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Background: A number of neuroimaging studies have investigated structural, metabolic,

and functional connectivity changes in betel quid (BQ) chewers. We present a systematic

review of neuroimaging studies with emphasis on key brain systems affected by BQ

chewing to bring a better understanding on the neuro mechanisms involved in BQD.

Methods: All BQ neuroimaging studies were identified by searching PubMed, EMBASE,

and Google scholar for English articles published until March 2018 using the key words:

Betel-quid, resting state, functional MRI, structural MRI, diffusion tensor imaging (DTI),

and betel quid dependence basing on the PRISMA criteria. We also sought unpublished

studies, and the rest were obtained from reference lists of the retrieved articles. All

neuroimaging studies investigating brain structural, and functional alterations related to

BQ chewing and BQ dependence were included. Our systematic review registration

number is CRD42018092669.

Results: A review of 12 studies showed that several systems in the brain of BQ

chewers exhibited structural, metabolic, and functional alterations. BQ chewing was

associated with alterations in the reward [areas in the midbrain, and prefrontal cortex

(PFC)], impulsivity (anterior cingulate cortex, PFC) and cognitive (PFC, the default mode,

frontotemporal, frontoparietal, occipital/temporal, occipital/parietal, temporal/limbic

networks, hippocampal/hypothalamus, and the cerebellum) systems in the brain. BQ

duration and severity of betel quid dependence were associated with majority of

alterations in BQ chewers.

Conclusion: Betel quid chewing is associated with brain alterations in structure,

metabolism and function in the cognitive, reward, and impulsivity circuits which are greatly

influenced by duration and severity of betel quid dependence.

Keywords: betel quid, resting state, functional MRI, structural MRI, betel quid dependence, diffusion tensor

imaging (DTI), systematic review, brain alterations
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INTRODUCTION

Betel quid (BQ) is a chewable substance made up of fresh
unripe or dried Areca catechu nut (AN) usually wrapped in
a betel leaf from the piper betel vine, smeared with aqueous
lime, and always flavored (1). Worldwide, BQ ranks number
four among the most popular self-administered psychoactive
substances (caffeine, alcohol, and nicotine) (2). Studies have
found that, more than 600 million people use BQ within the
Indo-Asia-Pacific regions (3) and Asian immigrants in Africa,
Europe, and North America (2). The proportion of betel quid
dependence (BQD) among users was 20.9–33.3% in mainland
China and Sri Lanka; 41.3–52.8% in Taiwan and Malaysia; and
84.4–99.6% in Indonesia and Nepal. Generally, men displayed a
higher BQD prevalence (3.5–7.7%) than women (0.3–1.1%) in
Taiwan and mainland China, while the opposite was observed
in Malaysia and Indonesia, where the prevalence was higher in
women (7.7–40.5%) than in men (2.0–10.0%) (4).

Habitual users of have reported experiencing psychological
effects immediately after chewing BQ; including heightened
alertness, euphoria, relaxation, arousal, anti-migraine, improved
motor responses, and a sense of wellbeing (5). Onset of such
effects was observed within 2min after chewing, suggesting that
the active compounds of BQ are immediately absorbed in the
mucosal membrane of the oral cavity. Fresh and occasional BQ
users tend to experience stronger effects than habitual chewers,
proposing that tolerance occurs with continual use (6). For some,
the initial BQ taste may be unpleasant, however the experienced
cognitive effects such as arousal and increased alertness may
be considered pleasant enough for a repetitive behavior that
results into dependence (7). Similar to opiate withdrawal, BQ
dependent users have acknowledged experiencing tolerance,
craving, substance seeking behavior, and withdrawal symptoms
(4, 8–12), that meet the criteria for substance abuse (13). Such
symptoms originate from chronic exposure of G protein coupled
receptors to compounds like arecoline, leading to reduced
receptor sensitivity (14, 15) which parallels the development
of tolerance and habitual drug use (7). Arecoline is one of
the AN alkaloids found in betel preparations, others include
guvacine, guvacoline, and arecaidine (16). Previous studies
considered arecoline as the main ingredient of AN that is
responsible for numerous symptoms of BQ chewing (17).
However, recent studies have reported a higher concentration
of arecoline and guvacine in young and mature betel nut
respectively (16). Arecoline in BQ activates the M5 muscarinic
acetylcholine receptors (mAChR) which in turn potentiate
dopamine (DA) transmission in the nucleus accumbens (NAc)
(18) and projects to the dorsal striatum for regulation of
synaptic plasticity which influences striatal microcircuitry (19).
Similar to nicotine’s mechanism of action, BQ through the
action of arecoline is thought to enhance excitatory input to
DA neurons via presynaptic activation (20). Arecoline also
affects smooth muscles and binds to GABA receptors in the
brain, and thus contributing to the reported psychoactive effects
(2). Meanwhile, cholinergic (nicotinic and muscarinic) and
inhibitory GABA’ergic input also exert a high modulatory effect
on mesolimbic dopaminergic neurons which are involved in

reinforcement learning, reward processing (21), and addiction
(22). Additionally, the ventral tegmental area (VTA), NAc and
the prefrontal cortex (PFC) form the mesocorticolimbic system
which is the primary reward pathway, known to increase DA
concentration in the VTA and other projection areas directly
and/or indirectly (20). Long term use of psychoactive substances
is often associated with the disruption of the DA reward system
(23), and adaptation to repeated drug use is often accompanied
by brain changes (in structure, neurons, receptors, molecular
mechanisms, and connectivity) (24) and by memories formed
from the experienced drug intoxication (25). For example, people
addicted to substances experience a reduced sensitivity to brain’s
reward system due to decreased D2 receptors compared to
non-addicts (26). The loss in reward sensitivity may explain
the reported compulsion to continue taking drugs in order to
regain the pleasurable feelings once experienced from the reward
system (27). Normally, the PFC controls the dorsal striatum
and the NAc in habit responses and therefore inhibits incentive
salience (28). However, drug addiction disrupts the PFC leading
to compromised executive functions. Increased glutamate in the
PFC stimulate the habit system in the dorsal striatum which
contributes to impulsivity which is associated with substance
seeking (29), supporting the observed dependence syndrome
reported in an extensive number of BQ users (9, 30).

The Global statistics on addiction has not formally recognized
BQ use as an addictive behavior (31). However, numerous studies
have used the DSM-IV criteria to measure BQD (4, 7, 11, 30,
32). A very recent study evaluated betel use disorder (BUD)
using DSM-5 criteria for substance use disorders (33). In the
DSM-5, substance use disorder is a combination of the DSM-
IV categories of substance abuse and substance dependence into
a single disorder ranging in a continuum from mild to severe
(34). Changes incorporated in the DSM-5 diagnostic criteria
include the presence of 2–3 symptoms from a list of 11 (the
DSM-IV required only one symptom for substance abuse); an
addition of drug craving and a removal of problems with the law
enforcement criteria (35). Majority of current BQ neuroimaging
studies have utilized Betel quid dependence scale (BQDS) to
screen for BQD (36–42). BQDS was developed from DSM-IV
criteria for substance dependence. It has a cut-off point of 4 and
is structured into three parts; “physical and psychological urgent
need,” “increasing dose,” and “maladaptive use.” BQDS has a high
internal consistency (Cronbach’s α = 0.921), optimal sensitivity
and specificity of 0.26 and 0.977 respectively with an overall
predictive accuracy up to 99.3% (8). The betel nut dependence
scale (BNDS) is another measurement that has been used in
neuroimaging and other related BQ studies (43, 44). The BNDS
is comprised of three elements: craving and desire, withdrawal
and response, and tasting habits. The scores range from 11 to 44,
the higher the score the higher the level of BQD. It has a good
criterion-related validity and the α coefficients of reliability lied
between 0.73 and 0.89. The three elements accounted for 63.10%
of total variances (45).

A number of neuroimaging modalities have been used in
BQ studies including resting state functional magnetic resonance
imaging (fMRI), diffusion tensor imaging (DTI), and structural
MRI. Correlates of structural and functional connectivity (FC)
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alterations associated with BQ chewing and dependence have also
been documented (36–38, 43, 46). To date, majority of published
reviews have focused on neuroimaging studies of alcohol and
other substance use disorders (47–51). Reviews of BQ have
specifically investigated the pharmacology of intoxication and
addiction (7), the association with oral cancers (52), and systemic
health effects (53). There has been no systematic review of BQ
neuroimaging studies to date. The purpose of this systematic
review is to present the current state of knowledge in brain FC,
and structural alterations associated with BQ chewing, studies’
limitations and future research directions in BQ neuroimaging
research.

Objectives
We sought to identify from BQ neuroimaging findings the
systems in the brain with structural, biochemical, and FC
alterations related to BQ chewing.

Research Question
What are the BQ neuroimaging findings regarding systems in the
brain with structural, biochemical, and FC alterations related to
BQ chewing?

METHODS

Search Strategy
Various combination of key words was used including: betel
quid, resting state, fMRI, structural MRI, betel quid dependence,
and DTI which were included basing on preferred reporting
items for systematic review and meta-analysis (PRISMA) criteria
(54). Our systematic review protocol has been registered
(CRD42018092669) in international database of prospectively
registered systematic reviews in health and social care. Initial
search in PubMed with the key word “betel quid” yielded” 919
articles, “betel quid dependence” yielded 27 articles, “betel quid”
and “resting state” yielded 8 articles, “betel quid” AND “resting
state” AND “fMRI” yielded 6 articles, “betel quid” and “structural
MRI” yielded 4 articles, while “betel quid” and “DTI” yielded
1 article. Other articles were obtained from reference lists and
bibliographies of the retrieved published articles.

Data Sources, Studies Selection, and Data
Extraction
Relevant articles for review of neuroimaging studies on BQ
were retrieved from PubMed and EMBASE, and Google scholar
databases. All unpublished (conference abstracts) and published
English articles in peer reviewed journals till March, 2018
comprising one or both gender specified, regardless of study
designs, were sought. Moreover, all BQ studies with fMRI and
structural MRI modalities were included in our review. Exposure
of interest was BQ as a mixture of areca nut, slaked lime, piper
betel leaf, Acacia catechu, flavorings with or without tobacco. Any
BQ study without neuroimaging modality was excluded.

The review consisted of three main stages. We first screened
articles basing on the title followed by abstract and lastly we
studied in detail full text articles that addressed the study aims.
The latter stage was accompanied by collection of relevant

information for our review. Two reviewers independently
selected the articles that met the inclusion criteria. Any observed
discrepancies were discussed and resolved between reviewers
prior to the final selection of the articles to be included in the
systematic review.

RESULTS

Of the 919 identified studies from the search results, 892
completely deviated from the established inclusion criteria, and
17 were BQ studies without neuroimaging approaches. The
remaining 12 studies met the inclusion criteria (Figure 1) and
were categorized according to brain functional regions including,
the reward, impulsive, and cognitive systems.

The Reward System in BQ Chewing
Neuroimaging studies have demonstrated the effects of BQ
chewing and dependence in the brain reward system. Increased
FC was displayed in the orbitofrontal of BQD compared to HCs
(36), as well as in HCs immediately after BQ chewing (55). The
BQDS scores positively correlated with the increased FC in the
orbitofrontal and negatively correlated with decreased FC in the
medial frontal/ACC networks (36). Similarly, some parts of the
reward areas in the midbrain including, the ventral tegmental
area and pons, caudate, and thalamus displayed increased FC
in the BQD group compared to the controls (39). Compared
with controls, gray matter (GM) volume of BQD patients was
significantly reduced in themidbrain, which negatively correlated
with the BQDS scores (40). A summary of BQ neuroimaging
studies is presented in Table 1.

The Impulsive System in BQ Chewing
A resting state fMRI study revealed a decrease in FC in the
ACC of healthy males immediately after BQ chewing (55).
Moreover, compared to HC, BQD individuals displayed a
decreased FC in the ACC (36, 39, 46). The BQDS scores
positively correlated with increased FC of right ACC to the
left thalamus and left ACC to pons while the duration of BQ
chewing negatively correlated with FC in the right ACC to left
precuneus (39). The BQDS scores also negatively correlated
with the decreased FC in medial frontal/ACC networks (36),
and the right ACC (41). While investigating alterations in long
and short-range FC density (FCD), a study found reduced
long-range and short-range FCD in the right ACC in the BQD
group compared with HCs. The short range FCD alterations
in the right ACC negatively correlated with the BQDS scores
(42). Studies have also documented metabolic changes that
emanate from BQ chewing. For example, a magnetic resonance
spectroscopy (MRS) study investigating biochemical changes in
BQD chewers found reduced N-acetylaspartate/creatinine
(NAA/Cr); increased choline/creatinine (Cho/Cr) and
glutamate/creatinine (Glx/Cr) ratios in the bilateral ACC as
well as higher Myoinositol/creatinine (MI/Cr) ratios in the left
ACC of the BQD individuals compared to the control group (38).
The NAA/Cr ratios in the right ACC negatively correlated with
BQDS scores and BQ duration, while the NAA/Cr ratios in the
left ACC negatively correlated with BQ duration. Furthermore,
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FIGURE 1 | Flow diagram on included neuroimaging studies in betel quid chewers.

the NAA/Cr ratios in the right ACC positively correlated with
BQDS scores (38).

Likewise, the GM in the ACC of the BQD group in
a voxel-based morphometry study demonstrated significant
decreased volume compared to the control group. The GM
volumes of the right ACC negatively correlated with BQD
duration (40). During the investigation of white matter integrity
alterations, findings revealed that a smaller fractional anisotropy
(FA) but larger mean diffusivity (MD) were displayed in
bilateral anterior thalamic radiation (ATR) of BQD individuals
compared to HCs. Both the increased MD and reduced FA

correlated with severity of BQ dependence as measured by the
BQDS (56).

The Cognitive System in BQ Chewing
Neuroimaging studies have reported extensive alterations in
brain functioning and structure that have been linked with
cognitive impairment in BQ chewers. For instance, increased FC
was observed in the cerebellum (49, 50), occipital/parietal (36,
55), occipital/temporal (55), frontoparietal, and frontotemporal
networks, while decreased activity was found in the medial
frontal cortex (49) and para hippocampal/hypothalamus (39).
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TABLE 1 | Characteristics of betel quid (BQ) neuroimaging studies.

Source Setting Sample/sample size Sex/Age Neuroimaging

approach

Weng et al. (44) Taiwan 48 (16BQ chewers, 15 tobacco &

alcohol-users&17 HCs)

Male and female, >20 years of age r-s fMRI

Yuan et al. (56) Hunan province,

China

54 (26 BQD & 28 HCs) Male and female, >20 years of age DTI

Zhu et al. (46) Hunan province,

China

54 (26 BQD & 28 HCs) Male and female, >20 years of age r-s fMRI

Weng et al. (43) Taiwan 48 (16BQ chewers, 15 tobacco &

alcohol-users&17 HCs)

Male, >20 years of age DTI

Chen et al. (40) Hainan province

China,

65 (33 BQD volunteers & 32 HCs) Male and female, >20 years of age sMRI

Liu et al. (39, 41, 42) Hainan province,

China

65 (33 BQD volunteers & 32 HCs) Male and female, >20 years of age r-s fMRI

Liu et al. (38) Hainan province,

China

65 (33 BQD volunteers & 32 HCs) Male and female, >20 years of age MRS

Huang et al. (55) Hunan province,

China

27 Healthy individuals Male, 18–30 years of age r-s fMRI

Huang et al. (36) Hunan province,

China

51 (24 BQD & 27 HCs) Male, 18–40 years of age r-s fMRI

Yuan et al. (37) 50 (25BQ chewers & 25 HCs) Male, >18 years of age sMRI

BQ, betel quid; HCs, healthy controls; BQD, betel quid dependence; r-s fMRI, resting state functional magnetic resonance imaging; DTI, diffusion tensor imaging; sMRI, structural

magnetic resonance imaging; MRS, magnetic resonance spectroscopy.

Similarly, BQD group demonstrated increased short-range FCD
in the left cerebellum posterior lobe (CPL) while increased long-
range FCD was observed in the left CPL and inferior parietal
lobule (IPL) than the HCs. The long-range FCD alterations in the
left IPL positively correlated with BQD duration. Furthermore,
the BQD group displayed reduced short-range FCD in the left
dlPFC compared to HCs (42). The effect of BQ was also reported
by Liu et al. (41), who showed that, individuals with BQD had
greater ALFF and ReHo values in the primary motor cortex area,
the temporal lobe and some parts in the occipital lobe than the
HCs. The BQD individuals also displayed reduced ALFF and
ReHo values in the prefrontal gyrus compared to HCs (41).
Apart from functional alterations, studies have also detected
structural alterations in brain areas responsible for cognitive
functions. Several areas in the PFC of BQ chewers including
the bilateral dlPFC (37, 40), ventral medial PFC (vmPFC), and
left orbitofrontal cortex (OFC) displayed reduced GM volume
compared to HCs (37). The GM volumes in the dlPFC negatively
correlated with BQD duration (40), and predicted the BQDS
scores, history of BQ chewing and the level of daily BQ chewing
(37). Reduction in GMvolumewas also demonstrated in the right
superior temporal gyrus (STG) while increased GM volume was
observed in the right hippocampal of BQD patients compared
to the control group (40). Conversely, another study reported
increased FC in the right hippocampus in BQ chewers compared
to tobacco and alcohol users, and HCs (44). The effects of BQ
chewing in the default mode network (DMN) have also been
documented. For example, healthy individuals displayed reduced
FC in the DMN immediately after BQ chewing (55). Additionally,
compared to HCs, BQD chewers demonstrated a decrease in
FC in the anterior part of the DMN comprising, the orbital

mPFC/ACC, and vmPFC. The FC in the orbital mPFC/ACC
in BQD individuals negatively correlated with BQDS scores
(46). The BQD individuals also displayed decreased connectivity
from regions in the ACC to the DMN when compared to HCs
(39). The precuneus, which forms part of the DMN exhibited
increased GM volume in BQD patients compared to the control
group (40), which is in contrast to another study that displayed
greater FC in the precuneus compared to tobacco and alcohol
controls and HCs (44). Table 2 presents a summary of brain
areas with altered structure, metabolism, and function in BQ
chewers.

The studies included in the review were similar in that they
were all BQ studies that used neuroimaging techniques to explore
different alterations in the brain. However, we noted several
inconsistencies among them: first, the sample sizes ranged from
27 to 65 individuals and the number of individuals in the
BQD and control groups varied among studies (e.g., 16 and 33
were the minimum and maximum numbers of BQD individuals
respectively). Second, majority of studies in the review reported
an enhanced reward system (36, 39, 43, 44, 55) and impaired
inhibitory control (36, 38–40, 42, 46, 55) in BQD chewers; (43,
44), however, are exceptions. These studies reported that BQ
chewing was associated with a facilitated inhibitory control. The
observed disparity may have been influenced by the variation in
scales used to identify individuals with BQD (that is, BNDS in
the latter two studies vs. BQDS in the former studies) leading
to the inclusion of subjects with different BQ dependence levels.
Moreover, examining only 16 individuals in the BQ chewers
group may have made it difficult to identify clearly brain areas
with alterations. Likewise, the inclusion of controls who used
tobacco and alcohol concomitantly may have influenced the
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TABLE 2 | Brain areas with alterations in BQ chewers.

Source Area of brain alteration

FUNCTIONAL CONNECTIVITY (FC) ALTERATIONS

Weng et al. (44) ↑In bilateral precuneus and right hippocampus ↓Bilateral insula

Huang et al. (55) ↑ Orbitofrontal, left frontoparietal, visual, right frontparietal,

frontotemporal, occipital/parietal, occipital/temporal/cerebellum

↓ Anterior DMN and medial front frontal/ACC

Zhu et al. (46) NA ↓ Anterior part of the DMN including vmPFC, (OMPFC)/(ACC).

Huang et al. (36) ↑ Orbitofrontal, bilateral frontoparietal, frontotemporal, occipital/parietal,

frontotemporal/cerebellum, and temporal/limbic networks

↓ Parietal and medial frontal/ACC, networks

Liu et al. (39) ↑ Long-range FCD in CPL and bilateral IPL ↓ Long range FCD in the right ACC

↑ Short-range FCD in the left CPL ↓ Short range FCD in the right ACC and left dlPFC

Liu et al. (41) ↑ ALFF and ReHo values in the primary motor cortex area, temporal

lobe, and some regions of occipital lobe.

↓ ALFF and ReHo values in the prefrontal gyirus along with left fusiform

Liu et al. (42) ↑ FC from ACC to the regions of the reward network (brainstem

including cortex and precuneus) and para midbrain regions such as the

ventral tegmental area and pons, caudate,

Hippocampal/hypothalamus.

↓ From ACC to the DMN (medial prefrontal thalamus) and cerebellum.

GRAY MATTER ALTERATIONS

Yuan et al. (37) NA ↓ GMV in bilateral vmPFC, bilateral dlPFC/insula, and left OFC

Chen et al. (40) ↑ GMV in right hippocampal and right precuneus ↓ GMV in in the midbrain, right ACC, dlPFC, and rSTG

WHITE MATTER ALTERATIONS

Weng et al. (43) ↑ Diffusion anisotropy in the ACC, midbrain, bilateral angular gyrus,

rSTG, bilateral superior occipital gyrus, left middleoccipital gyrus,

bilateral superior and inferior parietal lobule, and the bilateral

postcentral, and precentral gyrus

NA

↑ Bilateral anterior cingulum

Yuan et al. (56) ↑ MD in ATR ↓ FA in ATR

BIOCHEMICAL ALTERATIONS

Liu et al. (38) ↑ Cho/Cr and Glx/Cr in bilateral ACC ↓ NAA/Cr in bilateral ACC

↑ mI/Cr only in the left ACC

↑, Increased; ↓, decreased; NA, not applicable; DMN, default mode network; PFC, prefrontal cortex; OMPFC, orbirtal medial prefrontal cortex; vmPFC, ventral medial prefrontal cortex;

ACC, anterior cingulate cortex; FCD, functional connectivity density; dlPFC, dorsal lateral prefrontal cortex; IPL, inferior parietal lobe; CPL, cerebellum posterior lobe; ALFF, amplitude

of low frequency fluctuation; ReHo, regional homogeneity; FC, functional connectivity; Cho, choline; Cr, creatine; Glx, glutamate; mI, myo-inositol; NAA, N-acetylaspartate; GMV, gray

matter volume; OFC, orbital frontal cortex; rSTG, right superior temporal gyrus; MD, mean diffusivity; ATR, anterior thalamic radiation; FA, fractional anisotropy.

results, possibly due to the different neurobiological effects these
substances tend to impose on the brain.

Risk of Bias
We assessed for risk of bias in the included primary studies
by considering the sample size, gender, inclusion criteria for
individuals with BQD and controls, BQD screening tools, and
other potential sources of bias to determine how these may
have affected the study results. To prevent publication bias, we
considered both published and unpublished studies in our search
strategy. Any observed discrepancies were discussed and resolved
between reviewers prior to the final selection of the articles to be
included in the systematic review.

DISCUSSION

In this systematic review, we were able to identify 12
neuroimaging studies which have highlighted the current state
of knowledge about important brain systems with structural,

metabolic, and functional alterations associated with BQ
chewing.

The Reward System in BQ Chewing
Humans tend to consume alcohol or self-administer drugs of
abuse because they experience rewarding effects from these
substances (22). The reward areas in the brain include the basal
ganglia, the limbic system, and parts of the PFC (57). The review
found increased FC in the orbitofrontal cortex which forms part
of the PFC. The orbitofrontal network is known for its function
in regulating emotions, monitoring reward and evaluation of
punishers (58) whose disruption by addictive drugs is related to
maladaptive and impulsive decision making (59). It has also been
suggested that the OFC together with the dlPFC are involved
in reward processing (60), explaining the observed decision
making and goal driven behavior abnormalities in BQ chewers
(41). Additionally, decreased FC in vmPFC and orbital mPFC
in BQD supports the addiction model (26, 61), where they have
been reported to play a role in salience attribution and goal
directed behaviors (62). Increased connectivity (39) and diffusion
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anisotropy (43) was observed in midbrain regions of BQ users.
DA neurons in the midbrain play an important role in attention,
motivation, motor control, regulation of emotion, maintenance
of working memory, and reinforcement (63). The DA cells in
the VTA projecting into the NAc (the mesolimbic DA pathway),
those in the substantia niagra (SN) projecting into dorsal striatum
(mesostriatal) as well as those in the VTA projecting in to
the frontal cortex (mesocortical) play a very important role in
drug reward and addiction (22). During addiction, there is a
higher expectation value of the drug in the reward, memory,
and motivation circuits which overcomes the control circuit
leading to consumption of drugs (64). Task-based fMRI studies
have reportedmidbrain activation during anticipation of pleasant
tastes (65), monetary gains (66), and exposure to visual stimuli
that elicited feelings of intense romantic love (67). The dorsal
striatum in the midbrain plays a fundamental role in acquisition
and expression of action–outcome associations conditioning
(68) including the development of habitual compulsive drug
dependence. Brain neuroimaging studies showed that increased
levels of DA in the dorsal striatum (caudate and putamen) were
triggered by alcohol-associated cues, an effect that correlated
with self-reports of craving for alcohol (69). Significant increased
FC was displayed in the cerebellum of BQD individuals. The
cerebellum also plays part in reward monitoring and as an
intermediate between motor and reward, as well as motivation
and cognitive control systems, which are all relevant etiologic
factors in drug addiction (70). Studies have also reported
extremely increased glucose metabolism in the cerebellum of
addicts when they performed reward expectation tasks (71).
Activation of the cerebellum has been directly related to the
intensity of cue-elicited craving (72).

The Impulsive System in BQ Chewing
The PFC, OFC and ACC are known for their contribution
in executive functions and impulse inhibition (73). Alterations
in the PFC as a result of addiction leads to compulsive drug
taking and detrimental behaviors which are associated with
addiction and loss of free will (28). Studies have reported
about the reduction of striatal dopamine 2 receptors (D2R)
in addicted individuals after extended period of detoxification
(74). The reduced striatal D2R reductions have been linked
with decreased metabolism in the OFC, dlPFC, and ACC
(75), whose role in salience attribution, decision making, and
emotional regulation/inhibitory control form a basis to the
enhanced motivational value of drugs in their behavior and loss
of inhibition to drug use (76). Evidence also shows that, disrupted
OFC and ACC are associated with impulsivity behaviors (77). For
instance, individuals who abused methamphetamine displayed
reduced striatal D2R which was linked to impulsivity (78). The
limbic network is implicated in reward processing, addiction,
and goal-directed behavior (79), supporting the increased FC
reported from the BQ neuroimaging studies. Activation of the
limbic networks and the loss of inhibition in the frontal cortical
areas may lead to impulsivity, which is a major characteristic of
addiction (73). The ACC forms part of the DMN, and it was
observed to have a reduction in connectivity (36, 39, 42, 46,
55), GM volume (40), and NAA/Cr (38). In addiction theories,

ACC is thought to be involved in inhibitory control of reward-
related behavior (61). As a result, addicted individuals are unable
to control short term and immediate gratification of habitual
drug use regardless of existing or anticipated consequences (59).
Reduced activation in the ACC of opiate-dependent individuals
has been linked with deficits in response inhibition and impulse
control (80). Reduction in NAA concentration was reported
in the dorsal ACC (81) and frontal gray matter (82) of
opiate dependent individuals. This reduction has often been
interpreted as a representation of neuronal damage and/or loss
(83, 84). Decreased NAA levels in the ACC of BQD individuals
supports preclinical work, signifying that Arecoline leads to
neurotoxicity with greater oxidative stress and suppressed
antioxidant protective system (85). Increased levels of Cho/Cr,
Glx/Cr, and ml/Cr in the ACC of BQD individuals was reported
by Liu et al. (38). The increased Cho/Cr levels portrays a high
intracellular Cho in ACC neurons which may be the pathological
phenomenon or compensatory response to BDQ. Studies have
shown that ml is an osmoregulator (86), and elevated levels of mI
were reported in the ACC of alcoholic patients, which indicates a
temporarily increased glial activation or, a state of drug-induced
osmotic stress, and an attempt to regulate cell volume (87).
Meanwhile, Glx increase is considered a potential illustration of
abnormalities in decision making and reward-based learning, or
a modulator of dopaminergic neurotransmission (81). Reduced
FA in the ATR of BQD individuals was reported by Yuan
et al. (56). The ATR (links the anterior and medial thalamic
nuclei with the PFC) is known for its role in modulating the
basic impulses and flexibility in attaining planned goals, whose
disruption has been linked with lack of inhibition from the
PFC (88). It is also involved in controlling basic impulses and
working toward defined goals (88–91). Extensive decreased white
matter integrity has been reported in the ATR of pathological
gamblers (92) and internet gaming disorder subjects (93). The
observed alterations suggest a significant role of the ATR in the
neurobiology of BQD (56). Furthermore, increased MD within
the ATR of BQ dependent individuals (56) is suggested to be
linked with reducedmyelination or neuronal loss (94), explaining
a lack of inhibition from prefrontal cortex to the subcortical
areas (89). This mechanism has beenmentioned in substance and
behavioral addiction (88–91, 95).

The Cognitive System in BQ Chewing
Several areas of the brain are involved in cognitive processing
including the PFC [orbital frontal cortex (OFC), dorsal
lateral PFC (dlPFC), ventral medial PFC (vmPFC)], limbic
regions, cerebellum, parietal, occipital, and temporal lobes.
The PFC participates in various cognitive processes, such
as working memory, attention, decision making and delay
discounting, all of which are impaired in addicts (28). BQ
neuroimaging studies have reported increased connectivity
in the frontoparietal, frontotemporal, occipital/parietal,
occipital/temporal/cerebellum (36, 49). Habitual users of
BQ reported experiencing heightened alertness, euphoria,
relaxation, arousal, improved motor responses, and a sense
of wellbeing (5), suggesting that the increased connectivity
may enhance cognitive abilities (55) and thus perpetuate
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addiction behavior. BQ chewing also displayed reductions in FC
(39, 41, 42, 46) and GM volume (39, 52) in the PFC including
the dlPFC, mPFC, vmPFC, and orbital mPFC. In addiction
studies, the PFC plays a crucial role in self-control activities,
salience attribution, preservation of motivational arousal and
self-awareness (28). Addiction studies have extensively cited
the dlPFC which interacts with numerous structures in the
cortex. For instance, together with the dACC, the dlPFC exerts
top-down control and meta-cognitive functions (28). The dlPFC
is also involved in working memory processing (96, 97), decision
making and cognitive control (98, 99), executive functions (100),
as well as conflict resolution (101). Therefore, the reported
alterations in the dlPFC may have contributed to impaired
decision making, cognitive control and memory processing
leading to habitual and compulsive BQ chewing. Additionally,
BQ studies reported decreased GM volume (37) and increased
FC (44) in the insula in BQ chewers. The insula plays a critical
role in generating conscious, interoceptive signals into what one
may subjectively experience as a feeling of desire, anticipation, or
urge (88, 102). Decreased connectivity of the interoceptive insula
in BQ chewers may make them misadjust the reward value of the
substance to optimize their choices to satisfy their internal and
external need (103, 104). Neuroimaging studies have shown that
addicted individuals had lower GM volume and reduced activity
of insula (105).

The PFC is also linked with other cortical and subcortical
brain regions and networks, including the DMN and the dorsal
attention networks which are involved in executive control
processes, such as attention and inhibition (106). Functional MRI
studies have established that reduction in neural connectivity of
the PFC is associated with maladaptive decision making (107)
and cognitive control (108). The DMN which is known to be
active when the brain is “at rest,” has been implicated in mind-
wandering (109) and social understanding of others including,
emotional perception, empathy, and morality (110). The DMN
deactivates when individuals focus on the external environment
or perform goal-directed tasks (111). The effects of BQ chewing
in suppressing DMN connectivity have been associated with
a reduction in mind-wandering, enhanced focused attention,
lessened depression, improved social cognition (55), self-
awareness and insight into illness (112). Neuro dysfunction in the
DMN of addicts tends to compromise insight, disease awareness,
and need for treatment (112), supporting what is demonstrated
in BQD individuals.

The frontoparietal network is known for its involvement in
cognitive control, and development of reasoning ability (113).
Along with the frontotemporal, visual, and occipitoparietal
regions are involved in visual spatial judgment (114) while the
frontoparietal is involved in spoken language comprehension
(115). Similarly, increased long range FCD in IPL was thought
to impair distant information processing in BQD individuals
(42). The IPL is linked with verbal fluency, working memory,
complex sequential motor behavior, and skill learning (116).
Verbal fluency deficits have been observed in cocaine-dependent
individuals (117).

Additionally, increased connectivity between the cerebellum
and other brain areas (36, 39, 42, 55) supports its role in

decision making (118), and acts as a link between motivation and
cognitive control systems, thus playing an important role in drug
addiction (70). Reduced GM volume was found in the superior
temporal gyrus (STG) (40) which is an important structure in
social cognition (119) and emotion (120). There is evidence that
neuronal networks connecting the mPFC with temporal areas
are greatly destroyed in BQD patients, which is consistent with
a previous fMRI study on cocaine users (121).

Studies have reported increased GM volume (40) and FC (44)
in the precuneus and hippocampus in BQ chewers. Precuneus
has been associated with identification of visual and appetite
cues (122, 123), which conforms with BQ chewing, while the
hippocampus is involved in processing memory and emotions
(124). Studies have found that compared to non-dependent and
non-chewers, BQ dependent chewers displayed impaired spatial
short term memory (125). BQ chewing has also been associated
with antidepressant properties due to its influence in increasing
the levels of serotonin and noradrenaline (126), proposing the
role of hippocampus in emotional regulation, predominantly
depression. The thalamus has been increasingly implicated in
addiction due to its integrative function in regulating arousal
and modulating attention. An effect related to craving was
observed when dopamine neurotransmission in the thalamus was
increased due to intravenous administration of Methyphenidate
in cocaine users as compared to controls (127). Similarly,
Results from both PET and fMRI results have demonstrated that
compared to non-rewards, both primary and secondary rewards
can increase thalamic activation (128).

Findings from neuroimaging studies have also demonstrated
alterations in white matter integrity (43) and FC in the visual
cortex of BQD individuals (36, 41, 55). The visual cortex is
known for its role in cognitive processing including visual
perception, working memory (129) as well as influencing
motivation and alertness (130). Despite its documented roles
in the brain, the visual cortex has received less attention in
addiction neuroimaging studies. The reported alterations in the
visual cortex support the heightened alertness experienced by
BQ habitual users (8). These changes are believed to originate
from both acute (55) and chronic (36) effects of BQ exposure.
Similar studies have found increased FC in the visual cortex
(131) and specifically in the primary visual cortex during acute
alcohol administration (132). Likewise, compared to neutral cues,
exposure to visual drug cues elicited greater activation in the
visual cortex of substance abusers (133).

Limitations
There are however several limitations to note from these
studies. First, the differences in subjects among studies (age,
gender, variations in BQ preparation, dependence level, and
the duration of BQ exposure) could have potentially influence
the results. Second, inclusion criteria of individuals with BQD,
where different screening tools (BQDS vs. BNDS) were utilized
to identify individuals with BQD could have biased our results.
Third, all reviewed BQ neuroimaging studies were observational,
which limits inferences on causality. Future longitudinal
neuroimaging studies may lead to a better understanding of
mechanisms underlying BQ use and thus describe a cause and
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effect relationship among brain alterations and BQ use. Fourth,
four (4) studies only included men as study participants which
may have limited the generalizability of study findings to females.
Fifth, very small sample sizes were used with a range from 27
to 65 which could have potentially led to biased results. Studies
with larger sample sizes with inclusion of both males and females
may improve generalizability and prevent unbiased results. Lastly
the observed brain alterations cannot be deeply attributed to
BQ chewing only but considerations should be taken on the
possibility of the potential influence of alcohol and tobacco
consumption in the results.

CONCLUSION

The review has highlighted the current state of knowledge
regarding important systems in the brain that are commonly
affected by BQ chewing and BQD. Generally, the aforementioned
brain alterations have been involved in one way or another to
enhance the reward system, decline inhibitory control and
executive functions (including emotions, cognition, and affective
decision making) in BQ chewers and BQ dependent individuals.
The exhibited brain alterations are associated with BQD
severity and duration of BQ use. These alterations have all been
implicated to potentially play a role in drug addiction. Therefore,

further neuroimaging research involving BQ dependent
and abstinent individuals might help explain the neuro-
mechanisms of BQ use and hence extend what these studies
found.
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