathway has been described recently (12).
Consequently, a dynamical interaction in the presence of Wnt
YAP/TAZ is released from the destruction complex, escaping
degradation in the cytoplasm. In absence of Wnt the YAP/TAZ-
dependent β-TrCP (β-transducin repeats-containing proteins)

recruitment allows β-catenin destruction (33). Notably, the β-
TrCP-mediated β-catenin degradation is GSK3–dependent (34).
GSK3 plays a critical role in the regulation of Wnt—Hippo
interaction (14).

CANONICAL HIPPO PATHWAY LINKS TO
SRPDs

Multiple studies have shown a direct association between
members of the hippo pathway and SRPDs. Most data comes
from genetic studies that report an association of allelic variation
in the KIBRA (KIdney and BRAin) gene with (episodic)
memory performance, gray and white matter volume and
differences in functional brain activity (35–41). Substitution of
C for T in the 9th intron (rs17070145) of the KIBRA gene,
was first linked to memory performance and functional brain
activity in a genome-wide association study (35). However, the
functional role of the gene is still unclear since replication of
the first results has proven difficult and sometimes delivered
contradicting results. In line with the initial results, the
rs17070145-T allele has been associated with better episodic
memory functioning (36–41). However, several other studies
have either associated the absence of rs17070145-T with better
memory performance (42, 43), or were unable to show any link
of this Single Nucleotide Polymorphism (SNP) with cognitive
capabilities (43–46). CLSTN2 (calsyntenin 2), another hippo
pathway member (SNP rs6439886), is mainly localized in the
postsynaptic compartment of excitatory neurons in brain regions
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relevant for learning and memory like the medial temporal
lobe (47), and has also been linked to memory performance by
Passotiropoulos et al. (35) and in subsequent cohorts (48, 49).
Another study, however, did not support the influence of the
KIBRA SNP, with or without the CLSTN2 SNP, on longitudinal
memory decline or hippocampal atrophy in older adults (44).

It has been speculated, that the lack of consensus across
studies stem from age-related neuropathological changes on
memory performance, which may interact with polymorphisms
such as KIBRA and CLSTN2, the so-called “resource modulation
hypothesis” (40, 44). Supporting evidence comes from studies
taking age, increased risk for specific diseases and pre-existing
diseases into account (9, 10, 46). Stickel et al. (40) report, that
KIBRA results in decreased verbal memory performance and
lower brain volumes in CC homozygotes compared to T carriers,
particularly among older persons (40). In individuals with
unipolar depression, Pantzar et al. (10) showed an interactive
effect of KIBRA and CLSTN2 polymorphisms on memory
performance, but not in older individuals without depression
(10). They also found poorer episodic recall and recognition

performance in non-T carriers (10). In contrast, in patients with
major depressive disorder, Liu et al. (9) found that rs17070145
associates with better memory performance in non-T carriers
(9). In cognitively normal adults with different genetic risk
of Alzheimer’s disease, based on their Aβ-amyloid levels and
apolipoprotein E (APOE) ε2/ε3/ε4 genotype, Porter et al. (46)
reported faster rates of cognitive decline and hippocampal
atrophy in individuals with higher Aβ-amyloid levels and APOE
ε4+ ve, that did not carry the rs17070145-T allele (46). Although
this suggests that the exact role of the KIBRA, SNP rs17070145
in learning and memory is still unclear, further investment in
understanding its well-established role in cognitive performance
is essential to make progress from mechanism to disease in
SRPDs.

Another association of two neighboring SNPs in the KIBRA
gene in almost complete linkage disequilibrium, rs10038727, and
rs4576167, with lifetime risk for post-traumatic stress disorder
was described in two samples from African conflict regions
(8). Carriers of the minor allele of both SNPs displayed a
diminished disease risk (8). Nitric oxide synthase 1 adaptor

FIGURE 2 | KIBRA/Hippo pathway as a shunt of stressful input. In the postsynaptic button Hippo pathway is modulated with a variety of secondary messenger

systems, implemented in transduction of neurontransmitters, neuropeptides, and hormones. The Hippo pathway biderectioinally interacts with KIBRA signaling. In

turn, the adaptive, neuroplasticity determined by AMPAR expression (and trafficking) is promoted. AMPARs, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid

receptors; cAMP, cyclic adenosine monophosphate; FN1, fibronectin 1; Fz, Frizzeled; GSK3, Glycogen synthase kinase 3; GPCR, G protein coupled receptors; GR,

glucocorticoid receptor; KIBRA, Kidney and Brain Protein 1 (also WWC1); LATS 1/2, large tumor suppressor kinase 1/2; MOB1A/MOB1B, Mps one binder kinase

activator 1A/1B; MST1/2, macrophage-stimulating protein 1/2; PICK1, protein interacting with C-kinase 1; PKA, protein kinase A; PKC, protein kinase C; Rho

GTPase, Rho guanosine-5′-triphosphatase; SAV1, salvador family WW domain containing protein 1 (protein WW45); TAZ, transcriptional co-activator with

PDZ-binding motif; YAP, yes-associated protein.
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protein (NOS1AP) also known as carboxyl-terminal PDZ ligand
of neuronal nitric oxide synthase protein (CAPON) is an adaptor
protein of the Hippo pathway and is encoded by the NOS1AP
gene in humans (11, 50). CAPON is supposed to modulate
glutamate neurotransmission via interaction with postsynaptic
density (PSD) scaffolding proteins PSD93 and PSD95 (50). Xu
et al. (11) showed an increased expression of CAPON in the
prefrontal cortex in post-mortem tissue of patients with bipolar
disorder (11).

KIBRA AS POTENTIAL MEDIATOR OF
SYNAPTIC STRESS EFFECTS

Accumulating evidence suggests that the scaffold protein
expressed by the KIdney and BRAin gene [KIBRA; sometimes
referred to as WW and C2 domain-containing protein 1
(WWC1)], is critical for synaptic plasticity, the cellular
mechanism thought to underlie learning and memory (51–56).
Althought it has not yet been demonstrated directly, KIBRA
is a potential candidate to, at least partially, mediate the well-
established stress effects on synaptic plasticity and cognitive
performance (57, 58).

KIBRA is predominantly expressed in the kidney and
the brain, in particular in structures important for learning
and memory like the hippocampus, cortex, cerebellum,
and hypothalamus (59, 60). In neuronal cells, KIBRA has
a somatodendritic staining pattern with enrichment in
perinuclear regions and the postsynaptic density (PSD)
(54, 59). Previous studies have shown that KIBRA has various
bindings partners, mainly mediated by the two N-terminal WW
domains, a glutamic acid–rich motif and motifs for binding
atypical PKC and PDZ domains (54, 56, 61). This includes the
postsynaptic proteins dendrin and synaptopodin, postsynaptic
α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid
receptors (AMPARs, the main fast stimulatory receptor of the
neurotransmitter glutamate ), and the atypical protein kinase C
(PKC) isoform protein kinase Mζ (PKMζ) (52, 53, 59, 60, 62, 63).

PKMζ is brain specific and crucially involved in AMPA-
receptor trafficking, a core mechanism of synaptic plasticity,
and in the maintenance of long-term potentiation (LTP) in the
hippocampus, which is thought to be the cellular correlate of
learning and memory in mammals and involves AMPA and
NMDA receptors of glutamate (51, 63–65). PKMζ is colocalized
with KIBRA especially in the hippocampus and dentate gyrus
(65), and KIBRA knock-out mice exhibit reduced learning and
memory performance in spatial memory tasks, accompanied by
decreased PKMζ levels (56). These results are in line with the
observation that KIBRA associates with AMPARs and its partner

protein interacting with C-kinase 1 (PICK1), which has been

shown to accelerate the rate of AMPAR subunit recycling to the
postsynaptic membrane (53). Moreover, KIBRA knock out mice
exhibit an impaired LTP and long-term depression (LTD) in the
hippocampus and show deficits in contextual fear learning and
memory (53).

Overexpression of KIBRA in neurons facilitates LTP, but
prevents the induction of LTD, likely by an increased constitutive
recycling of AMPARs. In contrast, knock down of KIBRA
abolishes LTP and decreases AMPAR recycling supporting a
role of KIBRA as a bidirectional regulator of synaptic plasticity
in hippocampal neurons (52). In a recent study, Tracy et al.
(55) show that memory loss and LTP impairment in a mouse
model of Alzheimer’s disease critically depends on reduced
synaptic KIBRA levels accompanied by reduced activity-induced
postsynaptic actin remodeling and AMPAR insertion, which can
be rescued by promoting actin polymerization or by restoring
KIBRA expression (55).

The WWC family comprises two additional highly similar
paralogs, WWC2, and WWC3 (61). Although it has been
speculated that WWC2 can balanceWWC1 knock out (53), their
role in brain function remains unclear.

CONCLUSION

Strong evidence suggests that both, Hippo- and stress signaling
are involved in the pathophysiology of SRPDs. However, the
possible interaction between Hippo signaling and the stress
hormone axis has been widely neglected so far. Especially KIBRA
as a mediator of adaptive neuroplasticity that is directly linked
to the stress hormone axis via GR-signaling might balance the
reduced cognitive capabilities observed in most SRPDs (see
Figure 2).

Although there are many important questions that
remain unanswered (e.g., exact role of KIBRA in memory),
pharmacological targeting of Hippo signaling might offer
guidance for the development of novel prophylactic and
therapeutic approaches to treat SRPDs more effectively.
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