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Substance use disorder is characterized by repeated use of a substance, leading

to clinically significant distress, making it a serious public health concern. The

endocannabinoid system plays an important role in common neurobiological processes

underlying substance use disorder, in particular by mediating the rewarding and

motivational effects of substances and substance-related cues. In turn, a number of

cannabinoid drugs (e.g., rimonabant, nabiximols) have been suggested for potential

pharmacological treatment for substance dependence. Recently, cannabidiol (CBD),

a non-psychoactive phytocannabinoid found in the cannabis plant, has also been

proposed as a potentially effective treatment for the management of substance use

disorder. Animal and human studies suggest that these cannabinoids have the potential

to reduce craving and relapse in abstinent substance users, by impairing reconsolidation

of drug-reward memory, salience of drug cues, and inhibiting the reward-facilitating effect

of drugs. Such functions likely arise through the targeting of the endocannabinoid and

serotonergic systems, although the exact mechanism is yet to be elucidated. This article

seeks to review the role of the endocannabinoid system in substance use disorder

and the proposed pharmacological action supporting cannabinoid drugs’ therapeutic

potential in addictions, with a focus on CBD. Subsequently, this article will evaluate

the underlying evidence for CBD as a potential treatment for substance use disorder,

across a range of substances including nicotine, alcohol, psychostimulants, opioids,

and cannabis. While early research supports CBD’s promise, further investigation and

validation of CBD’s efficacy, across preclinical and clinical trials will be necessary.

Keywords: endocannabinoid system, ECS, substance use disorder, treatment efficacy, cannabidiol,

CBD, addiction

INTRODUCTION

Substance use disorder (SUD) is a global problem, with over 30 million individuals estimated to
have an SUD (1). Within the United States alone, SUD-related expenditure (e.g., treatment and
productivity cost) exceeded 23 billion USD per year (2), presenting a worrisome issue. Treatment
to date has had minimal success, with a high likelihood of relapse (3). There is also no reliably
established pharmacotherapy for SUDs, such as cannabis, and stimulant use disorder; and current
pharmacotherapies (e.g., opiate substitution with methadone; naltrexone for alcohol use disorder;
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nicotine replacement) have limited efficacy in relapse prevention
(4, 5). SUD has been conceptualized as a maladaptive
and relapsing cycle of intoxication, binging, withdrawal and
craving that results in excessive substance use despite adverse
consequences (6). Recent models implicate major brain circuits
involved in reward saliency, motivation, and memory/learned
associations inmaintaining addiction (7). Critically, these circuits
may largely be modulated by the endocannabinoid system (ECS),
presenting a promising pharmaceutical avenue for treating SUDs.

THE ENDOCANNABINOID SYSTEM

The ECS consists of cannabinoid receptors (e.g., CB1R, CB2R),
the endogenous ligands that bind to these cannabinoid receptors
[e.g., anandamide and 2-arachidonoylglycerol (2-AG)], and
enzymes for their biosynthesis and degradation [e.g., fatty acid
amide hydrolase (FAAH) and monoacylglyrecol lipase (MAGL)]
(8). Over the past decade, primary interest has focused on
CB1Rs, for their purported role across a range of physiological
functions, including directing the psychoactive effect of delta9-
tetrahydrocannabinol (THC), a phytocannabinoid present in
cannabis (8, 9). CB1Rs are one of the most common G-protein-
coupled receptors in the central nervous system, preferentially
residing on presynaptic neurons across diverse regions including
the neocortex, striatum, and hippocampus (10, 11). Their
widespread distribution allows them to guide a host of
functions ranging from cognition, memory, mood, appetite, and
sensory responses (8). Endocannabinoids themselves function
as neuromodulators that are released by post-synaptic neurons,
and bind to the presynaptic CB1Rs to moderate the release of
neurotransmitters, such as gamma-aminobutyric-acid (GABA),
glutamate, and dopamine (DA) (10, 12, 13). While the specific
CB1R function depends on the cell population and region in
which they reside, their role in retrograde signaling permits
them to regulate signaling activity across cognitive, emotive, and
sensory functions, lending therapeutic capacity (14).

ECS ROLE IN REWARD SIGNALING

Of the functions that the ECS is involved in, of critical interest,
is its influence on the brain reward circuitry, particularly
in response to substances of abuse. The rewarding effect of
substances of abuse is thought to be primarily mediated by
the mesolimbic DA pathway, originating from dopaminergic
cell bodies in ventral midbrain [ventral tegmental area (VTA)],
carrying reward-related information to the ventral striatum
[nucleus accumbens (NAc)] (15). The acute reinforcing effect
of addictive substances is thought to be due to their direct
or indirect activation of DA neurons along this pathway (16).
The VTA-NAc pathway as such plays a key function in reward
assessment, anticipation, and valuation, making it a critical
component underlying substance use and addiction (17).

DA activity is intrinsically tied to cannabinoid activity. CB1Rs
are particularly densely located across the striatal regions that
mediate reward function (i.e., NAc and VTA) (18), and their
regulatory role on the VTA-NAc pathway may be crucial

in modulating overall reward tone (19, 20). Rodent studies
have demonstrated that THC increases neuronal firing rates
in the VTA (21), likely through local disinhibition of DA-
ergic neurons, by binding to CB1Rs present on glutamatergic
and/or GABAergic neurons (although it is prudent to note that
THC’s capacity to potentiate DAergic release differs between
rodents and humans) (15, 20, 22, 23). Similarly, other substances
of abuse (e.g., opioids, cocaine) have also been demonstrated
to potentiate dopaminergic activity via the ECS (24, 25). For
example, alcohol is found to have a downstream potentiation
effect on the ECS in rats (26), such as an increase in
endogenous cannabinoid (anandamide and 2-AG) levels (27, 28)
and downregulation of CB1R expression (29). Alcohol-induced
DAergic release is furthermore dependent on the presence of
CB1Rs (30). Nicotine activates DA neurons in the VTA either
directly through stimulation of nicotinic cholinergic receptors
or indirectly through glutaminergic nerve terminals that are
modulated by the ECS (31). Meanwhile opioid receptors are
often co-located with CB1Rs in the striatum (32), and may
be modulated by and interact with CB1R activity reciprocally
(33, 34). Only psychostimulants are suggested to act directly
on DAergic axon terminals in the NAc, potentially avoiding
upstream endocannabinoid involvement in the VTA (35).

CB1R’s role in the motivational and reinforcing effects
of rewards has been demonstrated in animal models with
CB1R agonists. For example, acute exposure to CB1R agonists
(e.g., THC; CP 55,940; WIN 55,212-2; HU 210) augments
NAc DA transmission (36), lowers the brain-reward threshold
(17), induces conditioned place preference (CPP) (37), and
establishes persistent self-administration of substances of abuse,
including cannabis and alcohol (17, 38). Meanwhile, CB1R
antagonists (e.g., rimonabant) have been shown to attenuate
reinforcing effects of these substances, blocking the increase of
DA release in the NAc (37, 39). While substances of abuse,
such as alcohol, stimulants, nicotine and opioids have differing
upstreammechanisms of action (14, 40), the evidence suggest the
downstream involvement of the ECS in their reward mechanism.

In summary, the ECS, by direct CB1R activity, modulates
and is modulated by mesolimbic DA activity (41). While the
action of individual substances may differ, they share a common
effect of precipitating DAergic activity from the VTA neurons
(42), with this DA-ergic activity mediated by the ECS (14). It is
thus thought that the disruption of endocannabinoid signaling
may prove effective in treating SUDs (41). Nevertheless, it
is necessary to note that this is a simplistic understanding,
given the potential involvement of non-DA-ergic neurons in
the VTA, and additional neuronal circuits including those
involving glutamatergic and opioids, that are yet to be fully
elucidated (39, 43).

ECS ROLE IN SUBSTANCE USE
DISORDER (SUD)

Besides the ECS role in reward, it is necessary to acknowledge that
substance reward and reinforcement are different from substance
dependence. Where the former explain initial substance use, and
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are suggested to be related to increased DA in striatal and limbic
(NAc and amygdala) regions (44, 45); the latter reflects further
compulsive substance intake, loss of control, and persistent
intake despite the substance’s adverse effects and tolerance to its
pleasurable responses (44, 46, 47).

Several lines of thought suggest SUD to be a learned habit
(48, 49) mediated by persistent changes in striatal function (e.g.,
synaptic plasticity occurring during learning) (50). Substances
of abuse are thought to influence long-lasting plastic changes
across corticostriatal circuits, through repeated perturbation of
DA activity, thus making it difficult for addicts to cease their
substance use, and enhancing risk of relapse (48, 50–52). In this
role, CB1Rs present across the corticostriatal circuits, such as
the PFC and striatum, mediate synaptic transmission, in their
capacity as neuromodulators (35, 53). Evidence demonstrates the
necessity of cannabinoid signaling on CB1Rs to induce long-
lasting synaptic plasticity, such as long-term depression (LTD)
of glutamatergic release across the dorsal and ventral striatum
(19, 54). Such functional changes, particularly across the striatal
structures responsible for the rewarding and motivational effects
of substances of abuse, are not only necessary in providing reward
salience, but also in establishing compulsive substance use habit
(39, 55). The ECS thus represents a necessary contributor toward
cellular adaptations in the transition from recreational substance
use to a use disorder (50, 56).

A further function of ECS-mediated synaptic plasticity may
be to facilitate emotional learning and memory processes,
which promote increased emotional response to substance-
related cues (57). The limbic system, in particular the amygdala
and hippocampus, by supporting the formation of associative
memory, promotes positive and negative reinforcement of
rewards including those of substances of abuse (58). Indeed,
animal models demonstrate memory performance to not only
be dependent on emotional processes, but may be modulated
by augmentation of ECS signaling (59–62). Phytocannabinoids,
such as THC and CBD for example have been found to
modulate brain activity level across limbic regions during
emotional processing tasks (63, 64). Endocannabinoids may
further induce long-term changes in synaptic strength across the
hippocampus, mediating associative memory formation (65–67).
Literature investigating cannabinoid agonists and antagonists
on SUD solidifies the role of the ECS in emotional learning
and memory processes. CB1R agonists and antagonists have
respectively been demonstrated to facilitate and attenuate
memory extinction in various fear and reward conditioning
paradigms in animal models [see (57) for review]. Within
the context of SUD, cannabinoid modulation of emotional
memory may have implications for extinction, consolidation,
and reinstatement of substance-related memory (68). These
processes are primarily assessed through place conditioning
paradigms, such as CPP. CB1R antagonism by rimonabant for
example, has been demonstrated to disrupt the reconsolidation
and facilitate the extinction of CPP to substances of abuse, such
as methamphetamine and cocaine, potentially via disrupting
reward-associated memory (69, 70). Nevertheless, evidence on
SUD behavior is mixed and potentially dependent on type and
dose of cannabinoids (70, 71).

The ECS’s role in reward signaling and learning may as such
shape addictive behavior in SUD. The following section details
evidence of CB1R’s involvement in SUD as demonstrated by
cannabinoid agonism and antagonism in animal models.

Agonism of CB1R
CB1R agonism (either studied with the synthetic cannabinoid
agonist WIN 55-212,2 or contrasted against CB1R knockout
mice) has been shown to facilitate alcohol self-administration,
CPP, and binge-like behavior in animals (38, 72–74). WIN
55,212-2 has also been found to increase motivation to self-
administer nicotine, and facilitate cue-induced reinstatement
in rats (75). Similar results are found in the heroin literature,
with THC-induced CB1R agonism increasing substance self-
administration in rats (76, 77).

Agonist substitution with CB1R agonists may have potential
for treatment of cannabis use disorder by reducing withdrawal
symptoms and the reinforcing effect of cannabis (78).
Dronabinol—a stereoisomer of THC, and Nabilone—a synthetic
analog of THC, originally intended for nausea and weight
loss (55), have both been shown to have efficacy for cannabis
withdrawal (79, 80). However, Dronabinol and Nabilone may not
prevent cannabis use or relapse (78). It is likely that while these
substances are efficacious in attenuating withdrawal symptoms
by acting as a “proxy-substances,” they do not directly normalize
substance use-related circuits and behavior.

Antagonism of CB1R
CB1R antagonism has originally been assumed to be a promising
target for SUD treatment. SR141716, known as rimonabant, an
inverse agonist of CB1R, has been extensively investigated in SUD
for its antagonist effect on drug seeking and relapse behavior in
both animal and human models.

Animal studies have shown rimonabant as effective in
reducing self-administration of alcohol (81, 82), nicotine (83,
84), and heroin (85). Antagonism of CB1R by rimonabant,
reduces alcohol-induced sensitization and reinstatement of
nicotine-seeking in rats (83, 84, 86). When investigating the
efficacy of CB1R antagonists on stimulant use however, the
literature is mixed. While rimonabant’s CB1R antagonism
has been shown to block CPP and attenuate cue- and
substance-induced relapse to psychostimulants, such as cocaine
and methamphetamines (87–89), evidence pertaining to self-
administration is inconsistent (90–92).

Human studies have also been conducted investigating
the efficacy of rimonabant in cannabis, nicotine, and alcohol
use. Cannabis and nicotine use have both shown sensitivity
to rimonabant antagonism. Rimonabant attenuated the acute
physiological effects of cannabis including subjective level of
intoxication (93, 94), and clinical trials demonstrate rimonabant
to be effective in increasing smoking cessation (95). However,
the efficacy of rimonabant for alcohol cessation has been
less promising. In a 12-weeks clinical trial of relapse rate
in recently detoxified alcohol-dependant patients, rimonabant
only had a modest effect (that did not reach significance)
compared to placebo (96). Rimonabant also had no effect on
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alcohol consumption for non-treatment seeking heavy alcohol
drinkers (97).

Despite promising findings of rimonabant against substance
use and relapse, it has been found to produce significant negative
psychiatric effects including depression, anxiety, and an elevated
suicide rate, preventing it from being a viable treatment option
(98). Nevertheless, the evidence indicates CB1R antagonism to
have robust effects on some SUDs, highlighting a potential target
for SUD treatment. One such candidate drug that antagonizes
CB1R, and is increasingly being investigated as a therapeutic
option for SUD, is cannabidiol (CBD).

CANNABIDIOL (CBD)

CBD is a phytocannabinoid found in cannabis that has
recently emerged as a promising treatment for SUDs (99, 100).
CBD is non-rewarding, and acts on a number of receptor
systems including the opioid (101), serotonergic (102, 103), and
cannabinoid (22) systems. Within the cannabinoid system, it is
a non-competitive antagonist of CB1R with a low affinity for
CB1Rs’ primary ligand site (104, 105), instead acting through
negative allosteric modulation (105, 106). CBD is found to inhibit
endocannabinoid signaling in a dose-dependent manner, likely
by binding to CB1Rs’ allosteric site and altering the potency of
other primary ligands (e.g., endocannabinoids, THC) (106, 107).
Its ability to modulate overall ECS tone despite lacking intrinsic
efficacy (105) meant that it may decrease CB1R activity without
CB1 inverse agonist-related side effects, such as those produced
by rimonabant (108, 109). Indeed, CBD has a good safety profile,
with generally mild side effects in animal preclinical studies or
human studies (110, 111). This, coupled by the limited abuse
liability of CBD (112, 113), makes it a good therapeutic candidate.
Systemically administered CBD has also been demonstrated to
regulate mesolimbic DA activity (114), and potentially attenuate
substance-induced dysregulation of the mesolimbic circuitry
(115, 116), suggesting its utility against SUDs. Though its efficacy
may be dependent on a range of factors including the sequence of
administration (i.e., whether CBD is administered in conjunction
with, prior to, or post substance-use), and dose ratio (117). A
number of papers are urging for the investigation of CBD as
a therapeutic option for SUD of multiple substances including
stimulants (118), opioids (119, 120), and nicotine use disorder
(31). The following section details evidence of CBD treatments
for cannabis, alcohol, nicotine, opioid, and stimulants. Table 1
further lists this evidence by SUD constructs.

Cannabis
Pharmacological approaches to treating cannabis dependence via
agonist replacement (i.e., Dronabinol and Nabilone) have limited
efficacy (141). CBD itself has been trialed in rats, and found to
be effective in ameliorating conditioned place aversion (CPA)
produced by THC injection, but did not alter CPP (142). In
human case studies, CBD has also been found to reduce self-
reported cannabis use to non-use in a dependent male (128), and
to reduced cannabis withdrawal in another (135), although the
latter case study did find the subject to have relapsed after a 6-
months follow up (135). CBD may have potential in reducing
euphoria associated with cannabis use, despite not directly

reducing cannabis use (124). However, investigative efforts with
pure CBD have been limited. Instead most studies have focused
on nabiximols—an oromucosal spray containing 2.7mg of THC
and 2.5mg of CBD—for cannabis dependence (143).

A number of human case studies suggest nabiximols to be
efficacious, in combination with behavioral therapy, in reducing
cannabis use and withdrawal symptoms (129). However, case
study evidence should be taken cautiously. Further case-
control studies indicate nabiximols to be effective in reducing
withdrawal, but not cannabis use (123, 130, 144). Nor did
it improve abstinence rate (123). It was noted that while
therapeutics may assist in short-term withdrawal, it is unlikely
that ongoing abstinence can be achieved without psychosocial
or clinical support (145). Additionally, the THC component of
nabiximols causes the drug to have abuse potential and should
not be used lightly (146).

Alcohol
In animal studies, CBD was effective in reducing ethanol self-
administration, and at high enough concentration (120 mg/kg
but not 60 mg/kg) attenuated ethanol relapse (131). Further
animal studies show CBD (at 15 mg/kg) to effectively reduce cue
and stress induced reinstatement of ethanol administration, up to
138 days post-CBD treatment (140). However, one study found
CBD alone to be ineffective in attenuating ethanol sensitization,
which is suggested to be the first step in drug-associated plasticity
(121). Comparatively, pure THC and a 1:1 ratio of THC:CBDwas
found to be more efficacious in reducing ethanol sensitization.
In a human trial of 10-weeks of daily CBD administration
in cannabis users, no changes in alcohol or tobacco use was
observed either, although the study sample was not dependent
on alcohol (124).

Tobacco
In a placebo controlled study of 24 smokers, those who received
a CBD inhaler significantly reduced the number of smoked
cigarettes relative to the placebo group, despite no reported
difference in craving between groups (125). In another study,
oral CBD reduced the salience of cigarette cues, after overnight
abstinence in smokers, relative to placebo, but did not reduce
craving or withdrawal (126).

Opioids
Initial studies on the efficacy of cannabinoids in alleviating
morphine withdrawal and abstinence symptoms occurred 40
years ago, with rodent models suggesting that CBD alone has
low efficacy in alleviating signs of abstinence in rats, but CBD
in combination with THC (5:1 ratio) did so significantly (136).
THC itself was demonstrated to be more effective than CBD in
inhibiting morphine abstinence syndrome in mice (137, 138).
Nevertheless, more recent studies demonstrate that treatment
with CBD blocked the reward-facilitating effect of morphine
(132), reduced morphine CPP and CPA, and prevented drug
and stress-induced reinstatement of CPP (71, 127). CBD was
also found to have some efficacy in heroin studies in rats. While
it did not specifically alter maintenance of self-administration,
nor did it aid extinction of self-administration, it did attenuate
cue-induced (but not drug-primed) self-administration following
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TABLE 1 | CBD’s efficacy for the treatment of substance use disorders.

Study Sample Substance Treatment* Outcome* Effect

SENSITIZATION

Filev et al. (121) Mice Ethanol CBD (2.5 mg/kg) Locomotor activity –

THC:CBD (2.5:2.5 mg/kg) Locomotor activity

Gerdeman et al. (54) Rats Heroin THC:CBD (10:10 mg/kg) Locomotor activity –

Luján et al. (122) Mice Cocaine CBD (20 mg/kg) Locomotor activity –

REWARD FACILITATION

Trigo et al. (123) Humans Cannabis THC:CBD (27:25 mg/ml) as needed + MET and CBT Craving—MCQ –

Solowij et al. (124) Humans Cannabis Daily oral CBD (200mg) CEQ euphoria

Morgan et al. (125) Humans Nicotine CBD as needed Craving—TCQ –

Hindocha et al. (126) Humans Nicotine CBD (800mg) Craving—QSU-B –

CBD (800mg) Attentional bias—visual

probe task

CBD (800mg) Pleasantness rating

Markos et al. (127) Mice Morphine CBD (2.5 mg/kg) CPP –

CBD (5 mg/kg) CPP –

CBD (10 mg/kg) CPP

CBD (20 mg/kg) CPP –

Luján et al. (122) Mice Cocaine CBD (5 mg/kg) CPP –

CBD (10 mg/kg) CPP

CBD (20 mg/kg) CPP

CBD (30 mg/kg) CPP –

Parker et al. (113) Rats Amphetamine CBD (5 mg/kg) CPP –

SELF-ADMINISTRATION

Shannon et al. (128) Human: case

study

Cannabis CBD (24-18mg) Abstinence

Trigo et al. (129) Humans: case

series

Cannabis THC:CBD (27:25 mg/ml) as needed + MET and CBT Self-reported use

Trigo et al. (123) Humans Cannabis THC:CBD (27:25 mg/ml) as needed + MET and CBT Abstinence –

Allsop et al. (130) Humans Cannabis THC:CBD (27:25 mg/ml) + psychosocial intervention Abstinence –

Solowij et al. (124) Humans Cannabis Daily oral CBD (200mg) Self-reported use –

Viudez-Martínez et al.

(131)

Rats Ethanol CBD (30 mg/kg) Self-administration

Morgan et al. (125) Humans Nicotine CBD as needed Self-reported use

Ren et al. (115) Rats Heroin CBD (5 mg/kg) Self-administration –

CBD (20 mg/kg) Self-administration –

Katsidoni et al. (132) Rats Morphine CBD (5 mg/kg) ICSS threshold –

Cocaine CBD (5 mg/kg) ICSS threshold

Luján et al. (122) Mice Cocaine CBD (20 mg/kg) Self-administration

Mahmud et al. (133) Rats Cocaine CBD (5 mg/kg) Self-administration –

CBD (10 mg/kg) Self-administration –

Hay et al. (134) Rats Methamphetamine CBD (20 mg/kg) Self-administration –

CBD (40 mg/kg) Self-administration –

CBD (80 mg/kg) Self-administration

EXTINCTION

Parker et al. (113) Rats Cocaine CBD (5 mg/kg) CPP

Amphetamine CBD (5 mg/kg) CPP

WITHDRAWAL

Crippa et al. (135) Human: case

study

Cannabis CBD (600mg) MWC

Allsop et al. (130) Humans Cannabis THC:CBD (27:25 mg/ml) + psychosocial intervention CWS

Trigo et al. (123) Human Cannabis THC:CBD (27:25 mg/ml) as needed + MET and CBT MWC –

(Continued)
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TABLE 1 | Continued

Study Sample Substance Treatment Outcome Effect

Hindocha et al. (126) Humans Nicotine CBD (800mg) MPSS –

de Carvalho and

Takahashi (71)

Rats Morphine CBD (10 mg/kg) CPP following

naltrexone-precipitated

withdrawal

Hine et al. (136) Rats Morphine CBD (10 mg/kg) Abstinence symptoms –

THC:CBD (2:10 mg/kg) Abstinence symptoms

Bhargava (137) Mice Morphine CBD (5 mg/kg) Naloxone-precipitated

withdrawal

CBD (10 mg/kg) Naloxone-precipitated

withdrawal

CBD (20 mg/kg) Naloxone-precipitated

withdrawal

Chesher and Jackson

(138)

Rats Morphine CBD (5 mg/kg) Naloxone-precipitated

withdrawal

–

CBD (20 mg/kg) Naloxone-precipitated

withdrawal

–

CBD (80 mg/kg) Naloxone-precipitated

withdrawal

–

REINSTATEMENT

Drug-primed

Ren et al. (115) Rats Heroin CBD (5–20 mg/kg) Self-administration –

de Carvalho and

Takahashi (71)

Rats Morphine CBD (10 mg/kg) CPP

Luján et al. (122) Mice Cocaine CBD (20 mg/kg) Self-administration –

Karimi-Haghighi and

Haghparast (139)

Rats Methamphetamine CBD (10 µg/5 µl) CPP

Hay et al. (134) Rats Methamphetamine CBD (20 mg/kg) Self-administration –

CBD (40 mg/kg) Self-administration –

CBD (80 mg/kg) Self-administration

Context-induced

Viudez-Martínez et al.

(131)

Rats Ethanol CBD (60 mg/kg) Self-administration –

CBD (120 mg/kg) Self-administration

Gonzalez-Cuevas et al.

(140)

Rats Alcohol CBD (15 mg/kg) Self-administration

Cocaine CBD (15 mg/kg) Self-administration

Cocaine CBD (10 mg/kg) CPP

de Carvalho and

Takahashi (71)

Rats Morphine CBD (5 mg/kg) CPP –

CBD (10 mg/kg) CPP

Cue-induced

Ren et al. (115) Rats Heroin CBD (5–20 mg/kg) Self-administration

Mahmud et al. (133) Rats Cocaine CBD (5 mg/kg) Self-administration –

CBD (10 mg/kg) Self-administration –

Stress-induced

Gonzalez-Cuevas et al.

(140)

Rats Alcohol CBD (15 mg/kg) Self-administration

Cocaine CBD (15 mg/kg) Self-administration

*CBD, cannabidiol; THC, delta-9-tetrahydrocannabinol; MET, motivational enhancement therapy; CBT, cognitive behavioral therapy; MCQ, marijuana craving questionnaire; CEQ,

Cannabis Experiences Questionnaire; TCQ, tiffany craving scale; QSU-B, questionnaire of smoking urges–brief; CPP, conditioned place preference; ICSS, intercranial self-stimulation;

MWC, marijuana withdrawal checklist; CWS, cannabis withdrawal scale; MPSS, mood and physical symptoms scale craving.

14 days of abstinence, with CBD’s effect lasting up to 2 weeks
post-administration (115).

Stimulants
Evidence of CBD efficacy for stimulant use is mixed. Neither
CBD, nor a 1:1 ratio of THC:CBD reversed the cocaine

sensitization effect (although rimonabant did) (54, 122). Some
studies suggest that acute CBD administration does not block
the reward-facilitating effect of cocaine (132), reduce cocaine
self-administration, or attenuate cue-induced cocaine seeking
in rats (133). However, others did find CBD to disrupt
acquisition of cocaine self-administration and CPP (122), and

Frontiers in Psychiatry | www.frontiersin.org 6 February 2019 | Volume 10 | Article 63

https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychiatry#articles


Chye et al. CBD for Substance Use Disorder

impair drug-primed reinstatement of CPP formethamphetamine
(139). Further studies on relapse are similarly mixed with one
demonstrating CBD’s ability to attenuate reconsolidation of
CPP (1 week post-CPP acquisition) for cocaine in mice (71),
and effectively reduce cue and stress-induced reinstatement
of cocaine seeking up to 48 days post-CBD treatment (140),
whilst another suggested no effect of CBD on drug-primed
reinstatement post-extinction (122). Dose dependency may
explain contradictory findings, as Hay et al. (134) demonstrated
that 80 mg/kg (and not less) of CBD was needed to significantly
reduce motivation to self-administer methamphetamine and
reinstatement post-extinction. While evidence for CBD use
for stimulant addiction in animals is weak, a longitudinal
observational study of 122 participants did find cocaine users
who self-report using cannabis to control their cocaine use,
to have reduced their cocaine use over a 3 years period
(147). Nevertheless, street cannabis generally has low amounts
of CBD (148) and findings cannot be extrapolated to CBD’s
therapeutic efficacy.

The relatively weaker evidence of CBD in disrupting the
reward-facilitating effect and self-administration of substances
of abuse, despite its comparative efficacy in CPP reinstatement
paradigms, may reflect its role in attenuating reward-related
memory, without altering the rewarding properties of substances
per se. Evidence of CBD’s role in regulating emotional memory
is supported by studies of other conditions, such as anxiety
and PTSD-related fear memory [see (47) and (141) for a more
extensive review of cannabinoid’s role in emotional memory
processing across other paradigms]. However, evidence of CBD’s
role in the consolidation and extinction of substance-related
memory in humans is yet limited.

SUMMARY AND FUTURE DIRECTIONS

CBD shows some promise in alleviating negative withdrawal
effects and reducing motivation to self-administer or
reinstatement of drug use in animals. However, evidence
on its efficacy is limited and mixed. CBD alone may not
be sufficiently effective in maintaining long-term abstinence
without ongoing support and behavioral therapy, as evidenced by
its lack of efficacy over treatments, such as cognitive behavioral
therapy and motivational enhancement therapy (123, 129). A
combination of pharmacotherapy and behavioral therapy may
increase treatment potency and adherence (149), and CBD may
be better suited as an adjunct treatment to primary behavioral or
psychosocial therapy (124).

There is also much that is unknown about how CBD may
be targeting and alleviating SUD-related effects. Recent evidence
suggests that within the mesolimbic system, CBD also influences
the serotonergic system, as an agonist of the serotonin 1A (5-
HT1A) receptor (102, 103), which in addition to contributing
to reduction in stress and anxiety (150), may be responsible for
(i) blunting the reward-facilitating effect of substances of abuse
(e.g., morphine in rats) (132); and (ii) modulating the formation
of associative emotional memory related to substances of abuse
(151). A number of studies have suggested the potential of
selective serotonin reuptake inhibitors and other antidepressants
in reducing substance (e.g., alcohol and nicotine) use via
alleviating mood symptoms (152). CBD’s capacity to alleviate
stress, anxiety, and depressive symptoms may be mediating
its treatment effect on SUDs (124, 153, 154). Indeed, CBD
has been found to have therapeutic potential in alleviating
affective and cognitive processing disturbances that may be
induced by chronic substance (e.g., cannabis) use (63, 64, 155),
proving potential utility in moderating the deleterious course
of impairment, particularly in adolescent initiates of substance
use (156). Additionally, other receptor and enzyme functions
targeted by CBD, such as cannabinoid CB2Rs, non-cannabinoid
transient receptor potential vanilloid type-1 (TRPV1) and type-
2 (TRPV2) receptors, and ECS’ catabolic enzymes FAAH and
MAGL, should also be investigated for their role in the ECS and
SUD (157–161).

In sum, some early research supports CBD’s promise as
pharmacotherapy against SUD. However, further investigation
into CBD’s mechanism of action, and validation of its efficacy,
across preclinical and clinical trials will be necessary.
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