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Risk assessment of suicidal behavior is a time-consuming but notoriously inaccurate

activity for mental health services globally. In the last 50 years a large number of tools have

been designed for suicide risk assessment, and tested in a wide variety of populations,

but studies show that these tools suffer from low positive predictive values. More recently,

advances in research fields such as machine learning and natural language processing

applied on large datasets have shown promising results for health care, and may enable

an important shift in advancing precision medicine. In this conceptual review, we discuss

established risk assessment tools and examples of novel data-driven approaches that

have been used for identification of suicidal behavior and risk. We provide a perspective

on the strengths and weaknesses of these applications to mental health-related data,

and suggest research directions to enable improvement in clinical practice.

Keywords: suicide risk prediction, suicidality, suicide risk assessment, clinical informatics, machine learning,

natural language processing

TARGETED SUICIDE PREVENTION–TIME FOR CHANGE?

Suicide is a global public health concern, with more than 800,000 worldwide deaths, annually. The
World Health Organization has set a global target to reduce the rates of suicides by 10% by 2020
(1, 2) The concept of suicidal behavior encapsulates thoughts, plans and acts an individual makes
toward intentionally ending their own life (3).

For targeted suicide prevention strategies to be effective for those with mental health problems,
high-quality and accessible data from health services is essential (1). With the increased availability
of electronic data from public health services and patient-generated data online, advances in data-
driven methods could transform the ways in which psychiatric health services are provided (4–6).

https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org/journals/psychiatry#editorial-board
https://www.frontiersin.org/journals/psychiatry#editorial-board
https://www.frontiersin.org/journals/psychiatry#editorial-board
https://www.frontiersin.org/journals/psychiatry#editorial-board
https://doi.org/10.3389/fpsyt.2019.00036
http://crossmark.crossref.org/dialog/?doi=10.3389/fpsyt.2019.00036&domain=pdf&date_stamp=2019-02-13
https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychiatry#articles
https://creativecommons.org/licenses/by/4.0/
mailto:sumithra@kth.se
mailto:sumithra.velupillai@kcl.ac.uk
https://doi.org/10.3389/fpsyt.2019.00036
https://www.frontiersin.org/articles/10.3389/fpsyt.2019.00036/full
http://loop.frontiersin.org/people/580008/overview
http://loop.frontiersin.org/people/464259/overview
http://loop.frontiersin.org/people/680251/overview
http://loop.frontiersin.org/people/527996/overview
http://loop.frontiersin.org/people/656863/overview
http://loop.frontiersin.org/people/582152/overview
http://loop.frontiersin.org/people/582172/overview


Velupillai et al. Suicide Prevention: Data-Driven Approaches

Here, we discuss and contrast the use of risk assessment
tools and data-driven computational methods, such as the use
of machine learning and Natural Language Processing (NLP)
within the precision medicine paradigm to aid individualized
care in psychiatry. Our aim is to convey the strengths, but also the
limitations of current approaches, and to highlight directions for
research in this area to move toward impact in clinical practice.

RISK ASSESSMENT TOOLS FOR SUICIDE
PREDICTION AND PREVENTION

Tools developed for suicide risk assessment include psychological
scales, e.g., the Beck Suicide Intent Scale, and scales derived from
statistical models, e.g., the Repeated Episodes of Self-Harm score.
Completing suicide risk assessments have become a mandatory
part of clinical practice in psychiatry (7), absorbing a considerable
proportion of time allocated to clinical care (8). Assessments are
aimed at identifying treatable and modifiable factors, the premise
being that identifying “high” suicide risk allows clinicians to
enhance service provision, or to implement suicide prevention
measures in specific, “high-risk” patient-groups, thus avoiding
the implementation of inappropriate or costly interventions in
“low-risk” patients.

Recently published meta-analyses suggest that the existing
tools have inadequate reliability and low positive predictive value
(PPV) in distinguishing between low and high-risk patients (9–
13). For instance, the meta-analytically derived PPV of studies
based on 53 samples was 5.5% over an average follow-up period
of 63 months (12). The majority of suicides occurred in the
patient groups categorized as “low-risk,” as they vastly outnumber
the “high-risk” group. Furthermore, most patients in the “high-
risk” group did not die by suicide, because of the relative rarity of
the outcome. In addition, the 5.5% risk of suicide for “high-risk”
patients pertains to a time interval of more than 5 years; from a
clinical perspective it is more helpful to identify those likely to
die by suicide within much shorter time frames, namely weeks or
months. No relationship between the precision of risk assessment
tools and date of their publication has been found, suggesting no
radical improvement over the past 50 years (10, 12).

Suicide is a rare outcome, even in individuals with severe
mental health disorders. This presents several challenges when
it comes to suicide risk assessment. Low base-rates demand an
instrument with very strong predictive validity. The performance
of almost all instruments fall short of this—a mean sensitivity of
56% and a specificity of 79% was derived from a recent meta-
analysis (12). But, even a detection method with 90% sensitivity
and 90% specificity, would still lead to low PPV-5% at a 1 year
incidence of 500/100,000 in clinical populations at higher risk
(14). In addition, a time interval of 1 year is not useful in practice.
If the goal of prediction was to identify suicide risk within a
fortnight or a month, these risk tools would offer little extra
predictive power above chance.

Current methods of building suicide risk assessments stem
from translating clinical observations, and theory, into either
fixed scales or risk factors to inform statistical models. It is
possible that these approaches have reached their limits, since

there has been no improvement over several decades, and new
scales are costly to implement within already stretched front-
line services. Suicidal behavior is a complex phenomenon which
is contextually dependent and can shift rapidly from 1 day
to the next. Capturing these dynamics requires sophisticated
measurement and statistical models (15).

One promising direction is to make use of information
generated routinely over the course of everyday public service
and research activity that deliver dynamic risk assessment at
the point of care. This real-world data (RWD) can come from
sources such as case reports, administrative and healthcare
claims, electronic health records (EHRs), or public health
investigation data. RWD show promise in generating new,
previously unknown hypotheses with data-driven machine
learning techniques, e.g., detection of previously unknown risk or
mitigating factors, adverse effects or treatments for mental health
disorders (16, 17).

DATA-DRIVEN APPROACHES

Machine learning techniques are methods that learn from
and model large datasets using statistical and algorithmical
approaches. They can be used to model risk factors, patterns
of illness evolution and outcomes, on a speed and scale that is
impossible for humans. These models use features to provide
information on future events, such as the likelihood that a
patient will attempt suicide within a given time interval, and
can model complex relations between features and outcomes.
Clinical databases such as EHRs typically contain a variety of
data, of which structured data entries lend themselves well to
computational analysis. As an alternative, or complementary
approach to risk assessment tools, data mining techniques have
been applied to the problem of identifying suicidal behavior
and assessing suicide risk, using different levels of detail and
cohorts (18–24), examples inTable 1. These findings indicate that
machine learning approaches applied to RWD have potential and
could be used to generate tools to improve e.g., medical decision-
making and patient outcomes. Owing to the flexibility of these
approaches, the models can be continuously updated to refine
and improve their clinical applicability.

FREE-TEXT AND NATURAL LANGUAGE
PROCESSING

One main advantage with EHR data is that it captures routine
clinical practice, which may hold cues for suicidal behavior
amongst individuals in contact with health services. Detailed
clinical information in EHRs is predominantly recorded in
free text fields (e.g., clinical case notes and correspondence).
Text records contain rich descriptive narratives—describing
symptoms, behaviors and changes experienced by patients,
which are elicited during clinical assessment and follow-up
(27). Criterion-based classification systems (e.g., ICD-10 and
DSM-5) do not necessarily reflect the underlying etiology and
pathophysiology at an individual patient level (28), and genetic
and environmental risk factors are shared between different
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TABLE 1 | Six example studies published between 2014 and 2017 that use data-driven approaches—machine learning and/or natural language processing (NLP)-for

classifying or predicting suicide risk.

References Task Data source; Approach Key results and findings

Barak-Corren

et al. (19)

Prediction of patients’ future

risk of suicidal behavior

Partners Healthcare Research Patient

Data Registry, US EHR 1998–2012;

Bayesian machine learning

33–45% sensitivity, 90–95% specificity, and early (3–4

years in advance on average).

The approach identified well-known risk factors (e.g.,

substance abuse) but also less conventional risk factors

(e.g., certain injuries and chronic conditions)

Kessler et al.

(22)

Prediction of suicides after

psychiatric hospitalization

HADS: data from 38 Army/DoD

administrative data systems, US;

elastic net (regression trees, penalized

regressions)

Higher risk of suicide within 12 months of hospital

discharge compared to total Army. Strongest predictors

included socio-demographics (male, late age of

enlistment), criminal offenses (verbal violence, weapons

possession), prior suicidality, aspects of prior psychiatric

inpatient and outpatient treatment, and disorders

diagnosed during the focal hospitalizations

McCoy et al.

(25)

Prediction of suicide and

accidental death after

discharge

Massachusetts General Hospital and

Brigham and Women’s Hospital,

Boston, US EHRs;

NLP approach to characterize

positive and negative valence

(compared with model using only

structured codes)

Positive valence reflected in narrative notes was

associated with a 30% reduction in risk for suicide

Metzger et al.

(26)

Epidemiological surveillance

of suicide attempts

Lyon University Hospital Emergency

Department, France;

Random forest and naïve Bayes

including NLP derived variables

Automatic detection of suicide attempts ranged from

70.4 to 95.3% F-measure. Improved quality of

epidemiological indicators as compared to current

national surveillance approaches.

Tran et al. (23) Risk stratification using EHR

data, compared with

clinician assessments

Barwon Health, Australia, EHRs from

inpatient admissions and ED visits;

L1-penalized continuation-ratio model

for ordinal outcomes

Clinicians using checklist predicted patients at high-risk

in 3 months with AUC 0.58, 95% CIs: 0.50–0.66. The

data-driven model was superior: AUC 0.79, 95% CIs:

0.72–0.84.

Predictive factors included known risks for suicide, but

also other information relating to general health and

health service utilization

Walsh et al.

(24)

Prediction risk of suicide

attempt

Vanderbilt University Medical Center,

US, BioVU Synthetic Derivative data

repository;

Random forest

Future suicide attempts were predicted with AUC 0.84,

precision 0.79, recall 0.95, Brier score 0.14. Accuracy

improved from 720 days to 7 days before the suicide

attempt. Predictor importance shifted across time.

mental disorders (29). Thus, a richer and more reliable picture
of what is documented in EHRs needs to include an analysis of
the textual content, which is where NLP methods are important.

Recent years have seen an increase in use of NLP and text
mining tools to extract clinically relevant information from EHR
and other biomedical text (30–33). Information extraction is an
established subfield within NLP seeking to automatically derive
structured information from text. In the mental health domain,
NLP has been used to extract and classify clinical constructs such
as symptoms, clinical treatments and behavioral risk factors (34–
41). Using NLP approaches to identify patients at risk of suicidal
behavior in addition to, or in combination with, structured data
can increase both precision and coverage (26, 42–45).

Other text-based aspects can also be important to the full
understanding of suicide risk. For instance, frequent use of third-
person pronouns in EHRs, indicating interpersonal distance, has
been found to be discriminative for patients who died from
suicide, with an increased relative frequency closer to the event
(46). Positive valence in discharge summaries (e.g., terms like
glad, pleasant) has also been associated with diminished risk of
death by suicide (25).

LOOKING AHEAD: THE ROLE OF
DATA-DRIVEN APPROACHES

The distinctive advantage of data-driven approaches is that they
may be powerful even if the PPV of the predictions are low,
because they can be deployed on a large scale. The usefulness is
dependent on the cost and efficacy of the possible intervention. If
an automated model reduced the suicide risk by just a fraction,
it could save numerous lives cost-efficiently. If we accept that
investment in machine learning and NLP approaches is needed
to improve predictive and preventive measures for identifying
suicide risk (10), focus should now be placed to make these
methods applicable in clinical reality (6, 47).

Obtaining and Utilizing Quality Data
The success of machine learning and NLP approaches depends
on several factors, such as data availability and task difficulty.
EHRs are not easily shared due to confidentiality and governance
constraints, thus method comparison, reliability analysis and
generalizability studies are still uncommon. Suicidality represents
a broad spectrum of actions and thought processes. There
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is a wide range of clinical practice in labeling suicide-
related phenomena within and across nations. With researchers
struggling to settle on standardized nomenclature on non-
fatal suicidal behaviors and uniformity in classifying “ideation,”
this presents considerable challenges to devise an inclusive
but specific framework for using NLP to extract relevant
material from text sources (e.g., defining appropriate suicide-
related keywords). In order to gather a sufficient number of
terms, a keyword search strategy on an entire EHR database
is commonly used. Whilst effective for unambiguous concepts
such as “anemia” or “migraine,” this may result in an artificially
simplified sample where synonymous terms are missed. For
example, from a manually reviewed small EHR sample, suicidal
ideation was expressed with alternative phrases such as “go
to sleep and not wake up” or “jump off a bridge.” However,
generating high quality data is time-consuming and costly.
Applying keyword matching methods on a large data sample
may still result in high coverage (48). Methods to iteratively
refine and extend appropriate keywords and data samples for
generating high quality annotations on text data can help
minimize development costs.

How Can Data-Driven Models be
Explained?
While the effectiveness of data-driven approaches has been
increasing rapidly due to both technological advancements
(e.g., in deep neural networks) and the availability of larger
and richer datasets, many approaches are overly opaque. The
underlying prediction models are developed on large, complex
datasets with a multitude of features and data points that are
internally condensed into abstracted representations which are
difficult for humans to interpret. Acceptance of data-driven
risk prediction models by healthcare practitioners and patients,
involves ensuring that the model output can be clinically trusted

(49). The increasing interest in algorithmic accountability (50)
is thus a welcome development. For example, in a project on
evaluating the use of machine learning methods to predict the
probability of death for pneumonia patients, neural network
models were most accurate, but discarded in favor of simpler
models, because they were more intelligible (49). Advanced
machine learning methods rely on numerous parameters and
configurations, which need to be made interpretable and
understandable in order to support practitioners in judging the
quality of the assessment, and help identify confounding factors
in the decision process.

For example, a suicide risk model developed with an
advanced machine learning approach using large numbers of
features from EHRs, such as symptoms and behavioral patterns,
will produce a model that outputs a risk score but without an
explanation of how the score was derived. Making machine
learning models comprehensible could be done in different
ways (51). One alternative is to extract a more interpretable
model, e.g., decision trees, from an underlying “black-box”
model (52) by for instance visualizing the most important
features and providing an interface to analyse these. Another
approach could be to explain a particular predictive outcome
rather than explaining the complete model (53), or by visualizing
the strength of different model weights and features as in
recent text applications (54–56). Further, recent advances
in developing patient similarity models could be a valuable
approach to develop visual representations and models for
improved outcome prediction (57).

The concept of interpretability is not well-defined (58)
and there is as yet no consensus on how to evaluate
the quality of an explanation (59). Explanations should
be tailored toward the specific task and the end users;
employing and testing the output scores and explanations in a
practical setting (60).

FIGURE 1 | Summary of main characteristics (left) underlying suicide prediction and prevention models: format, output, underlying data, administration and

governance, transferability/generalizability, customizable, usefulness in clinical practice. Risk assessment tools (middle) compared with data-driven models (right).
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Toward Impact in Clinical Practice
Although recent studies using data-driven methods show
promising results, there is still much more work to be done to
improve their predictive utility, even within “high-risk” cohorts
such as those who actually reach health care services. NLP and
machine learning methods are still far from perfect. The need to
account for the longitudinal nature of EHRs is challenging—e.g.,
establishing a pattern of behavior or treatment response where
symptoms may fluctuate over time (61). Changes in symptoms,
behaviors and healthcare service use prior to suicidality are often
strong predictors and need to be appropriately modeled.

The main advantage with data-driven approaches compared
to time-consuming risk assessment tools is that they can be
continuously refined and updated, they are bespoke, and the data
is already there. Access to computing power and data no longer
requires huge investment (62, 63). An example of a decision
support tool that would support a clinician in their daily work
could be one that automatically generates a summary based on
a patient’s previous history, compared with a larger population
trajectory. The tool could output a risk score, highlight which
data elements were used to infer this score, and provide the
clinician support to conduct further interactive analyses.

However, the main limiting factor for progress in deploying
these types of models in clinical practice lies in the lack of clarity
around data governance standards and large-scale solutions for
patient consent, particularly cross-institutionally. Further, these
methodological advances are fairly recent compared to risk
assessment tools, and are still continuously being developed.
Support for interdisciplinary environments where technical
expertise alongside clinical is necessary to enable validation and
deployment into clinical practice.

Preventing suicides on a national or even international scale
requires multiple societal and health care service considerations
(64, 65). To incorporate new technological support that
may aid clinicians in their daily work, data-driven methods
need to be developed in a way that they actually provide
actionable and interpretable information. The main advantages
of risk assessment tools in clinical practice are that they
are standardized, easy to administer, learn, and interpret—but
because they offer little or no predictive ability, they could be
enhanced, adapted or complemented by data-driven models that
better reflect the individual patient situation (Figure 1).

Beyond the Clinic
With the increased use of social media, there is a growing
source of text online related to mental health, including suicidal
behavior, that can be analyzed with data-drivenmethods (66–68).
The growth of online support networks is an issue that could
be integrated in research and health and social care processes
(69). Deploying prevention systems that can also operate to
improve public health and wellbeing is a another area of growing
interest to researchers and policy makers (70, 71). A considerable
number of suicides occur in people who have not received any
prior mental health assessment or treatment (72). Reliable suicide
detection from data generated outside of the healthcare setting is
one way of addressing this issue. For instance, moderated online
social media-based therapy has been successfully developed for
first episode psychosis patients (73). With appropriate ethical

research protocols in place (74), this approach could serve as
inspiration for developing moderated intervention programmes
open to the public based on retrospective large-scale, diverse
non-clinical data sources.

CONCLUSIONS

Over the last decade there has been an important shift in medical
care, with an active role for patients in their care. Clinicians are
encouraged to sustain a reciprocal and collaborative relationship
with their patients; enshrined in the 4Ps-predictive, preventive,
personalized and participatory medicine (75). The ubiquity of
IT technology, increase in education level, and maturation of
digital natives have all contributed to an active role for patients.
In fact, in 2013, 24% of adults in Europe were millennials aged
18–33 (76). Researchers need to be sensitive to not just the
engagement of patients but also the ethical issues of using IT
in novel strategies with potential patient benefit (5), so avoiding
the public concern and mistrust which followed the introduction
of care.data in England (77), and recent events with Cambridge
Analytica and Facebook.

Today, we are in a unique position to utilize a vast variety
of data sources and computational methods to advance the
field of suicide research. To address the inherent complexity of
suicide risk prediction, collaborative, interdisciplinary research
environments that combine relevant knowledge and expertise are
essential to ensure that the requisite clinical problem is addressed,
that appropriate computational approaches are employed, and
that ethical considerations are integrated in the research process
when moving toward participatory developments.
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