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To explore the alteration of global functional connectivity density (gFCD) in depressive

patients after modified electroconvulsive therapy (MECT) and analyze the relationship

between gFCD and clinical outcome. Thirty-seven subjects were evaluated based on the

diagnostic criteria of the International Classification of Diseases-10 (ICD-10), consisting

of a depressive group (24 patients after follow-ups) and a healthy control group with 13

normal individuals. All participants received Hamilton Depression Scale (HAMD) scores

and resting-state functional magnetic resonance imaging scans. The gFCD significantly

increased in the posterior-middle insula, the supra-marginal gyrus and the dorsal medial

prefrontal cortex (dmPFC) before MECT treatment compared to healthy controlled

patients. The gFCD statistically expanded in the perigenual anterior cingulate cortex

(pgACC), the orbitofrontal cortex bilaterally and the left-supra-marginal gyrus after MECT,

and it decreased notably in the posterior insula. The gFCD in the pgACC and the right

orbital frontal cortex of depressive group before MECT showed a positive correlation with

HAMD scores with treatment. Conforming to the impact of gFCD in depressive patients

after MECT, the aforementioned brain region may become an indicator of MECT effect.

Keywords: depression, electroconvulsive therapy, brain, functional connectivity, fMRI methods

INTRODUCTION

Major depressive disorder (MDD) is one of the most common mental disorders; however, limited
therapeutic options are available, creating an enormous individual and societal burden. An
estimated 30% of patients with MDD still suffer from functional impairment and antidepressant
drugs are only partially effective (1). Modified Electroconvulsive therapy (MECT) is known as a
useful treatment for MDD and works by eliciting controlled, transient seizures in both acute and
maintenance sessions (2). Several meta-analyses have confirmed the antidepressant effectiveness of
MECT for depression (3–5).

However, not all patients respond to MECT. Approximately only 50% of patients experience
remission when receiving right-unilateral MECT with optimal parameters, and the specific neural
mechanism of action still remains unclear. Until now, the modulatory effect of MECT on brain
functional connectivity density (FCD) has only been reported in a few studies. Some found the
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dorsal-lateral prefrontal cortex (DLPFC) was crucial for
achieving a therapeutic response by MECT (6–8). Previous
studies have shown symptom recovery in some regions, such
as the amygdala or the subgenual anterior cingulated cortex
(sgACC) (9, 10). Cano et al. (11) found that substantial intra-
limbic functional connectivity (FC) decreases predicted a later
increase in limbic–prefrontal FC, which could predict clinical
improvement at the end of a course of ECT.

As a voxel-wise, data-driven method, functional connectivity
density mapping (FCDM) is widely used to test the density
distribution of whole-brain resting-state FC (12–14), such as
resting-state global functional connectivity density (rs-gFCD).
Rs-gFCD is been referred to as the level of centrality (15) or
intrinsic connectivity contrast (16). For some neuropsychiatric
disorders, rs-gFCD was suggested to be a biomarker (15, 17, 18).
Increased FCDs shows the elevated number and strength of FC
may indicate its important role for understanding themechanism
in these brain areas. Kandilarova et al. (19) found, according
to spectral dynamic causal modeling, that significantly reduced
strength of the connection from the MFG (i.e., dorsolateral
prefrontal cortex) to the anterior insula was shown in patients,
and a strong connection was found between the anterior insula
and the amygdala. This research may be used to predict
treatment response.

Neuroimaging research of ECT has particularly assessed brain
function before and after treatment (20–22), but have not tried
to characterize functional changes occurring at various treatment
phases. These measurements may have important clinical utility
as an outcome predictor (23) and may help to reveal the
mechanism of antidepressant treatments.

In this study, we hypothesized that a complex interaction
between MECT-induced gFCD changes and clinical
improvement will emerge in patients with MDD. Therefore,
to demonstrate this relationship, we assessed a group of
patients with MDD and compared them to healthy controls.
We used functional magnetic resonance imaging to examine
developments in global functional connectivity density and
assessed alterations in Hamilton depression scale (HAMD)
scores during MECT. We measured gFCD in the depressive
group before MECT and in the healthy controls, and after 8
courses of MECT, we tested gFCD in the depressive group again.
The specific objectives of the study were as follows: [1) to assess
changes in specific regions throughout the course of ECT and [2)
to expose the relationship between ECT-induced gFCD changes
and clinical response.

MATERIALS AND METHODS

Participants
Twenty-four patients and 13 demographically similar
healthy control subjects received informed consent forms
for participation in the research, which was approved by the First
Affiliated Hospital of Chongqing Medical University. All the
methods followed relevant regulations. Diagnostic assessment
and response were assessed by experienced psychiatrists in
depression and relevant scales. All the patients would take a
clinical assessment before ECT including routine blood testing,

chest X-rays, and brain CT scans (11). They were all experiencing
MDD as defined by the ICD-10 and were screened using the
Hamilton Depression Scale (pre-ECT 31.3 ± 8.6; post-ECT8.58
± 5.62; healthy-control 2.21 ± 1.25). Subjects were excluded
if they: (i) had a neurological or serious physical condition
or any history of alcohol or drug abuse, or any other somatic
diseases, or morphological anomalies of the brain, (ii) had
any surgically-placed electronic or metal materials that might
interfere with fMRI assessment, (iii) slept while scanning and/or
(iv) had head motion exceeding 3mm in translation or 3 degrees
in rotation. The Local Medical Ethics Committee of the First
Affiliated Hospital of Chongqing Medical University reviewed
and confirmed the study protocol. Written informed consent
was obtained from all subjects.

Electroconvulsive Therapy
The patients underwent modified bi-frontotemporal ECT which
was conducted using a Thymatron (TM) DGx (Somatics LLC,
Lake Bluff, IL, USA), which is the brief-pulse, constant-current
apparatus at the psychiatry department of the First Affiliated
Hospital of Chongqing Medical University (24). The first three
courses of ECT took place on continued days and the left courses
of ECT were performed every 2 days, and it would have a
break on weekends. After eight courses, ECT was continued if
depressive symptoms had not changed sufficiently, as determined
by a clinician, with a maximum of 12 courses of ECT. The
initial dosage was confirmed based on age, weight and sex.
Anesthesia was induced with succinylcholine (0.5–1 mg/kg) and
diprivan (1.5–2 mg/kg).

MRI Data Acquisition
A 3.0 Tesla MRI system (GE Signa) was used to obtain imaging
data in the First Affiliated Hospital of Chongqing Medical
University. Patients were asked to close their eyes peacefully and
to keep their heads stable throughout MRI process and keep
awake. After theMRI scan, they would be asked whether they had
fallen asleep during the process (24). Resting-state fMRI images
were collected using the following EPI sequence: repetition time:
2000ms; echo time: 30ms; flip angle: 90◦; field of view: 240 ×

240 mm2; matrix: 64 × 64; slice thickness: 5mm; and number
of slices: 33 axial slices. Two hundred volumes were obtained,
resulting in a 400s scan time, then 3D T1-weighted anatomical
images were collected (repetition time: 8.35ms; flip angle: 12◦;
echo time: 3.27ms; field of view: 240 × 240 mm2; matrix:
256 × 256; slice thickness: 1mm; and the number of sagittal
slices is 156) (25).

Pre-processing and Quality Control
Data Processing & Analysis of Brain Imaging (DPABI) was
used to assess resting-state data (26). The first 10 volumes of
the functional images were abandoned to account for signal
equilibrium (27). Slice timing and head motion correction were
conducted in sequence for the remaining time points. The
covariates, including head motion, white matter signal and
cerebrospinal fluid signal, were regressed out from the time series
of every voxel. Here, the Friston 24-parameter model was used
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to regress out head motion effects. To decrease effects of high-
frequency noise and low-frequency drift, a 0.01–0.1Hz band-pass
filter was used. The registered images were spatially normalized
to the Montreal Neurological Institute (MNI) template. The
images were resampled to 3-mm cubic voxels. To smooth the
normalized images, a 6-mm full width at half maximumGaussian
kernel was used. Additionally, the scrubbing procedure was
employed, excluding any volume with a frame-wise dependent
value exceeding 0.5, with the two subsequent volumes and one
preceding volume. Finally, normalization quality was monitored
by checking the normalization images subject by subject (28).

Functional Connectivity Density
We used the DPARSF toolbox to calculate the functional
connectivity density (FCD) of each voxel. High FCDs indicates
increased strength and number of the respective FC, showing
its significance in the brain. Between all the brain voxels,
Pearson’s correlation coefficients were calculated, so that the
whole-brain functional connectivitymatrix for each subject could
be constructed. The degree centrality maps were computed using
0.3 (we also used 0.4 as the threshold for determining edges and
found the results was similar) as the threshold for determining
edges (12). Thus, the whole-brain maps were obtained by
computing the number of voxels where the connections with
other voxels in the BOLD time series exceeded the threshold in
a whole-brain weighted graph.

Statistical Analysis
First, the two-sample T-Test was selected to test the group
differences in gFCD between pre-ECT MDD patients and the
control group in a voxel-wise manner by using a general linear
model with age, gender, and the motion (Mean FD) as nuisance
covariates. A correction for multiple comparisons was performed
using p < 0.05 with family-wise error (FWE), which is correct
at the voxel level. Second, to investigate the therapeutic effect of
ECT, the paired sample T-test was also used to test the differences
betweenMDDbefore treatment and after treatment using ECT in
a voxel-wise manner. Because the results may be easily impacted
by noise, a conservative statistical threshold was specified at
cluster level p < 0.05, which is correct with an underlying
voxel level of p < 0.001(AlphaSim corrected) using DPABI (26)
software. Additionally, one-way ANOVA was performed to test
the difference in the ROI regions based on previous paired sample

t results (pre-treatment vs. post-treatment) among the healthy
controls, pre-treatment MDD and post-treatment MDD.

The statistical analysis of one-way ANOVA was implemented
by SPSS 20 (IBM SPSS Statistics for Windows, Version 20.0,
IBM Corp, Armonk, NY, USA). To characterize the relationship
between HAMD scores and pre-/post- treatment, we computed
Pearson’s correlation analysis. Each group was compared with
others by using a Bonferroni post hoc test with p < 0.05.

RESULTS

Demographic Data and Psychological
Measurements
The psychological measurements and demographic data are
listed in Table 1. In comparison with the healthy controls and
post-treatment depressive subjects, the pre-treatment depressive
subjects had more serious depressive symptoms according to
HAMD scores. One-way ANOVA analyses indicated that the
scores on the HAMD were remarkably different among the three
groups (F = 232.4, p< 0.001). A pairwise comparison found that
post-treatment periods were characterized by significantly lower
depressive symptoms than pre-treatment intervals (F = −22.8,
p < 0.001), yet subjects in the post-treatment stage still
experienced markedly higher depressive symptoms compared to
healthy control subjects (F = 6.4, p < 0.001). The depressive
group and the healthy controls did not differ considerably with
age (t=−0.55, p= 0.59) or sex (t=−0.81, p= 0.43). Compared
with the healthy controls, the depressive patients had more years
of education (t = −3.7, p < 0.001). The individual scores from
the HAMD of all participants are shown along with the mean
in Table 1, excluding 6 patients who refused further treatment
because of symptom recovery at an early stage.

Significant Differences Between
Pre-treatment Periods and Healthy
Controls in Global Functional Connectivity
Density (gFCD)
In contrast with the healthy controls, the depressive patients in
the pre-treatment phase exhibited a significantly increased gFCD
in the posterior-middle insula, supra-marginal gyrus, and dorsal
medial prefrontal cortex (all p < 0.05 with family wise error
corrected, Figure 1). No regions showed decreased gFCD under
the same statistical threshold.

TABLE 1 | The demographic data and psychological measurements of the healthy controls, pre-treatment and post-treatment depressive subjects.

Characteristic Pre-treatment Post-treatment Control Value P

Age, mean (SD), y 32.5 (11.7) / 33.3 (10.4) t = −0.55 p = 0.59

Sex (male/female) 10/14 10/14 5/9 t = −0.79 p = 0.43

*Education years, mean (SD), y 11.1 (2.86) / 15.1 (3.47) t = −3.9 p < 0.001

Body Weight, mean (SD), Kg 54.1 N/A 57.2 t = −1.46 p = 0.15

HAMD, mean (SD) 31.3 (8.6) 8.58 (5.62) 2.21 (1.25) F = 164 p < 0.001

Head Motion (FD), mean (SD) 0.089 (0.03) 0.113 (0.09) 0.104 (0.03) F = 1.54 p = 0.23

*Results are P < 0.05.
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FIGURE 1 | gFCD in pre-treatment revealed significant increases in the posterior-middle insula, supramarginal gyrus, and dorsal medial prefrontal cortex compared to

the controls (p < 0.05, FEW).

Significant Differences Between
Pre-treatment and Post-treatment Stages
in Global Functional Connectivity Density
(gFCD)
Compared to the depressive patients in the pre-treatment
period, the post-treatment depressive patients exhibited an
obviously increased gFCD in the perigenual anterior cingulate
cortex (pgACC), orbitofrontal cortex bilaterally and the
left-supra-marginal gyrus. Moreover, depressive patients
in the post-treatment stage exhibited decreased gFCD in
the posterior insula compared to the pre-treatment phase
(AlphaSim corrected p < 0.001 under voxel level uncorrected
and cluster level under p < 0.05 familywise error corrected,
Figure 2; Table 2).

The results from the correlation analyses revealed that the
gFCD activity in the pgACC (r = 0.46, p = 0.024) and
right orbital frontal cortex (r = 0.5, p = 0.013) in the pre-
treatment interval had a significant correlation with the post-
treatment period HAMD scores (see Figure 3). However, there
was no correlation between the gFCD pre-MECT and HAMD
scores pre-MECT (p > 0.05). There was also no noticeable
correlation between post-treatment gFCD and HAMD scores.
The changes of gFCD and the differences of HAMD scores also
had no significant correlation. These results indicated that the
gFCD activity present in pre-treatment may predict the post-
treatment outcome.

DISCUSSION

In the present study, we assessed the gFCD changes in
patients with MDD before and after MECT. The results
demonstrated that, compared to the healthy controls, there
was increased gFCD in the posterior-middle insula, supra-
marginal gyrus, and dorsal medial prefrontal cortex of pre-ECT
MDD patients.

The post-treatment results exhibited significantly increased
gFCD in the perigenual anterior cingulate cortex (pgACC),
orbitofrontal cortex bilaterally and the left-supra-marginal gyrus.
These upshots were associated with decreasedHAMD scores, and
statistical analysis demonstrated that such connectivity changes
were related to clinical outcome.

Orbitofrontal Cortex
The orbitofrontal cortex (OFC) is important in complex human
behaviors. OFC cortico-striatal circuits are consistently involved
in many mental disorders, such as depression. Structurally,
the OFC reveals remarkable decreased volumes in medication-
naïve MDD patients compared to MDD patients who take
medications (29). Additionally, Webb et al. (30) found higher
depressive symptoms were related to reduce gray matter volume
in the left rACC (extending into the OFC). Likewise, significant
decreases have been observed not only in OFC gray matter,
but also in the ventral striatum and amygdala in MDD patients
(30, 31). Furthermore, the changes may last through the whole
life. According to a previous study, no significant differences
were observed in total gray matter volume of OFC, or in
total OFC volume between MDD children and healthy controls
(32). Interestingly, Rajkowska et al. (33) obtained post-mortem
samples from elderly depressed patients that showed that the
density of pyramidal neurons in the OFC was particularly
low, which shows more severe neuronal pathology changes in
older MDD patients than in younger patients. Studies show
that, compared with control subjects, significant hyperactivity is
observed in the mOFC and VMPFC for MDD patients (34–40).
At the same time, some research shows that, for medication-
naïve MDD patients, the resting cerebral blood flow (rCBF) of
the OFC was upregulated, while after taking antidepressants,
reduced metabolism was observed in these regions (41). Thus,
there is a positive correlation with MDD patients. Nevertheless,
the correlation between symptom severity and rCBF of these
areas remains somewhat of a mystery. This research suggests
that activation of these areas can be a complemental reaction for
decreasing negative emotional action. Specifically, some results
revealed an inverse correlation between decreased functional
connectivity within the medial division of the orbitofrontal
circuit and the severity of symptoms, which matches our
conclusions (42).

Insula
Some large trials demonstrated that pre-treatment regional insula
activity could prognosticate the specific treatment that would
be efficacious at the individual patient level. Dunlop et al.
(43) found preliminary evidence that a putative right anterior
insula metabolism biomarker could predict treatment outcomes,
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FIGURE 2 | gFCD of the depressive group statistically increased in the perigenual anterior cingulate cortex (pgACC), orbitofrontal cortex bilaterally and the

left-supramarginal gyrus after MECT (p < 0.05, FEW). (A) Statistical increased gFCD in these regions post treatment. (B) Statistical decreased gFCD in these regions

post treatment.

TABLE 2 | Significant difference between different groups in global functional connectivity density (gFCD).

Brain regions MNI coordinates Voxel size Peak T value

x y z

PRETREATMENT vs. CONTROL

Increased gFCD

Middle insula (left) −36 6 3 234 4.93

Posterior middle insula (right) 39 −3 3 310 4.87

Supramarginal gyrus (left) −63 −51 30 296 5.68

Dorsal medial prefrontal cortex(DMPFC) (left) −9 54 42 154 5.42

Decreased gFCD

No

POST-TREATMENT vs. PRETREATMENT

Increased gFCD

Perigenual anterior cingulate cortex (pgACC) (left) −12 45 12 231 4.16

Right supramarginal gyrus (right) 54 −63 33 470 4.78

Orbitofrontal cortex (left) −24 57 3 217 3.97

Decreased gFCD

aRight insula (right) 36 −15 6 110 −4.03

aResults are P < 0.05, corrected for multiple comparisons at a cluster level with AlphaSim, with an underlying voxel level of P < 0.001, uncorrected under whole brain analyses.

even in children (43). Belden et al. (44) found there was some
kind of correlation between structural abnormalities of anterior
insula volume and the neurobiology of depression from early
childhood. Consequently, the function and structure of insula
are significant for presaging the clinical outcomes of depression.
Some previous studies indicated that low functional connectivity
density in the insula leads to better clinical outcomes in MDD,
but there is no research to reveal upregulated connectivity in
ACC/VMPFC, PCC/pC, dACC and insula within RSNs that are
correlated with MDD pathology. Regression results showed that
areas related to clinical response overlapped mostly with areas
that exhibited abnormal connectivity. ACC/VMPFC, dACC and
the left insula are the hub areas of the default mode network
(DMN) and SN. These areas displayed prominent performance
(highest sensitivity = 100% and highest specificity = 82%) in
distinguishing therapeutic effect (45). Some recent researches
specified that, in contrast with MDD patients who not
attempted suicide, those who have attempted suicide showed

hyper-activity resting-state functional connectivity (RSFC) of the
left amygdala with the right insula (46). Our corollary showed
increased gFCD in the insula before treatment, which matches
previous studies.

Dorsal Medial Prefrontal Cortex
Chaotic network connectivity is observed in MDD core
networks, which include DMN, of which the dorsal medial
prefrontal cortex (dmPFC) is one part. Both pharmaceutical
treatments and electroconvulsive therapy and repetitive
transcranial magnetic stimulation can work in DMN. One
previous study showed that, after using rTMS just in the
dmPFC region, the symptoms became better (47). Previous
studies have demonstrated abnormal changes in resting-state
functional connectivity strength in several brain regions and
brain networks (48–50); research has further shown that
resting-state functional connectivity density is mainly located
in the medial prefrontal cortex, posterior cingulated cortex,
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FIGURE 3 | The gFCD in the pgACC and right orbital frontal cortex of depressive patients before MECT shows a positive correlation with HAMD scores after

treatment. (A) gFCD in pgACC in three different groups. (B) gFCD in pgACC. (C) The gFCD in the pgACC of depressive patients pre MECT shows a positive

correlation with HAMD scores post treatment. (D) gFCD in Right Orbital Frontal Cortex in three different groups. (E) gFCD in Right Orbital Frontal Cortex. (F) The gFCD

in the Right Orbital Frontal Cortex of depressive patients pre MECT shows a positive correlation with HAMD scores post treatment.

precuneus and occipital lobe. MDD patients show lower medial
prefrontal cortex volumes. Research on a non-clinical sample
found that, in the dorsal medial prefrontal cortex, male subjects
with higher levels of depressive qualities seem to have lower
volumes of gray matter (51). Even in a subclinical sample, the
dorsal medial prefrontal cortex was shown to be a potentially
significant biomarker for treatment outcomes in depression. In
our study, we found increased gFCD in dmPFC in depressive
patients. These outcomes match some previous research, such
as how—compared with healthy control group—increased
within-network connectivity was observed in the dmPFC
of MDD patients (52), and another study showed increased
resting-state FC between the medial prefrontal cortex and
other DMN structures in patients who suffered from major
depressive episodes (53). So, we predict increased gFCD exists
not only in dmPFC its own, but also dmPFC with other
brain regions.

Perigenual Anterior Cingulate Cortex
(pgACC)
Previous studies indicated that abnormal structure of the
anterior cingulate cortex (ACC) is also frequently linked
with major depression disorder (54–56). Dysfunction in
networks including the ACC and caudate nucleus has been
demonstrated to underlie many core symptoms of MDD such

as anhedonia, decreased energy and intellectual disability (7).
In addition, Wu et al. (57) found a remarkble reduction of
functional connectivity strength (FCS) in sgACC in MDD
patients. Taken together, this research supports a neurotrophic
model of MDD and antidepressant effects, showing that
ECT may cause functional alterations within prefrontal and
limbic areas.

Furthermore, we also found that gFCD in the pgACC and
the right orbital frontal cortex of depressive patients before
ECT had a positive correlation with HAMD scores after
treatment. Previous research has shown that the alteration of
limbic and prefrontal networks is continuous during symptom
remission. Early antidepressant effects can be observed at
the limbic level, and the following effects can be observed
in the PFC (6, 11, 58). Cano et al. (11) found that early,
substantial decreased intralimbic FC significantly exhibited a
subsequent increase in limbic–prefrontal FC, which meant
better clinical outcomes could come from an ECT session.
The gFCD in the pgACC and the right orbital frontal
cortex of depressive patients before MECT showed a positive
correlation with HAMD scores after treatment, which suggests
that functional disturbances in MDD may be associated with
compensatory activity enhancement in some regions. In severe
depression, the compensatory enhancement is more obvious.
Our results may provide evidence for finding a new predictor of
treatment outcome.
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In the present study, our research focuses on describing
treatment outcomes with gFCD and MECT. However, previous
studies have shown that regardless of function or structure, the
regional insula, ACC, OFC, supra-marginal gyrus, and dorsal
medial prefrontal cortex may be important biomarkers for
treatment outcomes of depression. Some studies have shown
decreased gFCD in the left occipital lobe of depressive patients
while our study found that the gFCD in the pgACC and
right orbital frontal cortex of depressive patients before MECT
demonstrated a positive correlation with HAMD scores after
treatment, suggesting that the level of gFCD in the pgACC
and right orbital frontal cortex may also be core indicators of
treatment outcome.

This study has some limitations. These include the small
number of patients; replication with a larger sample is warranted
and the healthy control sample was also small. We did not add
a subgroup analysis and there were no other psychopathological
or neurocognitive assessments in our research, and we did not
follow the healthy controls; therefore, further research is needed.

CONCLUSION

We found abnormal gFCD in the posterior-middle insula,
supra-marginal gyrus, and dorsal medial prefrontal cortex in
depressive patients afterMECT.MECT influenced brain gFCD in
depressive patients by increasing gFCD in the perigenual anterior
cingulate cortex (pgACC), orbitofrontal cortex bilaterally and the

left-supra-marginal gyrus while decreasing gFCD in the posterior
insula after 8 courses of MECT. The gFCD in the pgACC
and right orbital frontal cortex of depressive patients before
MECT revealed a positive correlation with treatment outcome,
demonstrating that the above brain region may be a strong
indicator of MECT effect.
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