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Schizophrenia is a severe mental disorder which leads to functional deterioration. Early

detection and intervention are vital for better prognosis. However, the diagnosis of

schizophrenia still depends on clinical observation to date. Without reliable biomarkers,

schizophrenia is difficult to detect in its early phase. Further, there is no approved

medication for prodromal schizophrenia because current antipsychotics fail to show

satisfactory efficacy and safety. Therefore, to develop an effective early diagnostic

and therapeutic approach for schizophrenia, especially in its prodromal phase, is

crucial. Glutamate signaling dysfunction and dysregulation of oxidative stress have been

considered to play important roles in schizophrenic prodrome. The N-methyl-D-aspartate

receptor (NMDAR) is one of three types of ionotropic glutamate receptors. In this

article, we reviewed literature regarding NMDAR hypofunction, oxidative stress, and the

linkage between both in prodromal schizophrenia. The efficacy of NMDAR enhancers

such as D-amino acid oxidase inhibitor was addressed. Finally, we highlighted potential

biomarkers related to NMDAR and oxidative stress regulation, and therefore suggested

the strategies of early detection and intervention of prodromal schizophrenia. Future

larger-scale studies combining biomarkers and novel drug development for early

psychosis are warranted.

Keywords: glutamate, N-methyl-D-aspartate receptor, oxidative stress, early psychosis, schizophrenia, prodrome,

biomarker

INTRODUCTION

Schizophrenia is a high-morbidity and high-mortality brain disorder. Globally 1% population
suffered from this disorder. The common symptoms of schizophrenic patients include
hallucination, delusion, disorganized thought and behavior, and negative symptoms. Clinical
manifestation of schizophrenia consists of three domains: positive symptoms (such as
hallucinations or delusions), negative symptoms (such as flattening affect or social withdrawal),
and cognitive deficits (such as impaired memory, attention, and executive functions) (1–4). Among
them, cognitive function impairments are considered to be core symptoms of schizophrenia,
starting from its prodromal phase, while psychotic symptoms have not yet been vivid
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(5–9). Cognitive deterioration appears at an earlier age in
schizophrenia patients (10, 11). The deterioration of cognitive
function in patients with schizophrenia will lead to impairment
of self-care, social, and occupational function (12). Therefore,
the social impact of schizophrenia is very high. Current
antipsychotics have limited, if any, efficacy for cognitive function.

The etiology of schizophrenia remains unclear. Oxidative
stress and glutamate-related dysfunction, potentiating each
other in a vicious circle, are interdependently involved in
the pathogenesis of schizophrenia (13, 14). Adolescence or
early adulthood is the critical period when schizophrenia
typically arises, while glutamate is the main excitatory
neurotransmitter that mediates puberty (15). Oxidative
stress and genetic/environmental factors converge during
neurodevelopment, leading to the impairment of neural
connectivity and synchronization, as well as to cognitive deficits
in early psychosis patients (16).

This review highlights a recent development surrounding
N-methyl-D-aspartate receptor (NMDAR) modulators and
antioxidants, paving the way for biomarker guided early
detection and intervention of high-risk individuals (17).

IMPORTANCE OF EARLY DETECTION AND

INTERVENTION OF SCHIZOPHRENIA

Most individuals experience a period of prodromal symptoms
prior to the diagnosis of schizophrenia (18). Before full-blown
psychotic symptoms appear, individuals may experience changes
in cognition, behavior, and function (19). Therefore, it is crucial
to identify populations at high risk of schizophrenia to initiate
early intervention (20). Improved diagnostic tools, the advent
of atypical antipsychotic and the development of phase-specific
psychosocial treatments have made intervention research in
people at prodrome or ultra-high risk or people with attenuated
psychosis syndrome for developing schizophrenia possible (21).

Antipsychotic medications, however, have not yet been
approved for such populations, mainly because prolonged
exposure to antipsychotic medication has been associated with
various side effects such as weight gain, metabolic syndrome
and hyperlipidemia (22, 23). First-generation antipsychotics,
which block the majority of D2 dopamine receptors in the
putamen (24, 25), mainly exert effects on positive symptoms and
generate numerous intolerable side effects such as parkinsonism
(including tremor, rigidity, bradykinesia), akathisia, dystonia,
and prolactinemia (26). Newer atypical antipsychotics targeting
both dopamine D2 and serotonin 5HT2 receptors (24, 26, 27)
have been suggested to be superior to conventional agents in
terms of efficacy for positive symptoms and perhaps negative
symptoms (28–30). Despite this, there were a considerable
percentage of patients resistant or only partially responsive
to available medications (31). Moreover, side-effect profiles of
second-generation antipsychotics, including obesity, diabetes
mellitus, hyperlipidemia, metabolic syndrome, and sudden
cardiac death, limit their clinical use (32–34). A substantial
portion of schizophrenia patients refuse or cannot tolerate
antipsychotics due to poor response and/or side effects (24).

Further, long-term antipsychotics use is associated with cognitive
impairment (35).

Most prodromal patients receive no or very brief, if any,
antipsychotic treatment, due to safety concerns (36). To
date, there is neither approved medication for prodromal
schizophrenia, nor reliable outcome predictor for its conversion
to full-blown schizophrenia. Therefore, developing early
diagnosis and intervention strategy is very important.

THE GLUTAMATE HYPOTHESIS OF

SCHIZOPHRENIA

In addition to dopaminergic neurotransmission, glutamatergic
neurotransmission has gained more attentions lately as the
key deficit of schizophrenia (37–44). Glutamate has two
major receptor families: (1) ionotropic receptors, consisting
of N-methyl-D-aspartate (NMDA), α-amino-3-hydroxy-5-
methyl-4-isoxazolepropionic acid (AMPA), and kainate receptor
subtypes, and (2) metabotropic receptors (mGluRs), which are
G-protein-coupled receptors.

While glutamatergic outputs appear widespread over the
corticolimbic system, disinhibition of the glutamatergic output
from the subiculum to the ventral tegmental area leads to the
hyperdopaminergic state with treatment of NMDA receptor
(NMDAR) antagonists (45).

HYPOFUNCTION OF NMDAR-MEDIATED

NEUROTRANSMISSION IN

SCHIZOPHRENIA

NMDAR, a heteromeric ion channel, formed from a number
of subunits (NR1, NR2ANR2D, NR3A, and NR3B), plays an
important role in neurocognition. NMDAR antagonists, such
as phencyclidine (PCP) and ketamine, induce psychosis
which resembles schizophrenia more closely than the
amphetamine/dopamine agonist do (46). The former causes
not only positive symptoms, but also negative symptoms and
cognitive deficits associated with schizophrenia. Moreover,
glycine transporter inhibitors could reverse ketamine-induced
effects (37, 47–50). Decreases in NMDAR density were found in
post-mortem tissue from schizophrenic patients (51). The above
evidence suggests that NMDAR dysfunction may be a critical
deficit in schizophrenia (40, 43, 44, 52). Modulation of NMDAR
has been proposed as a possible therapy for schizophrenia,
including its prodrome (26, 37, 48, 53–56).

ABNORMAL PLASTICITY OF AMPA AND

KAINATE RECEPTORS IN

SCHIZOPHRENIA

While some glutamatergic synapses have only AMPA receptors
(AMPARs) or only NMDARs, most have both receptors.
NMDAR modulators may regulate not only NMDARs but
also AMPARs (57). Similar to NMDARs, AMPARs modulate
fast glutamate transmission, neuronal circuit remodeling
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and higher order cognitive functions such as learning and
memory; and abnormalities of AMPAR trafficking contribute
to dysfunction in brain diseases such as schizophrenia (58).
AMPAR subunits (GluR1-4) assemble to form AMPAR
complexes in the lumen of the endoplasmic reticulum. Recently,
the possibility of AMPAR dysfunction has been proposed to
explain abnormalities in glutamate neurotransmission associated
with the pathophysiology of schizophrenia (59). Topiramate,
an antiepileptic drug with AMPAR antagonist activity has been
demonstrated to improve schizophrenia as an adjunctive therapy;
however, its efficacy may occur via GABA neurotransmission, as
AMPAR antagonism occurs only at high concentrations (60, 61).
Beneficial effects of CX516 and minocycline on cognitive
domains appeared insignificant with rigorous statistical analyses
(62). Newer AMPAR modulators such as UoS12258 which may
possess precognitive properties deserve further studies (63).

Studies of kainate receptors (KARs) met difficulties because
of the lack of specific activators or blockers for the receptors.
First, kainate can also activate AMPARs. Second, AMPA, activates
many KARs too (64).

ROLE OF THE MGLUR ALLOSTERIC

MODULATION IN SCHIZOPHRENIA

The mGluRs, consisting of eight subtypes, provide a wide range
of targets to modulate NMDAR function as well as glutamate
release. Preclinical studies demonstrated that activation of
the mGluR2/3 down-regulated the excessive dopamine release
caused by treatment with NMDAR antagonists (65). A clinical
trial showed that an mGluR2/3 agonist, which down-regulates
disinhibited glutamate release, exhibited antipsychotic properties
(66). There have also been advances in the discovery of highly
selective positive allosteric modulators (PAMs) of mGluR2
and mGluR5 for the treatment of schizophrenia (67). The
mGluR5 PAMs counter aberrant neuronal activity generated by
NMDAR antagonists in the prefrontal cortex (68). Recently,
more subtype-selective allosteric modulators for various mGluRs
instill hopes of better or alternative treatments for (subgroups of)
schizophrenia (69).

OXIDATIVE STRESS IN SCHIZOPHRENIA

Current evidence supports that increased oxidative stress-
induced cellular damage of macromolecules may play a role
in schizophrenia, and schizophrenia patients have abnormal
antioxidant defenses as observed in their peripheral blood (70–
72), CSF (73), and postmortem brain tissues (74, 75). Evidence
from genetic studies also suggests that schizophrenia patients
may have a reduced ability to mount an adequate antioxidant
defense (76).

The failure of antioxidant defenses to protect against
free-radical generation damages cell membranes, impacts on
neurotransmission and, ultimately, leads to phenotypes of
schizophrenia (75). Important free radicals include hydrogen
peroxide, the hydroxyl radical, nitric oxide (NO), and the
superoxide radical. In the rate-limiting step of purine catabolism,

xanthine oxidase catalyzes the conversion of xanthine to
uric acid, an important antioxidant, and generates superoxide
radicals. Superoxide dismutase catalyzes the conversion of
superoxide radicals to hydrogen peroxide. Both catalase and
glutathione peroxidase converts hydrogen peroxide to water
and oxygen. Reduced glutathione is oxidized by glutathione
peroxidase to oxidized glutathione. Glutathione peroxidase also
converts nitrate (a by-product of NO radicals) to nitrite.
Nitrite is often used as a marker for NO activity. Hydroxyl
radicals, produced from both hydrogen peroxide and NO,
promote apoptosis, DNA damage, protein carbonylation, and
lipid peroxidation. Vitamin E, also acting as an antioxidant,
can inhibit lipid peroxidation. Thiobarbituric acid reactive
substances (TBARS) and malondialdehyde (MDA) are important
end products of lipid peroxidation (77).

MODULATION OF OXIDATIVE STRESS IN

PATIENTS WITH SCHIZOPHRENIA

Clinical trials also support an association between oxidative
stress and schizophrenia. Treatment with the antioxidant
N-acetylcysteine significantly reduced psychopathology in
schizophrenia (78). Nevertheless, N-acetylcysteine may not
represent an optimal antioxidant therapy, as its principal modus
operandi, the supply of increased cysteine for glutathione
biosynthesis, is of limited help unless the brain can use it to
produce, recycle and utilize glutathione (13). Another important
study also found that supplementation with fish oil significantly
reduced the progression to first-episode psychosis in subjects
with prodromal symptoms (79). However, many subjects in the
study also carried severe depressive symptoms, hampering the
conclusion of the study. Anyhow, these findings suggest that
oxidative stress levels may be a biomarker of schizophrenia risk
and response to adjunctive antioxidant treatment.

LINKING OXIDATIVE STRESS AND NMDAR

HYPOFUNCTION IN SCHIZOPHRENIA

PATHOGENESIS

Molecular, genetic and pathological evidence suggests that not
only oxidative stress but also NMDAR hypofunction contribute
to schizophrenia pathophysiology. Evidence now suggests that
these factors are mechanistically interdependent and contribute
to a common schizophrenia-associated pathology (13, 14).

There are clear similarities between the impact of
developmental NMDAR hypofunction and that of oxidative
stress on the adult rodent: both cause similar behavioral and
cognitive disturbances. Increasing evidence suggests that
NMDAR hypofunction and oxidative stress may be reciprocally
linked (13, 14, 80). The NMDAR is regulated by redox
state: both GRIN1 and GRIN2A possess pairs of reduction-
oxidation reaction (redox)-sensitive cysteine residues whose
disulfide bond formation decreases NMDAR currents (80),
while an overlapping group of cysteine residues are subject
to inhibitory S-nitrosylation, which facilitates disulfide bond
formation (80, 81).
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Recently, it has been shown that changes in intracellular redox
status can also modulate NMDAR activity in a manner that is
relevant to age-dependent cognitive decline (82). Age-associated
shifts in intracellular redox state to a pro-oxidizing environment
have been linked to reduced NMDAR activity via the redox
regulation of calcium/calmodulin-dependent protein kinase type
II (CaMKII), and can be rescued by intracellular glutathione (83).

Whether NMDAR-related dysfunction may influence the
modulation of oxidative stress and whether the modulation of
oxidative stress can alter NMDAR-related neurotransmission
both also deserve further studies.

SEARCHING FOR DIAGNOSTIC AND

THERAPEUTIC BIOMARKERS OF

SCHIZOPHRENIA

At present, the diagnosis and treatment response of
schizophrenia rely on clinical manifestation. There have been lots
of post-mortem brain studies (84). However, RNA expressions
may be affected by many factors under post-mortem condition.
Therefore, it’s needed to establish peripheral, accessible biological
markers for mental illness (85). Lymphocytes or white cells have
been suggested to be a neural probe because numerous
studies showed similarities between receptor expression and
mechanisms of transduction processes of cells in the nervous
system (e.g., neurons and glia) and lymphocytes (86). Blood-
derived RNA has become a convenient alternative to traditional
tissue biopsy-derived RNA (87).

Several potential markers have been reported. Hashimoto
et al reported that serum levels of D-serine were lower in
schizophrenic patients than in healthy subjects (88). Besides,
the expression of apolipoprotein D was increased in the plasma
and brains of individuals with schizophrenia (89). S100B is
a calcium-binding protein produced by astroglial cells. It has
also been reported that schizophrenic patients, compared with
healthy subjects, have higher DRD3 mRNA levels (85) and
lower AKT1 protein levels (90) in peripheral lymphocytes.
Adrenomedullin mRNA levels in lymphoblastoid cell lines of
male schizophrenia patients was higher than in controls (91). Via
microarray technique, six genes were suggested to be biomarkers
of schizophrenia (92). Another study demonstrated that mRNA
expression of eight biomarkers could be discriminated between
schizophrenia, bipolar disorder, and controls (87). However,
developing more suitable biomarkers for schizophrenia in future
studies is warranted because there exists a large overlap between
patients and controls in present biomarker studies.

NMDAR- AND OXIDATIVE-RELATED

BIOMARKERS OF SCHIZOPHRENIA

NMDAR-related markers are scanty. Lin et al found that the
G72 (D-amino acid oxidase activator, DAOA) protein level
in plasma was much higher in patients with schizophrenia
than in healthy controls (93). G72, functioning as a D-amino
acid oxidase (DAAO) activator (DAOA), exists exclusively in 4
primates including humans. The study suggests that peripheral

G72 concentration may be characteristic of schizophrenia. The
finding has been replicated independently (94). G72 is a huge
protein. Its longest protein is called LG72 and consists of 153
amino acids. Its complex interactions deserve intensive study to
elucidate the pathogenesis and pathophysiology of schizophrenia
(95). Liquid chromatography-mass spectrometry (LC-MS)-based
proteomics and metabolomics that have been used to discover
protein and metabolite markers in clinical diseases may be
helpful to elucidate the function of G72 and its interaction with
other proteins.

A previous study also found that mRNA expression levels of
SLC7A11 and SLC3A2 were lower in patients with schizophrenia
than healthy individuals (96). SLC3A2 and SLC7A11 are two
subunits of the cystine/glutamate antiporter system x−c which
plays a critical role in the regulation of glutamate release.
DAAO is responsible for degrading D-serine and other D-amino
acids (97). A recent study found that its level in peripheral
blood was higher with cognitive aging (98). Serine hydroxyl-
methyltransferase 2 (SHMT2) is an isoenzyme that catalyzes the
reversible conversion of serine and tetrahydrofolate (THF) to
glycine and methylene THF. Phosphoserine aminotransferase 1
(PSAT1) is required for the phosphorylated pathway of L-serine
biosynthesis. Uptake of D-serine and L-serine into neurons and
astrocytes is predominantly mediated by the serine transporter
(ASCT1) subtype. The aforementioned genes/proteins that can
regulate glutamate release and NMDAR function may be
implicated in the pathogenesis of schizophrenia. Further, a recent
study suggests that altered NMDAR signaling and parameters
may have the potential to be used to detect vulnerability
toward schizophrenia in individuals early in the disease process
and thereby enable early intervention in a subgroup of
patients (17).

Patients with schizophrenia also exhibit abnormal blood
oxidative stress parameters, including total antioxidant
status, glutathione peroxidase, catalase, superoxide
dismutase, and nitrite (71, 77). It has been suggested
that oxidative stress may serve as a potential biomarker
in the etiopathophysiology, clinical course (including
predicting conversion of high-risk symptoms to psychosis),
symptomatology, cognitive function, and treatment
response by antioxidants in patients with schizophrenia
(16, 77, 99–101).

MISMATCH NEGATIVITY AS AN

OBJECTIVE MEASUREMENT FOR NMDA

FUNCTION AND A BIOMARKER FOR

SCHIZOPHRENIA

Mismatch negativity (MMN) has been proven to be related to
NMDAR and has been shown to be reduced in schizophrenia.
Previous studies have successfully established a method
to generate reliable MMNs and have demonstrated the
involvement of the NMDAR in the genesis of MMN
(102, 103). Computational model was created to explain
the observed functional MRI (fMRI) time-series data by using
a state-space model (104), and has been used to model the
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evoked components as measured by electroencephalography
(EEG) or magnetoencephalography (MEG), that has been
used to study the production mechanisms of MMN and
P300 (103).

Building a computational model for MMN may be helpful
for exploring the network of MMN in schizophrenia and its
treatment by the NMDAR enhancers such as D-serine (105).
Longitudinal studies have also shown that MMN recordings can
assist in predicting the conversion from the prodromal phase to
psychosis (106).

DAAO INHIBITION FOR SCHIZOPHRENIA

D-serine is more potent than other NMDAR co-agonists as
the neurotransmitter for the glycine-site of the NMDAR (107).
DAAO, a flavoenzyme of peroxisomes existing in the brain,
kidney and liver of mammals, is responsible for degrading D-
serine, D-alanine, and other D-amino acids. Therefore, one
of the avenues to enhance NMDAR function is via inhibiting
DAAO activity.

Sodium benzoate, a DAAO inhibitor, can elevate synaptic
concentrations of D-amino acids, like D-serine and D-alanine,
and thereby enhance NMDA neurotransmission. Previous
clinical trials have studied the potential of sodium benzoate as
an adjuvant therapy for schizophrenia. The first clinical trial
suggested that sodium benzoate is beneficial in improving the
clinical symptoms including positive and negative symptoms,
cognitive and global functioning and quality of life in patients
with chronic schizophrenia (40). The effect size of sodium
benzoate treatment for Positive and Negative Syndrome Scale
(PANSS) total score from baseline to endpoint was 1.76, which
was much higher than the effect size (0.51) of sarcosine adjuvant
therapy for the PANSS total score in patients with chronic
schizophrenia (108).

GLUTAMATERGIC MODULATORS IN

PATIENTS WITH PERSISTENT PSYCHOTIC

SYMPTOMS

Only a minority of patients with first-onset schizophrenia
return to their original level of functioning. Among
individuals who respond poorly to antipsychotics (which are
principally dopamine antagonists), their glutamatergic/NMDAR
dysfunction may lead to failures by the treatment. While second-
and third-generation antipsychotics are increasingly used,
therapy for refractory schizophrenia remains a great challenge.
Even with the treatment of clozapine (the last-line therapy for
schizophrenia), a substantial portion of patients still suffer from
persistent psychotic symptoms. However, after many clinical
trials with various agents, including diverse glutamatergic
modulators, there is no convincing evidence to demonstrate the
efficacy of adjuvant therapy for clozapine-resistant patients (109).
In a recent study, sodium benzoate even showed a beneficial
effect on positive and negative symptoms and quality of life
with the dose of 2 g/day in patients with clozapine-resistant
schizophrenia (43).

STRATEGIES OF EARLY DETECTION AND

INTERVENTION OF PRODROMAL

SCHIZOPHRENIA

The prodromal phase of schizophrenic disorders has been
recognized since the Nineteenth century (110). Recently, the
Criteria of Prodromal Syndromes (COPS) diagnostic criteria
have been applied; there are three operationally defined
prodromal syndromes: attenuated positive psychotic symptom
syndrome, brief intermittent psychotic syndrome, and genetic
risk and recent functional decline syndrome (18, 111, 112).
The PRIME prodromal research team in Yale University has
also developed a semi-structured interview called the Structured
Interview for Prodromal syndromes (SIPS) (113). The SIPS is
utilized to rate presenting symptomatology and to determine if
COPS criteria aremet. The Scale of Prodromal Symptoms (SOPS)
(114), embedded in SIPS, is a 19-item scale designed to measure
the severity of prodromal symptoms. The SOPS contains four
subscales: five positive, six negative, four disorganization, and
four general symptom items. The detection and intervention of
young people in the prodromal phase is a newly developed area in
psychiatry (115), and the ethical considerations about treatment
options must be treated with sensitivity (116).

Standard guidelines have been used in our previous studies
aiming to establish or examine prodromal or ultra-high-risk
(UHR) (112), clinical high risk (117), and 5 at-risk mental state
(118). Recently, objective strategies have been emphasized for
screening prodromal illness in many studies. The fMRI with
magnetic resonance spectroscopy (MRS) is one of those that
identify early stage of mental illness. Individuals with prodromal
symptoms demonstrated smaller differential activation in frontal
regions in fMRI data (119).

The possibility of treatment intervention during the
prodromal phase has a history almost as long as it was first
identified (120). Both typical and atypical antipsychotics,
including risperidone and olanzapine, have been utilized
to reduce prodromal symptoms or the risk of progression
to schizophrenia (121–123). However, safety and side effect
concerns exist; and it remains unclear whether the benefits of
antipsychotic treatments outweigh the risks (116).

Therefore, there is an urgent need to develop safer
interventions for schizophrenic prodrome. D-serine (124)
and fish oil (79) have been demonstrated to be beneficial as
treatment of prodromal schizophrenia. Other antioxidants
such as glucoraphanin have also shown potential in preventing
the onset of psychosis in the adult offspring after maternal
immune activation (125). Future trials with glutamate
modulators or antioxidants in early psychosis and even
prodromal schizophrenia should consider biomarker-guided
treatment (16).

SUMMARY

It is generally recognized that intervention of early psychosis and
prevention the progression of schizophrenic prodrome to full-
blown schizophrenia is essential, in order to avoid subsequent
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functional deterioration. Current antipsychotic medications have
not yet been approved for such populations mainly due to the
lack of overt efficacy and various side effects including metabolic
syndrome and hyperprolactinemia. Therefore, developing novel
antipsychotic drugs with better efficacy and safety is critical.
Compounds that can enhance the NMDAR have shown
encouraging efficacies with favorable safety profiles in clinical
trials for patients with schizophrenia. It will be valuable to
test whether NMDAR enhancers are beneficial for patients with
earlier phases of psychosis.

Identifying high risk populations who are prone to develop
full-blown psychosis would be very helpful to apply early
an intervention strategy to those people who are in need.
It is important to search for biomarkers representing the
pathophysiology of schizophrenia and more importantly, the
biological changes in the process of early psychosis. In addition
to dopamine hypothesis, dysfunction of glutamate signaling, and
dysregulation of oxidative stress have been considered to play
important roles in early psychosis and schizophrenic prodrome.
It will be interesting to search for potential biomarkers that

are related to glutamate and oxidative stress modulations via
blood-based or brain imaging approaches.

Combining biomarkers and novel drug development for early
psychosis is critical in future studies. Notably, the intervention
that can both treat early psychosis and serve as the biomarker
might have more potential to reach the goal.
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